Copyright (c) 1999 Association of Mizar Users
environ vocabulary FINSEQ_1, RFINSEQ, ARYTM_1, FUNCT_1, RELAT_1, ZF_REFLE, PROB_1, TARSKI, BOOLE, SUBSET_1, GENEALG1, FINSEQ_4; notation TARSKI, XBOOLE_0, SUBSET_1, XCMPLX_0, XREAL_0, NAT_1, FUNCT_1, RELAT_1, FINSEQ_1, PROB_1, FINSEQ_4, RFINSEQ, BINARITH, TOPREAL1; constructors REAL_1, FINSEQ_4, AMI_1, GOBOARD9, BINARITH, RFINSEQ, PROB_1, MEMBERED; clusters RELSET_1, FINSEQ_1, PRVECT_1, MSAFREE1, PUA2MSS1, XREAL_0, ARYTM_3, TOPREAL1, RELAT_1; requirements NUMERALS, BOOLE, SUBSET, ARITHM; theorems AXIOMS, REAL_1, FINSEQ_1, FINSEQ_2, FUNCT_1, NAT_1, SUBSET_1, REAL_2, JORDAN3, BINARITH, ZFMISC_1, FINSEQ_4, FINSEQ_5, JORDAN4, FINSEQ_6, RFINSEQ, TOPREAL1, PROB_1, SCMFSA_7, XCMPLX_1; schemes MATRIX_2; begin :: Preliminaries reserve D for non empty set; reserve f1,f2 for FinSequence of D; reserve i,k,n,n1,n2,n3,n4,n5,n6 for Nat; theorem Th1:n <= len f1 implies (f1^f2)/^n = (f1/^n)^f2 proof assume A1:n <= len f1; len(f1^f2) = len f1 + len f2 by FINSEQ_1:35; then len f1 <= len(f1^f2) by NAT_1:29; then A2:n <= len(f1^f2) by A1,AXIOMS:22; then A3:len((f1^f2)/^n) = len(f1^f2) - n by RFINSEQ:def 2; A4:len((f1/^n)^f2) = len(f1/^n) + len f2 by FINSEQ_1:35 .= len f1 - n + len f2 by A1,RFINSEQ:def 2 .= len f1 + len f2 - n by XCMPLX_1:29; then A5:len((f1^f2)/^n) = len((f1/^n)^f2) by A3,FINSEQ_1:35; for i st 1 <= i & i <= len((f1^f2)/^n) holds ((f1^f2)/^n).i = ((f1/^n)^f2) . i proof let i; assume A6:1 <= i & i <= len((f1^f2)/^n); then i in Seg len((f1^f2)/^n) by FINSEQ_1:3; then A7: i in dom((f1^f2)/^n) by FINSEQ_1:def 3; now per cases; suppose A8:i <= len f1 - n; then A9: i+n <= len f1 by REAL_1:84; i <= i+n by NAT_1:29; then 1 <= i+n by A6,AXIOMS:22; then i+n in Seg len f1 by A9,FINSEQ_1:3; then A10: i+n in dom f1 by FINSEQ_1:def 3; i <= len(f1/^n) by A1,A8,RFINSEQ:def 2; then i in Seg len(f1/^n) by A6,FINSEQ_1:3; then A11: i in dom(f1/^n) by FINSEQ_1:def 3; A12: ((f1^f2)/^n).i = (f1^f2).(i+n) by A2,A7,RFINSEQ:def 2 .= f1.(i+n) by A10,FINSEQ_1:def 7; ((f1/^n)^f2).i = (f1/^n).i by A11,FINSEQ_1:def 7 .= f1.(i+n) by A1,A11,RFINSEQ:def 2; hence thesis by A12; suppose A13:len f1 - n < i; then A14: len f1 < i+n & i+n <= len(f1^f2) by A3,A6,REAL_1:84; A15: len(f1/^n) < i & i <= len((f1/^n)^f2) by A1,A3,A4,A6,A13,FINSEQ_1:35,RFINSEQ:def 2; A16: ((f1^f2)/^n).i = (f1^f2).(i+n) by A2,A7,RFINSEQ:def 2 .= f2.(i+n - len f1) by A14,FINSEQ_1:37; ((f1/^n)^f2).i = f2.(i - len(f1/^n)) by A15,FINSEQ_1:37 .= f2.(i - (len f1 - n)) by A1,RFINSEQ:def 2 .= f2.(i + (n - len f1)) by XCMPLX_1:38 .= f2.(i+n - len f1) by XCMPLX_1:29; hence thesis by A16; end; hence thesis; end; hence thesis by A5,FINSEQ_1:18; end; theorem Th2:(f1^f2)|(len f1 + i) = f1^(f2|i) proof A1:(f1^f2)|(len f1 + i) = (f1^f2)|Seg(len f1 + i) by TOPREAL1:def 1; f2|i = f2|Seg i by TOPREAL1:def 1; hence thesis by A1,FINSEQ_6:16; end; ::::::::::::::::::::::::::::::::::::::::::::::::::::: :: Definitions of Gene-Set,GA-Space and Individual :: ::::::::::::::::::::::::::::::::::::::::::::::::::::: definition mode Gene-Set is non-empty non empty FinSequence; end; definition let S be Gene-Set; redefine func Union S; synonym GA-Space S; end; definition let f be non-empty non empty Function; cluster Union f -> non empty; coherence proof Union f = union rng f by PROB_1:def 3; hence thesis; end; end; definition let S be Gene-Set; mode Individual of S -> FinSequence of GA-Space S means :Def1: len it = len S & for i st i in dom it holds it.i in S.i; existence proof defpred P[set,set] means $2 in S.$1; A1:for k st k in Seg len S ex x being Element of GA-Space S st P[k,x] proof let k; assume A2: k in Seg len S; then A3: k in dom S by FINSEQ_1:def 3; reconsider k' = k as Element of dom S by A2,FINSEQ_1:def 3; S.k' <> {}; then [#](S.k) <> {} by SUBSET_1:def 4; then consider x being Element of S.k such that A4: x in [#](S.k) by SUBSET_1:10; S.k in rng S by A3,FUNCT_1:def 5; then [#](S.k) in rng S by SUBSET_1:def 4; then [#](S.k) c= union rng S by ZFMISC_1:92; then reconsider x as Element of GA-Space S by A4,PROB_1:def 3; take x; thus thesis by A4; end; consider IT being FinSequence of GA-Space S such that A5:dom IT = Seg len S & for k st k in Seg len S holds P[k,IT.k] from SeqDEx(A1); take IT; thus thesis by A5,FINSEQ_1:def 3; end; end; begin :::::::::::::::::::::::::::::::::::::::::::::: :: Definitions of several genetic operators :: :::::::::::::::::::::::::::::::::::::::::::::: definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n; func crossover(p1,p2,n) -> FinSequence of GA-Space S equals :Def2:(p1|n)^(p2/^n); correctness; end; definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n1,n2; func crossover(p1,p2,n1,n2) -> FinSequence of GA-Space S equals :Def3:crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n2); correctness; end; definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n1,n2,n3; func crossover(p1,p2,n1,n2,n3) -> FinSequence of GA-Space S equals :Def4:crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n3); correctness; end; definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n1,n2,n3,n4; func crossover(p1,p2,n1,n2,n3,n4) -> FinSequence of GA-Space S equals :Def5:crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4); correctness; end; definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n1,n2,n3,n4,n5; func crossover(p1,p2,n1,n2,n3,n4,n5) -> FinSequence of GA-Space S equals :Def6: crossover(crossover(p1,p2,n1,n2,n3,n4),crossover(p2,p1,n1,n2,n3,n4),n5); correctness; end; definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n1,n2,n3,n4,n5,n6; func crossover(p1,p2,n1,n2,n3,n4,n5,n6) -> FinSequence of GA-Space S equals :Def7: crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6); correctness; end; begin ::::::::::::::::::::::::::::::::::::: :: Properties of 1-point crossover :: ::::::::::::::::::::::::::::::::::::: reserve S for Gene-Set; reserve p1,p2 for Individual of S; theorem Th3:crossover(p1,p2,n) is Individual of S proof A1:len crossover(p1,p2,n) = len S proof A2: len crossover(p1,p2,n) = len ((p1|n)^(p2/^n)) by Def2 .= len (p1|n) + len (p2/^n) by FINSEQ_1:35; now per cases; suppose A3:n <= len p1; len(p2/^n) = len p2 -'n by JORDAN3:19 .= len S -'n by Def1 .= len p1 -'n by Def1 .= len p1 - n by A3,SCMFSA_7:3; then len crossover(p1,p2,n) = n + (len p1 - n) by A2,A3,TOPREAL1:3 .= len p1 - (n-n) by XCMPLX_1:37 .= len p1 by XCMPLX_1:17; hence thesis by Def1; suppose A4:n > len p1; then A5: len p1 - n < 0 by REAL_2:105; p1|n = p1|Seg n by TOPREAL1:def 1; then A6: p1|n = p1 by A4,FINSEQ_2:23; len(p2/^n) = len p2 -'n by JORDAN3:19 .= len S -'n by Def1 .= len p1 -'n by Def1 .= 0 by A5,BINARITH:def 3; hence thesis by A2,A6,Def1; end; hence thesis; end; for i st i in dom crossover(p1,p2,n) holds crossover(p1,p2,n).i in S.i proof let i; assume A7:i in dom crossover(p1,p2,n); A8: crossover(p1,p2,n) = (p1|n)^(p2/^n) by Def2; now per cases by A7,A8,FINSEQ_1:38; suppose A9:i in dom(p1|n); A10: dom(p1|n) c= dom p1 by FINSEQ_5:20; (p1|n).i = (p1|n)/.i by A9,FINSEQ_4:def 4 .= p1/.i by A9,TOPREAL1:1 .= p1.i by A9,A10,FINSEQ_4:def 4; then (p1|n).i in S.i by A9,A10,Def1; hence thesis by A8,A9,FINSEQ_1:def 7; suppose (ex k st k in dom(p2/^n) & i = len(p1|n)+k); then consider k such that A11: k in dom(p2/^n) & i = len(p1|n)+k; A12: len(p1|n) = n proof A13: len(p1|n) <= n by FINSEQ_5:19; n <= len(p1|n) proof assume n > len(p1|n); then A14: n > len p1 by TOPREAL1:3; n+k in dom p2 by A11,FINSEQ_5:29; then n+k in Seg len p2 by FINSEQ_1:def 3; then n+k <= len p2 by FINSEQ_1:3; then n+k <= len S by Def1; then n+k <= len p1 by Def1; then A15: k <= len p1 - n by REAL_1:84; k in Seg len(p2/^n) by A11,FINSEQ_1:def 3; then 1 <= k by FINSEQ_1:3; then 1 <= len p1 - n by A15,AXIOMS:22; then 1 + n <= len p1 by REAL_1:84; then A16: n <= len p1 - 1 by REAL_1:84; len p1 <= len p1 + 1 by NAT_1:29; then len p1 - 1 <= len p1 by REAL_1:86; hence contradiction by A14,A16,AXIOMS:22; end; hence thesis by A13,AXIOMS:21; end; then n+k in Seg len S by A1,A7,A11,FINSEQ_1:def 3; then n+k in Seg len p2 by Def1; then A17: n+k in dom p2 by FINSEQ_1:def 3; crossover(p1,p2,n).i = (p2/^n).k by A8,A11,FINSEQ_1:def 7 .= (p2/^n)/.k by A11,FINSEQ_4:def 4 .= p2/.(n+k) by A11,FINSEQ_5:30 .= p2.(n+k) by A17,FINSEQ_4:def 4; hence thesis by A11,A12,A17,Def1; end; hence thesis; end; hence thesis by A1,Def1; end; definition let S be Gene-Set, p1,p2 be Individual of S, n; redefine func crossover(p1,p2,n) -> Individual of S; correctness by Th3; end; theorem Th4:crossover(p1,p2,0) = p2 proof crossover(p1,p2,0) = (p1|0)^(p2/^0) by Def2 .= p2/^0 by FINSEQ_1:47 .= p2 by FINSEQ_5:31; hence thesis; end; theorem Th5:n >= len p1 implies crossover(p1,p2,n) = p1 proof assume A1:n >= len p1; then n >= len S by Def1; then A2:n >= len p2 by Def1; crossover(p1,p2,n) = (p1|n)^(p2/^n) by Def2 .= p1^(p2/^n) by A1,TOPREAL1:2 .= p1^{} by A2,FINSEQ_5:35 .= p1 by FINSEQ_1:47; hence thesis; end; begin :::::::::::::::::::::::::::::::::::::: :: Properties of 2-points crossover :: :::::::::::::::::::::::: ::::::::::::: theorem Th6:crossover(p1,p2,n1,n2) is Individual of S proof reconsider q1=crossover(p1,p2,n1),q2 = crossover(p2,p1,n1) as Individual of S; crossover(q1,q2,n2) is Individual of S; hence thesis by Def3; end; definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2; redefine func crossover(p1,p2,n1,n2) -> Individual of S; correctness by Th6; end; theorem Th7:crossover(p1,p2,0,n) = crossover(p2,p1,n) proof crossover(p1,p2,0,n) = crossover(crossover(p1,p2,0),crossover(p2,p1,0),n) by Def3 .= crossover(p2,crossover(p2,p1,0),n) by Th4 .= crossover(p2,p1,n) by Th4; hence thesis; end; theorem Th8:crossover(p1,p2,n,0) = crossover(p2,p1,n) proof reconsider q1 = crossover(p1,p2,n) as Individual of S; reconsider q2=crossover(p2,p1,n) as Individual of S; crossover(p1,p2,n,0) = crossover(q1,q2,0) by Def3 .= q2 by Th4; hence thesis; end; theorem Th9:n1 >= len p1 implies crossover(p1,p2,n1,n2)=crossover(p1,p2,n2) proof assume A1:n1 >= len p1; then n1 >= len S by Def1; then A2:n1 >= len p2 by Def1; crossover(p1,p2,n1,n2) = crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n2) by Def3 .= crossover(p1,crossover(p2,p1,n1),n2) by A1,Th5; hence thesis by A2,Th5; end; theorem Th10:n2 >= len p1 implies crossover(p1,p2,n1,n2)=crossover(p1,p2,n1) proof assume n2 >= len p1; then n2 >= len S by Def1; then A1:n2 >= len crossover(p1,p2,n1) by Def1; crossover(p1,p2,n1,n2) = crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n2) by Def3; hence thesis by A1,Th5; end; theorem n1 >= len p1 & n2 >= len p1 implies crossover(p1,p2,n1,n2)=p1 proof assume A1:n1 >= len p1 & n2 >= len p1; then crossover(p1,p2,n1,n2) = crossover(p1,p2,n2) by Th9; hence thesis by A1,Th5; end; theorem Th12:crossover(p1,p2,n1,n1) = p1 proof A1:crossover(p1,p2,n1,n1) = crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n1) by Def3 .= crossover((p1|n1)^(p2/^n1),crossover(p2,p1,n1),n1) by Def2 .= crossover((p1|n1)^(p2/^n1),(p2|n1)^(p1/^n1),n1) by Def2 .= (((p1|n1)^(p2/^n1))|n1)^(((p2|n1)^(p1/^n1))/^n1) by Def2; A2:(((p1|n1)^(p2/^n1))|n1) = (p1|n1) proof now per cases; suppose n1 <= len p1; then len (p1|n1) = n1 by TOPREAL1:3; hence thesis by FINSEQ_5:26; suppose A3:n1 > len p1; then A4: n1 > len S by Def1; then A5: n1 > len p2 by Def1; n1 > len crossover(p1,p2,n1) by A4,Def1; then n1 > len ((p1|n1)^(p2/^n1)) by Def2; then (((p1|n1)^(p2/^n1))|n1) = (p1|n1)^(p2/^n1) by TOPREAL1:2 .= p1^(p2/^n1) by A3,TOPREAL1:2 .= p1^{} by A5,FINSEQ_5:35 .= p1 by FINSEQ_1:47 .= p1|n1 by A3,TOPREAL1:2; hence thesis; end; hence thesis; end; (((p2|n1)^(p1/^n1))/^n1) = (p1/^n1) proof now per cases; suppose n1 <= len p2; then len (p2|n1) = n1 by TOPREAL1:3; hence thesis by FINSEQ_5:40; suppose n1 > len p2; then A6: n1 > len S by Def1; then A7: n1 > len p1 by Def1; n1 > len crossover(p2,p1,n1) by A6,Def1; then n1 > len ((p2|n1)^(p1/^n1)) by Def2; then (((p2|n1)^(p1/^n1))/^n1) = {} by FINSEQ_5:35; hence thesis by A7,FINSEQ_5:35; end; hence thesis; end; hence thesis by A1,A2,RFINSEQ:21; end; theorem Th13:crossover(p1,p2,n1,n2) = crossover(p1,p2,n2,n1) proof A1:crossover(p1,p2,n1,n2) = crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n2) by Def3 .= crossover((p1|n1)^(p2/^n1),crossover(p2,p1,n1),n2) by Def2 .= crossover((p1|n1)^(p2/^n1),(p2|n1)^(p1/^n1),n2) by Def2 .= (((p1|n1)^(p2/^n1))|n2)^(((p2|n1)^(p1/^n1))/^n2) by Def2; A2:crossover(p1,p2,n2,n1) = crossover(crossover(p1,p2,n2),crossover(p2,p1,n2),n1) by Def3 .= crossover((p1|n2)^(p2/^n2),crossover(p2,p1,n2),n1) by Def2 .= crossover((p1|n2)^(p2/^n2),(p2|n2)^(p1/^n2),n1) by Def2 .= (((p1|n2)^(p2/^n2))|n1)^(((p2|n2)^(p1/^n2))/^n1) by Def2; A3:len p1 = len S by Def1; A4:len p2 = len S by Def1; len ((p1|n2)^(p2/^n2)) = len crossover(p1,p2,n2) by Def2; then A5:len ((p1|n2)^(p2/^n2)) = len S by Def1; len ((p2|n2)^(p1/^n2)) = len crossover(p2,p1,n2) by Def2; then A6:len ((p2|n2)^(p1/^n2)) = len S by Def1; now per cases by NAT_1:19; suppose A7:n1 >= n2 & n2 > 0; now per cases; suppose A8:n1 >= len p1; then p1|n1 = p1 by TOPREAL1:2; then A9: (p1|n1)^(p2/^n1) = p1^{} by A3,A4,A8,FINSEQ_5:35 .= p1 by FINSEQ_1:47; p2|n1 = p2 by A3,A4,A8,TOPREAL1:2; then A10: (p2|n1)^(p1/^n1) = p2^{} by A8,FINSEQ_5:35 .= p2 by FINSEQ_1:47; ((p1|n2)^(p2/^n2))|n1=((p1|n2)^(p2/^n2)) by A3,A5,A8,TOPREAL1:2; then crossover(p1,p2,n2,n1) = ((p1|n2)^(p2/^n2))^{} by A2,A3,A6,A8,FINSEQ_5:35 .= (p1|n2)^(p2/^n2) by FINSEQ_1:47; hence thesis by A1,A9,A10; suppose A11:n1 < len p1; then n1 <= len p2 by A4,Def1; then A12: n2 <= len(p2|n1) by A7,TOPREAL1:3; A13: n2 <= len p2 by A3,A4,A7,A11,AXIOMS:22; then len(p2|n2) = n2 by TOPREAL1:3; then consider i such that A14: len(p2|n2) + i = n1 by A7,NAT_1:28; A15: n2 <= len p1 by A7,A11,AXIOMS:22; then A16: len(p1|n2) = n2 by TOPREAL1:3; then A17: len(p1|n2) + i = n1 by A13,A14,TOPREAL1:3; then i=n1-n2 by A16,XCMPLX_1:26; then A18: i= n1-'n2 by A7,SCMFSA_7:3; len(p1|n1) = n1 by A11,TOPREAL1:3; then ((p1|n1)^(p2/^n1))|n2 = (p1|n1)|n2 by A7,FINSEQ_5:25 .= p1|n2 by A7,JORDAN4:15; then A19: crossover(p1,p2,n1,n2) = (p1|n2)^(((p2|n1)/^n2)^(p1/^n1)) by A1,A12,Th1 .= (p1|n2)^((p2|n1)/^n2)^(p1/^n1) by FINSEQ_1:45; A20: ((p1|n2)^(p2/^n2))|n1=(p1|n2)^((p2/^n2)|i) by A17,Th2 .= (p1|n2)^((p2|n1)/^n2) by A18,JORDAN3:21; ((p2|n2)^(p1/^n2))/^n1=(p1/^n2)/^i by A14,FINSEQ_5:39 .= p1/^(n2+i) by FINSEQ_6:87 .= p1/^n1 by A3,A4,A14,A15,TOPREAL1:3; hence thesis by A2,A19,A20; end; hence thesis; suppose A21:n1 < n2 & n2 > 0; now per cases; suppose A22:n1 >= len p1; then A23: n1 >= len p2 by A4,Def1; A24: n2 >= len p1 by A21,A22,AXIOMS:22; then A25: n2 >= len p2 by A4,Def1; (p1|n1)=p1 by A22,TOPREAL1:2; then A26: (p1|n1)^(p2/^n1) = p1^{} by A23,FINSEQ_5:35 .= p1 by FINSEQ_1:47; (p2|n1)=p2 by A23,TOPREAL1:2; then (p2|n1)^(p1/^n1) = p2^{} by A22,FINSEQ_5:35 .= p2 by FINSEQ_1:47; then A27: ((p2|n1)^(p1/^n1))/^n2 = {} by A25,FINSEQ_5:35; (p1|n2) = p1 by A24,TOPREAL1:2; then (p1|n2)^(p2/^n2) = p1^{} by A25,FINSEQ_5:35 .= p1 by FINSEQ_1:47; then A28: ((p1|n2)^(p2/^n2))|n1 = p1 by A22,TOPREAL1:2; (p2|n2) = p2 by A25,TOPREAL1:2; then (p2|n2)^(p1/^n2) = p2^{} by A24,FINSEQ_5:35 .= p2 by FINSEQ_1:47; then ((p2|n2)^(p1/^n2))/^n1 = {} by A23,FINSEQ_5:35; hence thesis by A1,A2,A24,A26,A27,A28,TOPREAL1:2; suppose A29:n1 < len p1; then A30: len(p1|n1) = n1 by TOPREAL1:3; A31: len(p2|n1) = n1 by A3,A4,A29,TOPREAL1:3; consider i being Nat such that A32: len(p1|n1) + i = n2 by A21,A30,NAT_1:28; A33: len(p2|n1) + i = n2 by A29,A31,A32,TOPREAL1:3; A34: n1 <= len(p1|n2) proof now per cases; suppose n2 >= len p1; hence thesis by A29,TOPREAL1:2; suppose n2 < len p1; hence thesis by A21,TOPREAL1:3; end; hence thesis; end; A35: n1 <= len(p2|n2) proof now per cases; suppose n2 >= len p2; hence thesis by A3,A4,A29,TOPREAL1:2; suppose n2 < len p2; hence thesis by A21,TOPREAL1:3; end; hence thesis; end; A36: i = n2 - n1 by A30,A32,XCMPLX_1:26; ((p1|n1)^(p2/^n1))|n2 = (p1|n1)^((p2/^n1)|i) by A32,Th2; then A37: crossover(p1,p2,n1,n2) =((p1|n1)^((p2/^n1)|i))^((p1/^n1)/^i) by A1,A33,FINSEQ_5:39 .=(p1|n1)^((p2/^n1)|i)^(p1/^(n1+i)) by FINSEQ_6:87 .=(p1|n1)^((p2/^n1)|i)^(p1/^n2) by A29,A32,TOPREAL1:3; A38: ((p1|n2)^(p2/^n2))|n1 = (p1|n2)|n1 by A34,FINSEQ_5:25 .= p1|n1 by A21,JORDAN4:15; ((p2|n2)^(p1/^n2))/^n1 = ((p2|n2)/^n1)^(p1/^n2) by A35,Th1 .=((p2/^n1)|(n2-'n1))^(p1/^n2) by JORDAN3:21 .=((p2/^n1)|i)^(p1/^n2) by A21,A36,SCMFSA_7:3; hence thesis by A2,A37,A38,FINSEQ_1:45; end; hence thesis; suppose A39:n2 = 0; then crossover(p1,p2,n1,n2)= crossover(p2,p1,n1) by Th8 .= crossover(p1,p2,0,n1) by Th7; hence thesis by A39; end; hence thesis; end; begin :::::::::::::::::::::::::::::::::::::: :: Properties of 3-points crossover :: :::::::::::::::::::::::: ::::::::::::: theorem Th14:crossover(p1,p2,n1,n2,n3) is Individual of S proof reconsider q1=crossover(p1,p2,n1,n2), q2=crossover(p2,p1,n1,n2) as Individual of S; crossover(q1,q2,n3) is Individual of S; hence thesis by Def4; end; definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2,n3; redefine func crossover(p1,p2,n1,n2,n3) -> Individual of S; correctness by Th14; end; theorem Th15:crossover(p1,p2,0,n2,n3) = crossover(p2,p1,n2,n3) & crossover(p1,p2,n1,0,n3) = crossover(p2,p1,n1,n3) & crossover(p1,p2,n1,n2,0) = crossover(p2,p1,n1,n2) proof crossover(p1,p2,0,n2,n3) = crossover(crossover(p1,p2,0,n2),crossover(p2,p1,0,n2),n3) by Def4 .= crossover(crossover(p2,p1,n2),crossover(p2,p1,0,n2),n3) by Th7 .= crossover(crossover(p2,p1,n2),crossover(p1,p2,n2),n3) by Th7; hence crossover(p1,p2,0,n2,n3) = crossover(p2,p1,n2,n3) by Def3; crossover(p1,p2,n1,0,n3) = crossover(crossover(p1,p2,n1,0),crossover(p2,p1,n1,0),n3) by Def4 .= crossover(crossover(p2,p1,n1),crossover(p2,p1,n1,0),n3) by Th8 .= crossover(crossover(p2,p1,n1),crossover(p1,p2,n1),n3) by Th8; hence crossover(p1,p2,n1,0,n3) = crossover(p2,p1,n1,n3) by Def3; crossover(p1,p2,n1,n2,0) = crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),0) by Def4; hence crossover(p1,p2,n1,n2,0) = crossover(p2,p1,n1,n2) by Th4; end; theorem crossover(p1,p2,0,0,n3) = crossover(p1,p2,n3) & crossover(p1,p2,n1,0,0) = crossover(p1,p2,n1) & crossover(p1,p2,0,n2,0) = crossover(p1,p2,n2) proof crossover(p1,p2,0,0,n3) = crossover(crossover(p1,p2,0,0),crossover(p2,p1,0,0),n3) by Def4 .= crossover(p1,crossover(p2,p1,0,0),n3) by Th12; hence crossover(p1,p2,0,0,n3) = crossover(p1,p2,n3) by Th12; crossover(p1,p2,n1,0,0) = crossover(crossover(p1,p2,n1,0),crossover(p2,p1,n1,0),0) by Def4 .= crossover(crossover(p2,p1,n1),crossover(p2,p1,n1,0),0) by Th8 .= crossover(crossover(p2,p1,n1),crossover(p1,p2,n1),0) by Th8; hence crossover(p1,p2,n1,0,0) = crossover(p1,p2,n1) by Th4; crossover(p1,p2,0,n2,0) = crossover(crossover(p1,p2,0,n2),crossover(p2,p1,0,n2),0) by Def4 .= crossover(crossover(p2,p1,n2),crossover(p2,p1,0,n2),0) by Th7 .= crossover(crossover(p2,p1,n2),crossover(p1,p2,n2),0) by Th7; hence crossover(p1,p2,0,n2,0) = crossover(p1,p2,n2) by Th4; end; theorem crossover(p1,p2,0,0,0) = p2 proof crossover(p1,p2,0,0,0) = crossover(crossover(p1,p2,0,0),crossover(p2,p1,0,0),0) by Def4 .= crossover(crossover(p1,p2,0,0),p2,0) by Th12; hence thesis by Th4; end; theorem Th18:n1 >= len p1 implies crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2,n3) proof assume A1:n1 >= len p1; then n1 >= len S by Def1; then A2:n1 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3) = crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n3) by Def4 .= crossover(crossover(p1,p2,n2),crossover(p2,p1,n1,n2),n3) by A1,Th9 .= crossover(crossover(p1,p2,n2),crossover(p2,p1,n2),n3) by A2,Th9; hence thesis by Def3; end; theorem Th19:n2 >= len p1 implies crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n3) proof assume A1:n2 >= len p1; then n2 >= len S by Def1; then A2:n2 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3) = crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n3) by Def4 .= crossover(crossover(p1,p2,n1),crossover(p2,p1,n1,n2),n3) by A1,Th10 .= crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n3) by A2,Th10; hence thesis by Def3; end; theorem Th20:n3 >= len p1 implies crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n2) proof assume n3 >= len p1; then n3 >= len S by Def1; then A1:n3 >= len crossover(p1,p2,n1,n2) by Def1; crossover(p1,p2,n1,n2,n3) = crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n3) by Def4; hence thesis by A1,Th5; end; theorem Th21:n1 >= len p1 & n2 >= len p1 implies crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n3) proof assume A1:n1 >= len p1 & n2 >= len p1; then crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2,n3) by Th18; hence thesis by A1,Th9; end; theorem n1 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2) proof assume A1:n1 >= len p1 & n3 >= len p1; then crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2,n3) by Th18; hence thesis by A1,Th10; end; theorem n2 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1) proof assume A1:n2 >= len p1 & n3 >= len p1; then crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n3) by Th19; hence thesis by A1,Th10; end; theorem n1 >= len p1 & n2 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3) = p1 proof assume A1:n1 >= len p1 & n2 >= len p1 & n3 >= len p1; then crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n3) by Th21; hence thesis by A1,Th5; end; theorem Th25:crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2,n1,n3) & crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n3,n2) proof crossover(p1,p2,n1,n2,n3) = crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n3) by Def4 .= crossover(crossover(p1,p2,n2,n1),crossover(p2,p1,n1,n2),n3) by Th13 .= crossover(crossover(p1,p2,n2,n1),crossover(p2,p1,n2,n1),n3) by Th13; hence crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2,n1,n3) by Def4; set q1=crossover(p1,p2,n1); set q2=crossover(p2,p1,n1); crossover(p1,p2,n1,n2,n3) = crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n3) by Def4 .= (crossover(p1,p2,n1,n2)|n3)^(crossover(p2,p1,n1,n2)/^n3) by Def2 .= (crossover(q1,q2,n2)|n3)^(crossover(p2,p1,n1,n2)/^n3) by Def3 .= (crossover(q1,q2,n2)|n3)^(crossover(q2,q1,n2)/^n3) by Def3 .= crossover(crossover(q1,q2,n2),crossover(q2,q1,n2),n3) by Def2 .= crossover(q1,q2,n2,n3) by Def3 .= crossover(q1,q2,n3,n2) by Th13 .= crossover(crossover(q1,q2,n3),crossover(q2,q1,n3),n2) by Def3 .= (crossover(q1,q2,n3)|n2)^(crossover(q2,q1,n3)/^n2) by Def2 .= (crossover(q1,q2,n3)|n2)^(crossover(p2,p1,n1,n3)/^n2) by Def3 .= (crossover(p1,p2,n1,n3)|n2)^(crossover(p2,p1,n1,n3)/^n2) by Def3 .= crossover(crossover(p1,p2,n1,n3),crossover(p2,p1,n1,n3),n2) by Def2; hence crossover(p1,p2,n1,n2,n3)=crossover(p1,p2,n1,n3,n2) by Def4; end; theorem Th26:crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n3,n1,n2) proof crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n3,n2) by Th25; hence thesis by Th25; end; theorem Th27:crossover(p1,p2,n1,n1,n3)=crossover(p1,p2,n3) & crossover(p1,p2,n1,n2,n1)=crossover(p1,p2,n2) & crossover(p1,p2,n1,n2,n2)=crossover(p1,p2,n1) proof thus crossover(p1,p2,n1,n1,n3)=crossover(p1,p2,n3) proof crossover(p1,p2,n1,n1,n3) =crossover(crossover(p1,p2,n1,n1),crossover(p2,p1,n1,n1),n3) by Def4 .=crossover(p1,crossover(p2,p1,n1,n1),n3) by Th12; hence thesis by Th12; end; thus crossover(p1,p2,n1,n2,n1)=crossover(p1,p2,n2) proof crossover(p1,p2,n1,n2,n1) = crossover(p1,p2,n1,n1,n2) by Th25 .=crossover(crossover(p1,p2,n1,n1),crossover(p2,p1,n1,n1),n2) by Def4 .=crossover(p1,crossover(p2,p1,n1,n1),n2) by Th12; hence thesis by Th12; end; thus crossover(p1,p2,n1,n2,n2) =crossover(p1,p2,n2,n2,n1) by Th26 .=crossover(crossover(p1,p2,n2,n2),crossover(p2,p1,n2,n2),n1) by Def4 .=crossover(p1,crossover(p2,p1,n2,n2),n1) by Th12 .=crossover(p1,p2,n1) by Th12; end; begin :::::::::::::::::::::::::::::::::::::: :: Properties of 4-points crossover :: :::::::::::::::::::::::: ::::::::::::: theorem Th28:crossover(p1,p2,n1,n2,n3,n4) is Individual of S proof reconsider q1=crossover(p1,p2,n1,n2,n3), q2=crossover(p2,p1,n1,n2,n3) as Individual of S; crossover(q1,q2,n4) is Individual of S; hence thesis by Def5; end; definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2,n3,n4; redefine func crossover(p1,p2,n1,n2,n3,n4) -> Individual of S; correctness by Th28; end; theorem Th29:crossover(p1,p2,0,n2,n3,n4) = crossover(p2,p1,n2,n3,n4) & crossover(p1,p2,n1,0,n3,n4) = crossover(p2,p1,n1,n3,n4) & crossover(p1,p2,n1,n2,0,n4) = crossover(p2,p1,n1,n2,n4) & crossover(p1,p2,n1,n2,n3,0) = crossover(p2,p1,n1,n2,n3) proof crossover(p1,p2,0,n2,n3,n4) =crossover(crossover(p1,p2,0,n2,n3),crossover(p2,p1,0,n2,n3),n4) by Def5 .=crossover(crossover(p2,p1,n2,n3),crossover(p2,p1,0,n2,n3),n4) by Th15 .=crossover(crossover(p2,p1,n2,n3),crossover(p1,p2,n2,n3),n4) by Th15; hence crossover(p1,p2,0,n2,n3,n4) = crossover(p2,p1,n2,n3,n4) by Def4; crossover(p1,p2,n1,0,n3,n4) =crossover(crossover(p1,p2,n1,0,n3),crossover(p2,p1,n1,0,n3),n4) by Def5 .=crossover(crossover(p2,p1,n1,n3),crossover(p2,p1,n1,0,n3),n4) by Th15 .=crossover(crossover(p2,p1,n1,n3),crossover(p1,p2,n1,n3),n4) by Th15; hence crossover(p1,p2,n1,0,n3,n4) = crossover(p2,p1,n1,n3,n4) by Def4; crossover(p1,p2,n1,n2,0,n4) =crossover(crossover(p1,p2,n1,n2,0),crossover(p2,p1,n1,n2,0),n4) by Def5 .=crossover(crossover(p2,p1,n1,n2),crossover(p2,p1,n1,n2,0),n4) by Th15 .=crossover(crossover(p2,p1,n1,n2),crossover(p1,p2,n1,n2),n4) by Th15; hence crossover(p1,p2,n1,n2,0,n4) = crossover(p2,p1,n1,n2,n4) by Def4; crossover(p1,p2,n1,n2,n3,0) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),0) by Def5; hence thesis by Th4; end; theorem Th30:crossover(p1,p2,0,0,n3,n4) = crossover(p1,p2,n3,n4) & crossover(p1,p2,0,n2,0,n4) = crossover(p1,p2,n2,n4) & crossover(p1,p2,0,n2,n3,0) = crossover(p1,p2,n2,n3) & crossover(p1,p2,n1,0,n3,0) = crossover(p1,p2,n1,n3) & crossover(p1,p2,n1,0,0,n4) = crossover(p1,p2,n1,n4) & crossover(p1,p2,n1,n2,0,0) = crossover(p1,p2,n1,n2) proof crossover(p1,p2,0,0,n3,n4) = crossover(p2,p1,0,n3,n4) by Th29; hence crossover(p1,p2,0,0,n3,n4) = crossover(p1,p2,n3,n4) by Th15; crossover(p1,p2,0,n2,0,n4) = crossover(p2,p1,n2,0,n4) by Th29; hence crossover(p1,p2,0,n2,0,n4) = crossover(p1,p2,n2,n4) by Th15; crossover(p1,p2,0,n2,n3,0) = crossover(p2,p1,n2,n3,0) by Th29; hence crossover(p1,p2,0,n2,n3,0) = crossover(p1,p2,n2,n3) by Th15; crossover(p1,p2,n1,0,n3,0) = crossover(p2,p1,n1,n3,0) by Th29; hence crossover(p1,p2,n1,0,n3,0) = crossover(p1,p2,n1,n3) by Th15; crossover(p1,p2,n1,0,0,n4) = crossover(p2,p1,n1,0,n4) by Th29; hence crossover(p1,p2,n1,0,0,n4) = crossover(p1,p2,n1,n4) by Th15; crossover(p1,p2,n1,n2,0,0) = crossover(p2,p1,n1,n2,0) by Th29; hence crossover(p1,p2,n1,n2,0,0) = crossover(p1,p2,n1,n2) by Th15; end; theorem Th31:crossover(p1,p2,n1,0,0,0) = crossover(p2,p1,n1) & crossover(p1,p2,0,n2,0,0) = crossover(p2,p1,n2) & crossover(p1,p2,0,0,n3,0) = crossover(p2,p1,n3) & crossover(p1,p2,0,0,0,n4) = crossover(p2,p1,n4) proof crossover(p1,p2,n1,0,0,0) = crossover(p1,p2,n1,0) by Th30; hence crossover(p1,p2,n1,0,0,0) = crossover(p2,p1,n1) by Th8; crossover(p1,p2,0,n2,0,0) = crossover(p1,p2,0,n2) by Th30; hence crossover(p1,p2,0,n2,0,0) = crossover(p2,p1,n2) by Th7; crossover(p1,p2,0,0,n3,0) = crossover(p1,p2,0,n3) by Th30; hence crossover(p1,p2,0,0,n3,0) = crossover(p2,p1,n3) by Th7; crossover(p1,p2,0,0,0,n4) = crossover(p1,p2,0,n4) by Th30; hence crossover(p1,p2,0,0,0,n4) = crossover(p2,p1,n4) by Th7; end; theorem Th32:crossover(p1,p2,0,0,0,0) = p1 proof crossover(p1,p2,0,0,0,0) = crossover(p2,p1,0) by Th31; hence thesis by Th4; end; theorem Th33:(n1 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4)) & (n2 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4)) & (n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n4)) & (n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n3)) proof A1:(n1 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4)) proof assume A2:n1 >= len p1; then n1 >= len S by Def1; then A3: n1 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4) = crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .= crossover(crossover(p1,p2,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by A2,Th18 .=crossover(crossover(p1,p2,n2,n3),crossover(p2,p1,n2,n3),n4) by A3,Th18; hence thesis by Def4; end; A4:(n2 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4)) proof assume A5:n2 >= len p1; then n2 >= len S by Def1; then A6: n2 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4) = crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .= crossover(crossover(p1,p2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by A5,Th19 .=crossover(crossover(p1,p2,n1,n3),crossover(p2,p1,n1,n3),n4) by A6,Th19; hence thesis by Def4; end; A7:(n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n4)) proof assume A8:n3 >= len p1; then n3 >= len S by Def1; then A9: n3 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4) = crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .= crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by A8,Th20 .=crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n4) by A9,Th20; hence thesis by Def4; end; (n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n3)) proof assume n4 >= len p1; then n4 >= len S by Def1; then A10: n4 >= len crossover(p1,p2,n1,n2,n3) by Def1; crossover(p1,p2,n1,n2,n3,n4) = crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5; hence thesis by A10,Th5; end; hence thesis by A1,A4,A7; end; theorem Th34:(n1 >= len p1 & n2 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4)) & (n1 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4)) & (n1 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3)) & (n2 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4)) & (n2 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3)) & (n3 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2)) proof A1:n1 >= len p1 & n2 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4) proof assume A2:n1 >= len p1 & n2 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4) by Th33; hence thesis by A2,Th18; end; A3:n1 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4) proof assume A4:n1 >= len p1 & n3 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4) by Th33; hence thesis by A4,Th19; end; A5:n1 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3) proof assume A6:n1 >= len p1 & n4 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4) by Th33; hence thesis by A6,Th20; end; A7:n2 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4) proof assume A8:n2 >= len p1 & n3 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4) by Th33; hence thesis by A8,Th19; end; A9:n2 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3) proof assume A10:n2 >= len p1 & n4 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4) by Th33; hence thesis by A10,Th20; end; n3 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2) proof assume A11:n3 >= len p1 & n4 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n4) by Th33; hence thesis by A11,Th20; end; hence thesis by A1,A3,A5,A7,A9; end; theorem Th35:(n1 >= len p1 & n2 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4)) & (n1 >= len p1 & n2 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3)) & (n1 >= len p1 & n3 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2)) & (n2 >= len p1 & n3 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1)) proof A1:n1 >= len p1 & n2 >= len p1 & n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4) proof assume A2:n1 >= len p1 & n2 >= len p1 & n3 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4) by Th34; hence thesis by A2,Th9; end; A3:n1 >= len p1 & n2 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3) proof assume A4:n1 >= len p1 & n2 >= len p1 & n4 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4) by Th34 .= crossover(p1,p2,n4,n3) by Th13; hence thesis by A4,Th9; end; A5:n1 >= len p1 & n3 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2) proof assume A6:n1 >= len p1 & n3 >= len p1 & n4 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4) by Th34 .= crossover(p1,p2,n4,n2) by Th13; hence thesis by A6,Th9; end; n2 >= len p1 & n3 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1) proof assume A7:n2 >= len p1 & n3 >= len p1 & n4 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4) by Th34 .= crossover(p1,p2,n4,n1) by Th13; hence thesis by A7,Th9; end; hence thesis by A1,A3,A5; end; theorem Th36:n1 >= len p1 & n2 >= len p1 & n3 >= len p1 & n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4) = p1 proof assume A1:n1 >= len p1 & n2 >= len p1 & n3 >= len p1 & n4 >= len p1; then crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4) by Th35; hence thesis by A1,Th5; end; theorem Th37: crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n4,n3) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n2,n4) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4,n2) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4,n2,n3) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4,n3,n2) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n1,n3,n4) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n1,n4,n3) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n1,n4) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4,n1) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4,n1,n3) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4,n3,n1) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n1,n2,n4) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n1,n4,n2) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n2,n1,n4) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n2,n4,n1) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4,n1,n2) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4,n2,n1) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n1,n2,n3) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n1,n3,n2) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n2,n1,n3) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n2,n3,n1) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n3,n1,n2) & crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n3,n2,n1) proof A1:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n2,n4) proof crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n3,n2),n4) by Th25; hence thesis by Def5; end; A2:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n1,n3,n4) proof crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n2,n1,n3),n4) by Th25; hence thesis by Def5; end; A3:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n1,n4) proof crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n3,n1),n4) by Th25; hence thesis by Def5; end; A4:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n4,n3) proof set q1=crossover(p1,p2,n1,n2); set q2=crossover(p2,p1,n1,n2); A5: crossover(p2,p1,n1,n2,n3)=crossover(q2,q1,n3) by Def4; A6: crossover(p1,p2,n1,n2,n4)=crossover(q1,q2,n4) by Def4; A7: crossover(p2,p1,n1,n2,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(q1,q2,n3),crossover(q2,q1,n3),n4) by A5,Def4 .=crossover(q1,q2,n3,n4) by Def3 .=crossover(q1,q2,n4,n3) by Th13 .=crossover(crossover(q1,q2,n4),crossover(q2,q1,n4),n3) by Def3; hence thesis by A6,A7,Def5; end; A8:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4,n2) proof set q1=crossover(p1,p2,n1,n3); set q2=crossover(p2,p1,n1,n3); A9: crossover(p2,p1,n1,n3,n2)=crossover(q2,q1,n2) by Def4; A10: crossover(p1,p2,n1,n3,n4)=crossover(q1,q2,n4) by Def4; A11: crossover(p2,p1,n1,n3,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n3,n2),n4) by Th25 .=crossover(crossover(q1,q2,n2),crossover(q2,q1,n2),n4) by A9,Def4 .=crossover(q1,q2,n2,n4) by Def3 .=crossover(q1,q2,n4,n2) by Th13 .=crossover(crossover(q1,q2,n4),crossover(q2,q1,n4),n2) by Def3; hence thesis by A10,A11,Def5; end; A12:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4,n2,n3) proof set q1=crossover(p1,p2,n1,n2); set q2=crossover(p2,p1,n1,n2); A13: crossover(p1,p2,n1,n2,n3)=crossover(q1,q2,n3) by Def4; A14: crossover(p2,p1,n1,n2,n3)=crossover(q2,q1,n3) by Def4; A15: crossover(p2,p1,n1,n2,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(q1,q2,n3),crossover(q2,q1,n3),n4) by A13,A14,Def5 .=crossover(q1,q2,n3,n4) by Def3 .=crossover(q1,q2,n4,n3) by Th13 .=crossover(crossover(q1,q2,n4),crossover(q2,q1,n4),n3) by Def3 .=crossover(crossover(p1,p2,n1,n2,n4),crossover(p2,p1,n1,n2,n4),n3) by A15,Def4 .=crossover(crossover(p1,p2,n1,n4,n2),crossover(p2,p1,n1,n2,n4),n3) by Th25 .=crossover(crossover(p1,p2,n1,n4,n2),crossover(p2,p1,n1,n4,n2),n3) by Th25; hence thesis by Def5; end; A16:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4,n3,n2) proof set q1=crossover(p1,p2,n1,n3); set q2=crossover(p2,p1,n1,n3); A17: crossover(p2,p1,n1,n3,n2)=crossover(q2,q1,n2) by Def4; A18: crossover(p2,p1,n1,n3,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n3,n2),n4) by Th25 .=crossover(crossover(q1,q2,n2),crossover(q2,q1,n2),n4) by A17,Def4 .=crossover(q1,q2,n2,n4) by Def3 .=crossover(q1,q2,n4,n2) by Th13 .=crossover(crossover(q1,q2,n4),crossover(q2,q1,n4),n2) by Def3 .=crossover(crossover(p1,p2,n1,n3,n4),crossover(p2,p1,n1,n3,n4),n2) by A18,Def4 .=crossover(crossover(p1,p2,n1,n4,n3),crossover(p2,p1,n1,n3,n4),n2) by Th25 .=crossover(crossover(p1,p2,n1,n4,n3),crossover(p2,p1,n1,n4,n3),n2) by Th25; hence thesis by Def5; end; A19:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n1,n4,n3) proof set q1=crossover(p1,p2,n2,n1); set q2=crossover(p2,p1,n2,n1); A20: crossover(p2,p1,n2,n1,n3)=crossover(q2,q1,n3) by Def4; A21: crossover(p1,p2,n2,n1,n4)=crossover(q1,q2,n4) by Def4; A22: crossover(p2,p1,n2,n1,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(crossover(q1,q2,n3),crossover(q2,q1,n3),n4) by A20,Def4 .=crossover(q1,q2,n3,n4) by Def3 .=crossover(q1,q2,n4,n3) by Th13 .=crossover(crossover(p1,p2,n2,n1,n4),crossover(p2,p1,n2,n1,n4),n3) by A21,A22,Def3; hence thesis by Def5; end; A23:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4,n1) proof set q1=crossover(p1,p2,n2,n3); set q2=crossover(p2,p1,n2,n3); A24: crossover(p1,p2,n2,n3,n1)=crossover(q1,q2,n1) by Def4; A25: crossover(p2,p1,n2,n3,n1)=crossover(q2,q1,n1) by Def4; A26: crossover(p1,p2,n2,n3,n4)=crossover(q1,q2,n4) by Def4; A27: crossover(p2,p1,n2,n3,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n3,n1),n4) by Th25 .=crossover(q1,q2,n1,n4) by A24,A25,Def3 .=crossover(q1,q2,n4,n1) by Th13 .=crossover(crossover(p1,p2,n2,n3,n4),crossover(p2,p1,n2,n3,n4),n1) by A26,A27,Def3; hence thesis by Def5; end; A28:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4,n1,n3) proof set q1=crossover(p1,p2,n2,n1); set q2=crossover(p2,p1,n2,n1); A29:crossover(p1,p2,n2,n1,n3)=crossover(q1,q2,n3) by Def4; A30:crossover(p2,p1,n2,n1,n3)=crossover(q2,q1,n3) by Def4; A31:crossover(p1,p2,n2,n1,n4)=crossover(q1,q2,n4) by Def4; A32:crossover(p2,p1,n2,n1,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(q1,q2,n3,n4) by A29,A30,Def3 .=crossover(q1,q2,n4,n3) by Th13 .=crossover(crossover(p1,p2,n2,n1,n4),crossover(p2,p1,n2,n1,n4),n3) by A31,A32,Def3 .=crossover(crossover(p1,p2,n2,n4,n1),crossover(p2,p1,n2,n1,n4),n3) by Th25 .=crossover(crossover(p1,p2,n2,n4,n1),crossover(p2,p1,n2,n4,n1),n3) by Th25; hence thesis by Def5; end; A33:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4,n3,n1) proof set q1=crossover(p1,p2,n2,n3); set q2=crossover(p2,p1,n2,n3); A34:crossover(p1,p2,n2,n3,n1)=crossover(q1,q2,n1) by Def4; A35:crossover(p2,p1,n2,n3,n1)=crossover(q2,q1,n1) by Def4; A36:crossover(p1,p2,n2,n3,n4)=crossover(q1,q2,n4) by Def4; A37:crossover(p2,p1,n2,n3,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n3,n1),n4) by Th25 .=crossover(q1,q2,n1,n4) by A34,A35,Def3 .=crossover(q1,q2,n4,n1) by Th13 .=crossover(crossover(p1,p2,n2,n3,n4),crossover(p2,p1,n2,n3,n4),n1) by A36,A37,Def3 .=crossover(crossover(p1,p2,n2,n4,n3),crossover(p2,p1,n2,n3,n4),n1) by Th25 .=crossover(crossover(p1,p2,n2,n4,n3),crossover(p2,p1,n2,n4,n3),n1) by Th25; hence thesis by Def5; end; A38:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n1,n2,n4) proof crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26; hence thesis by Def5; end; A39:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n1,n4,n2) proof set q1=crossover(p1,p2,n3,n1); set q2=crossover(p2,p1,n3,n1); A40:crossover(p1,p2,n3,n1,n2)=crossover(q1,q2,n2) by Def4; A41:crossover(p2,p1,n3,n1,n2)=crossover(q2,q1,n2) by Def4; A42:crossover(p1,p2,n3,n1,n4)=crossover(q1,q2,n4) by Def4; A43:crossover(p2,p1,n3,n1,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26 .=crossover(q1,q2,n2,n4) by A40,A41,Def3 .=crossover(q1,q2,n4,n2) by Th13 .=crossover(crossover(p1,p2,n3,n1,n4),crossover(p2,p1,n3,n1,n4),n2) by A42,A43,Def3; hence thesis by Def5; end; A44:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n2,n1,n4) proof crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n1,n2),n4) by Th25 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n2,n1),n4) by Th25; hence thesis by Def5; end; A45:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n2,n4,n1) proof set q1=crossover(p1,p2,n3,n2); set q2=crossover(p2,p1,n3,n2); A46:crossover(p1,p2,n3,n2,n1)=crossover(q1,q2,n1) by Def4; A47:crossover(p2,p1,n3,n2,n1)=crossover(q2,q1,n1) by Def4; A48:crossover(p1,p2,n3,n2,n4)=crossover(q1,q2,n4) by Def4; A49:crossover(p2,p1,n3,n2,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n1,n2),n4) by Th25 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n2,n1),n4) by Th25 .=crossover(q1,q2,n1,n4) by A46,A47,Def3 .=crossover(q1,q2,n4,n1) by Th13 .=crossover(crossover(p1,p2,n3,n2,n4),crossover(p2,p1,n3,n2,n4),n1) by A48,A49,Def3; hence thesis by Def5; end; A50:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4,n1,n2) proof set q1=crossover(p1,p2,n3,n1); set q2=crossover(p2,p1,n3,n1); A51:crossover(p1,p2,n3,n1,n2)=crossover(q1,q2,n2) by Def4; A52:crossover(p2,p1,n3,n1,n2)=crossover(q2,q1,n2) by Def4; A53:crossover(p1,p2,n3,n1,n4)=crossover(q1,q2,n4) by Def4; A54:crossover(p2,p1,n3,n1,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26 .=crossover(q1,q2,n2,n4) by A51,A52,Def3 .=crossover(q1,q2,n4,n2) by Th13 .=crossover(crossover(p1,p2,n3,n1,n4),crossover(p2,p1,n3,n1,n4),n2) by A53,A54,Def3 .=crossover(crossover(p1,p2,n3,n4,n1),crossover(p2,p1,n3,n1,n4),n2) by Th25 .=crossover(crossover(p1,p2,n3,n4,n1),crossover(p2,p1,n3,n4,n1),n2) by Th25; hence thesis by Def5; end; A55:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4,n2,n1) proof set q1=crossover(p1,p2,n3,n2); set q2=crossover(p2,p1,n3,n2); A56:crossover(p1,p2,n3,n2,n1)=crossover(q1,q2,n1) by Def4; A57:crossover(p2,p1,n3,n2,n1)=crossover(q2,q1,n1) by Def4; A58:crossover(p1,p2,n3,n2,n4)=crossover(q1,q2,n4) by Def4; A59:crossover(p2,p1,n3,n2,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n1,n2),n4) by Th25 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n2,n1),n4) by Th25 .=crossover(q1,q2,n1,n4) by A56,A57,Def3 .=crossover(q1,q2,n4,n1) by Th13 .=crossover(crossover(p1,p2,n3,n2,n4),crossover(p2,p1,n3,n2,n4),n1) by A58,A59,Def3 .=crossover(crossover(p1,p2,n3,n4,n2),crossover(p2,p1,n3,n2,n4),n1) by Th25 .=crossover(crossover(p1,p2,n3,n4,n2),crossover(p2,p1,n3,n4,n2),n1) by Th25; hence thesis by Def5; end; A60:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n1,n2,n3) proof set q1=crossover(p1,p2,n1,n2); set q2=crossover(p2,p1,n1,n2); A61:crossover(p1,p2,n1,n2,n3)=crossover(q1,q2,n3) by Def4; A62:crossover(p2,p1,n1,n2,n3)=crossover(q2,q1,n3) by Def4; A63:crossover(p1,p2,n1,n2,n4)=crossover(q1,q2,n4) by Def4; A64:crossover(p2,p1,n1,n2,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(q1,q2,n3,n4) by A61,A62,Def3 .=crossover(q1,q2,n4,n3) by Th13 .=crossover(crossover(p1,p2,n1,n2,n4),crossover(p2,p1,n1,n2,n4),n3) by A63,A64,Def3 .=crossover(crossover(p1,p2,n4,n1,n2),crossover(p2,p1,n1,n2,n4),n3) by Th26 .=crossover(crossover(p1,p2,n4,n1,n2),crossover(p2,p1,n4,n1,n2),n3) by Th26; hence thesis by Def5; end; A65:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n1,n3,n2) proof set q1=crossover(p1,p2,n1,n3); set q2=crossover(p2,p1,n1,n3); A66:crossover(p1,p2,n1,n3,n2)=crossover(q1,q2,n2) by Def4; A67:crossover(p2,p1,n1,n3,n2)=crossover(q2,q1,n2) by Def4; A68:crossover(p1,p2,n1,n3,n4)=crossover(q1,q2,n4) by Def4; A69:crossover(p2,p1,n1,n3,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n1,n3,n2),crossover(p2,p1,n1,n3,n2),n4) by Th25 .=crossover(q1,q2,n2,n4) by A66,A67,Def3 .=crossover(q1,q2,n4,n2) by Th13 .=crossover(crossover(p1,p2,n1,n3,n4),crossover(p2,p1,n1,n3,n4),n2) by A68,A69,Def3 .=crossover(crossover(p1,p2,n4,n1,n3),crossover(p2,p1,n1,n3,n4),n2) by Th26 .=crossover(crossover(p1,p2,n4,n1,n3),crossover(p2,p1,n4,n1,n3),n2) by Th26; hence thesis by Def5; end; A70:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n2,n1,n3) proof set q1=crossover(p1,p2,n2,n1); set q2=crossover(p2,p1,n2,n1); A71:crossover(p1,p2,n2,n1,n3)=crossover(q1,q2,n3) by Def4; A72:crossover(p2,p1,n2,n1,n3)=crossover(q2,q1,n3) by Def4; A73:crossover(p1,p2,n2,n1,n4)=crossover(q1,q2,n4) by Def4; A74:crossover(p2,p1,n2,n1,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(q1,q2,n3,n4) by A71,A72,Def3 .=crossover(q1,q2,n4,n3) by Th13 .=crossover(crossover(p1,p2,n2,n1,n4),crossover(p2,p1,n2,n1,n4),n3) by A73,A74,Def3 .=crossover(crossover(p1,p2,n4,n2,n1),crossover(p2,p1,n2,n1,n4),n3) by Th26 .=crossover(crossover(p1,p2,n4,n2,n1),crossover(p2,p1,n4,n2,n1),n3) by Th26; hence thesis by Def5; end; A75:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n2,n3,n1) proof set q1=crossover(p1,p2,n2,n3); set q2=crossover(p2,p1,n2,n3); A76:crossover(p1,p2,n2,n3,n1)=crossover(q1,q2,n1) by Def4; A77:crossover(p2,p1,n2,n3,n1)=crossover(q2,q1,n1) by Def4; A78:crossover(p1,p2,n2,n3,n4)=crossover(q1,q2,n4) by Def4; A79:crossover(p2,p1,n2,n3,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n1,n2,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n1,n3),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n1,n3),n4) by Th25 .=crossover(crossover(p1,p2,n2,n3,n1),crossover(p2,p1,n2,n3,n1),n4) by Th25 .=crossover(q1,q2,n1,n4) by A76,A77,Def3 .=crossover(q1,q2,n4,n1) by Th13 .=crossover(crossover(p1,p2,n2,n3,n4),crossover(p2,p1,n2,n3,n4),n1) by A78,A79,Def3 .=crossover(crossover(p1,p2,n4,n2,n3),crossover(p2,p1,n2,n3,n4),n1) by Th26 .=crossover(crossover(p1,p2,n4,n2,n3),crossover(p2,p1,n4,n2,n3),n1) by Th26; hence thesis by Def5; end; A80:crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n3,n1,n2) proof set q1=crossover(p1,p2,n3,n1); set q2=crossover(p2,p1,n3,n1); A81:crossover(p1,p2,n3,n1,n2)=crossover(q1,q2,n2) by Def4; A82:crossover(p2,p1,n3,n1,n2)=crossover(q2,q1,n2) by Def4; A83:crossover(p1,p2,n3,n1,n4)=crossover(q1,q2,n4) by Def4; A84:crossover(p2,p1,n3,n1,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26 .=crossover(q1,q2,n2,n4) by A81,A82,Def3 .=crossover(q1,q2,n4,n2) by Th13 .=crossover(crossover(p1,p2,n3,n1,n4),crossover(p2,p1,n3,n1,n4),n2) by A83,A84,Def3 .=crossover(crossover(p1,p2,n4,n3,n1),crossover(p2,p1,n3,n1,n4),n2) by Th26 .=crossover(crossover(p1,p2,n4,n3,n1),crossover(p2,p1,n4,n3,n1),n2) by Th26; hence thesis by Def5; end; crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n3,n2,n1) proof set q1=crossover(p1,p2,n3,n2); set q2=crossover(p2,p1,n3,n2); A85:crossover(p1,p2,n3,n2,n1)=crossover(q1,q2,n1) by Def4; A86:crossover(p2,p1,n3,n2,n1)=crossover(q2,q1,n1) by Def4; A87:crossover(p1,p2,n3,n2,n4)=crossover(q1,q2,n4) by Def4; A88:crossover(p2,p1,n3,n2,n4)=crossover(q2,q1,n4) by Def4; crossover(p1,p2,n1,n2,n3,n4) =crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n1,n2,n3),n4) by Th26 .=crossover(crossover(p1,p2,n3,n1,n2),crossover(p2,p1,n3,n1,n2),n4) by Th26 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n1,n2),n4) by Th25 .=crossover(crossover(p1,p2,n3,n2,n1),crossover(p2,p1,n3,n2,n1),n4) by Th25 .=crossover(q1,q2,n1,n4) by A85,A86,Def3 .=crossover(q1,q2,n4,n1) by Th13 .=crossover(crossover(p1,p2,n3,n2,n4),crossover(p2,p1,n3,n2,n4),n1) by A87,A88,Def3 .=crossover(crossover(p1,p2,n4,n3,n2),crossover(p2,p1,n3,n2,n4),n1) by Th26 .=crossover(crossover(p1,p2,n4,n3,n2),crossover(p2,p1,n4,n3,n2),n1) by Th26; hence thesis by Def5; end; hence thesis by A1,A2,A3,A4,A8,A12,A16,A19,A23,A28,A33,A38,A39,A44,A45,A50, A55,A60,A65,A70,A75,A80; end; theorem Th38: crossover(p1,p2,n1,n1,n3,n4) = crossover(p1,p2,n3,n4) & crossover(p1,p2,n1,n2,n1,n4) = crossover(p1,p2,n2,n4) & crossover(p1,p2,n1,n2,n3,n1) = crossover(p1,p2,n2,n3) & crossover(p1,p2,n1,n2,n2,n4) = crossover(p1,p2,n1,n4) & crossover(p1,p2,n1,n2,n3,n2) = crossover(p1,p2,n1,n3) & crossover(p1,p2,n1,n2,n3,n3) = crossover(p1,p2,n1,n2) proof thus crossover(p1,p2,n1,n1,n3,n4) = crossover(p1,p2,n3,n4) proof crossover(p1,p2,n1,n1,n3,n4) =crossover(crossover(p1,p2,n1,n1,n3),crossover(p2,p1,n1,n1,n3),n4) by Def5 .=crossover(crossover(p1,p2,n3),crossover(p2,p1,n1,n1,n3),n4) by Th27 .=crossover(crossover(p1,p2,n3),crossover(p2,p1,n3),n4) by Th27; hence thesis by Def3; end; thus crossover(p1,p2,n1,n2,n1,n4) = crossover(p1,p2,n2,n4) proof crossover(p1,p2,n1,n2,n1,n4) =crossover(crossover(p1,p2,n1,n2,n1),crossover(p2,p1,n1,n2,n1),n4) by Def5 .=crossover(crossover(p1,p2,n2),crossover(p2,p1,n1,n2,n1),n4) by Th27 .=crossover(crossover(p1,p2,n2),crossover(p2,p1,n2),n4) by Th27; hence thesis by Def3; end; thus crossover(p1,p2,n1,n2,n3,n1) = crossover(p1,p2,n2,n3) proof crossover(p1,p2,n1,n2,n3,n1) = crossover(p1,p2,n1,n1,n2,n3) by Th37 .=crossover(crossover(p1,p2,n1,n1,n2),crossover(p2,p1,n1,n1,n2),n3) by Def5 .=crossover(crossover(p1,p2,n2),crossover(p2,p1,n1,n1,n2),n3) by Th27 .=crossover(crossover(p1,p2,n2),crossover(p2,p1,n2),n3) by Th27; hence thesis by Def3; end; thus crossover(p1,p2,n1,n2,n2,n4) = crossover(p1,p2,n1,n4) proof crossover(p1,p2,n1,n2,n2,n4) =crossover(crossover(p1,p2,n1,n2,n2),crossover(p2,p1,n1,n2,n2),n4) by Def5 .=crossover(crossover(p1,p2,n1),crossover(p2,p1,n1,n2,n2),n4) by Th27 .=crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n4) by Th27; hence thesis by Def3; end; thus crossover(p1,p2,n1,n2,n3,n2) = crossover(p1,p2,n1,n3) proof crossover(p1,p2,n1,n2,n3,n2) = crossover(p1,p2,n1,n2,n2,n3) by Th37 .=crossover(crossover(p1,p2,n1,n2,n2),crossover(p2,p1,n1,n2,n2),n3) by Def5 .=crossover(crossover(p1,p2,n1),crossover(p2,p1,n1,n2,n2),n3) by Th27 .=crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n3) by Th27; hence thesis by Def3; end; crossover(p1,p2,n1,n2,n3,n3) = crossover(p1,p2,n1,n3,n3,n2) by Th37 .=crossover(crossover(p1,p2,n1,n3,n3),crossover(p2,p1,n1,n3,n3),n2) by Def5 .=crossover(crossover(p1,p2,n1),crossover(p2,p1,n1,n3,n3),n2) by Th27 .=crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n2) by Th27; hence thesis by Def3; end; theorem crossover(p1,p2,n1,n1,n3,n3) = p1 & crossover(p1,p2,n1,n2,n1,n2) = p1 & crossover(p1,p2,n1,n2,n2,n1) = p1 proof thus crossover(p1,p2,n1,n1,n3,n3) = p1 proof crossover(p1,p2,n1,n1,n3,n3)=crossover(p1,p2,n3,n3) by Th38; hence thesis by Th12; end; thus crossover(p1,p2,n1,n2,n1,n2) = p1 proof crossover(p1,p2,n1,n2,n1,n2)=crossover(p1,p2,n2,n2) by Th38; hence thesis by Th12; end; crossover(p1,p2,n1,n2,n2,n1)=crossover(p1,p2,n2,n2) by Th38; hence thesis by Th12; end; begin :::::::::::::::::::::::::::::::::::::: :: Properties of 5-points crossover :: :::::::::::::::::::::::: ::::::::::::: theorem Th40:crossover(p1,p2,n1,n2,n3,n4,n5) is Individual of S proof reconsider q1=crossover(p1,p2,n1,n2,n3,n4), q2=crossover(p2,p1,n1,n2,n3,n4) as Individual of S; crossover(q1,q2,n5) is Individual of S; hence thesis by Def6; end; definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2,n3,n4,n5; redefine func crossover(p1,p2,n1,n2,n3,n4,n5) -> Individual of S; correctness by Th40; end; theorem Th41:crossover(p1,p2,0,n2,n3,n4,n5)=crossover(p2,p1,n2,n3,n4,n5) & crossover(p1,p2,n1,0,n3,n4,n5) = crossover(p2,p1,n1,n3,n4,n5) & crossover(p1,p2,n1,n2,0,n4,n5) = crossover(p2,p1,n1,n2,n4,n5) & crossover(p1,p2,n1,n2,n3,0,n5) = crossover(p2,p1,n1,n2,n3,n5) & crossover(p1,p2,n1,n2,n3,n4,0) = crossover(p2,p1,n1,n2,n3,n4) proof A1:crossover(p1,p2,0,n2,n3,n4,n5)=crossover(p2,p1,n2,n3,n4,n5) proof crossover(p1,p2,0,n2,n3,n4,n5) =crossover(crossover(p1,p2,0,n2,n3,n4),crossover(p2,p1,0,n2,n3,n4),n5) by Def6 .=crossover(crossover(p2,p1,n2,n3,n4),crossover(p2,p1,0,n2,n3,n4),n5) by Th29 .=crossover(crossover(p2,p1,n2,n3,n4),crossover(p1,p2,n2,n3,n4),n5) by Th29; hence thesis by Def5; end; A2:crossover(p1,p2,n1,0,n3,n4,n5)=crossover(p2,p1,n1,n3,n4,n5) proof crossover(p1,p2,n1,0,n3,n4,n5) =crossover(crossover(p1,p2,n1,0,n3,n4),crossover(p2,p1,n1,0,n3,n4),n5) by Def6 .=crossover(crossover(p2,p1,n1,n3,n4),crossover(p2,p1,n1,0,n3,n4),n5) by Th29 .=crossover(crossover(p2,p1,n1,n3,n4),crossover(p1,p2,n1,n3,n4),n5) by Th29; hence thesis by Def5; end; A3:crossover(p1,p2,n1,n2,0,n4,n5)=crossover(p2,p1,n1,n2,n4,n5) proof crossover(p1,p2,n1,n2,0,n4,n5) =crossover(crossover(p1,p2,n1,n2,0,n4),crossover(p2,p1,n1,n2,0,n4),n5) by Def6 .=crossover(crossover(p2,p1,n1,n2,n4),crossover(p2,p1,n1,n2,0,n4),n5) by Th29 .=crossover(crossover(p2,p1,n1,n2,n4),crossover(p1,p2,n1,n2,n4),n5) by Th29; hence thesis by Def5; end; A4:crossover(p1,p2,n1,n2,n3,0,n5)=crossover(p2,p1,n1,n2,n3,n5) proof crossover(p1,p2,n1,n2,n3,0,n5) =crossover(crossover(p1,p2,n1,n2,n3,0),crossover(p2,p1,n1,n2,n3,0),n5) by Def6 .=crossover(crossover(p2,p1,n1,n2,n3),crossover(p2,p1,n1,n2,n3,0),n5) by Th29 .=crossover(crossover(p2,p1,n1,n2,n3),crossover(p1,p2,n1,n2,n3),n5) by Th29; hence thesis by Def5; end; crossover(p1,p2,n1,n2,n3,n4,0)=crossover(p2,p1,n1,n2,n3,n4) proof crossover(p1,p2,n1,n2,n3,n4,0) =crossover(crossover(p1,p2,n1,n2,n3,n4),crossover(p2,p1,n1,n2,n3,n4),0) by Def6; hence thesis by Th4; end; hence thesis by A1,A2,A3,A4; end; theorem crossover(p1,p2,0,0,n3,n4,n5)=crossover(p1,p2,n3,n4,n5) & crossover(p1,p2,0,n2,0,n4,n5)=crossover(p1,p2,n2,n4,n5) & crossover(p1,p2,0,n2,n3,0,n5)=crossover(p1,p2,n2,n3,n5) & crossover(p1,p2,0,n2,n3,n4,0)=crossover(p1,p2,n2,n3,n4) & crossover(p1,p2,n1,0,0,n4,n5)=crossover(p1,p2,n1,n4,n5) & crossover(p1,p2,n1,0,n3,0,n5)=crossover(p1,p2,n1,n3,n5) & crossover(p1,p2,n1,0,n3,n4,0)=crossover(p1,p2,n1,n3,n4) & crossover(p1,p2,n1,n2,0,0,n5)=crossover(p1,p2,n1,n2,n5) & crossover(p1,p2,n1,n2,0,n4,0)=crossover(p1,p2,n1,n2,n4) & crossover(p1,p2,n1,n2,n3,0,0)=crossover(p1,p2,n1,n2,n3) proof A1:crossover(p1,p2,0,0,n3,n4,n5)=crossover(p1,p2,n3,n4,n5) proof crossover(p1,p2,0,0,n3,n4,n5) =crossover(crossover(p1,p2,0,0,n3,n4),crossover(p2,p1,0,0,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n3,n4),crossover(p2,p1,0,0,n3,n4),n5) by Th30 .=crossover(crossover(p1,p2,n3,n4),crossover(p2,p1,n3,n4),n5) by Th30; hence thesis by Def4; end; A2:crossover(p1,p2,0,n2,0,n4,n5)=crossover(p1,p2,n2,n4,n5) proof crossover(p1,p2,0,n2,0,n4,n5) =crossover(crossover(p1,p2,0,n2,0,n4),crossover(p2,p1,0,n2,0,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n4),crossover(p2,p1,0,n2,0,n4),n5) by Th30 .=crossover(crossover(p1,p2,n2,n4),crossover(p2,p1,n2,n4),n5) by Th30; hence thesis by Def4; end; A3:crossover(p1,p2,0,n2,n3,0,n5)=crossover(p1,p2,n2,n3,n5) proof crossover(p1,p2,0,n2,n3,0,n5) =crossover(crossover(p1,p2,0,n2,n3,0),crossover(p2,p1,0,n2,n3,0),n5) by Def6 .=crossover(crossover(p1,p2,n2,n3),crossover(p2,p1,0,n2,n3,0),n5) by Th30 .=crossover(crossover(p1,p2,n2,n3),crossover(p2,p1,n2,n3),n5) by Th30; hence thesis by Def4; end; A4:crossover(p1,p2,0,n2,n3,n4,0)=crossover(p1,p2,n2,n3,n4) proof crossover(p1,p2,0,n2,n3,n4,0) =crossover(crossover(p1,p2,0,n2,n3,n4),crossover(p2,p1,0,n2,n3,n4),0) by Def6 .=crossover(crossover(p1,p2,0,n2,n3,n4),crossover(p1,p2,n2,n3,n4),0) by Th29; hence thesis by Th4; end; A5:crossover(p1,p2,n1,0,0,n4,n5)=crossover(p1,p2,n1,n4,n5) proof crossover(p1,p2,n1,0,0,n4,n5) =crossover(crossover(p1,p2,n1,0,0,n4),crossover(p2,p1,n1,0,0,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n4),crossover(p2,p1,n1,0,0,n4),n5) by Th30 .=crossover(crossover(p1,p2,n1,n4),crossover(p2,p1,n1,n4),n5) by Th30; hence thesis by Def4; end; A6:crossover(p1,p2,n1,0,n3,0,n5)=crossover(p1,p2,n1,n3,n5) proof crossover(p1,p2,n1,0,n3,0,n5) =crossover(crossover(p1,p2,n1,0,n3,0),crossover(p2,p1,n1,0,n3,0),n5) by Def6 .=crossover(crossover(p1,p2,n1,n3),crossover(p2,p1,n1,0,n3,0),n5) by Th30 .=crossover(crossover(p1,p2,n1,n3),crossover(p2,p1,n1,n3),n5) by Th30; hence thesis by Def4; end; A7:crossover(p1,p2,n1,0,n3,n4,0)=crossover(p1,p2,n1,n3,n4) proof crossover(p1,p2,n1,0,n3,n4,0) =crossover(crossover(p1,p2,n1,0,n3,n4),crossover(p2,p1,n1,0,n3,n4),0) by Def6 .=crossover(crossover(p1,p2,n1,0,n3,n4),crossover(p1,p2,n1,n3,n4),0) by Th29; hence thesis by Th4; end; A8:crossover(p1,p2,n1,n2,0,0,n5)=crossover(p1,p2,n1,n2,n5) proof crossover(p1,p2,n1,n2,0,0,n5) =crossover(crossover(p1,p2,n1,n2,0,0),crossover(p2,p1,n1,n2,0,0),n5) by Def6 .=crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2,0,0),n5) by Th30 .=crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n5) by Th30; hence thesis by Def4; end; A9:crossover(p1,p2,n1,n2,0,n4,0)=crossover(p1,p2,n1,n2,n4) proof crossover(p1,p2,n1,n2,0,n4,0) =crossover(crossover(p1,p2,n1,n2,0,n4),crossover(p2,p1,n1,n2,0,n4),0) by Def6 .=crossover(crossover(p1,p2,n1,n2,0,n4),crossover(p1,p2,n1,n2,n4),0) by Th29; hence thesis by Th4; end; crossover(p1,p2,n1,n2,n3,0,0)=crossover(p1,p2,n1,n2,n3) proof crossover(p1,p2,n1,n2,n3,0,0) =crossover(crossover(p1,p2,n1,n2,n3,0),crossover(p2,p1,n1,n2,n3,0),0) by Def6 .=crossover(crossover(p1,p2,n1,n2,n3,0),crossover(p1,p2,n1,n2,n3),0) by Th29; hence thesis by Th4; end; hence thesis by A1,A2,A3,A4,A5,A6,A7,A8,A9; end; theorem crossover(p1,p2,0,0,0,n4,n5)=crossover(p2,p1,n4,n5) & crossover(p1,p2,0,0,n3,0,n5)=crossover(p2,p1,n3,n5) & crossover(p1,p2,0,0,n3,n4,0)=crossover(p2,p1,n3,n4) & crossover(p1,p2,0,n2,0,0,n5)=crossover(p2,p1,n2,n5) & crossover(p1,p2,0,n2,0,n4,0)=crossover(p2,p1,n2,n4) & crossover(p1,p2,0,n2,n3,0,0)=crossover(p2,p1,n2,n3) & crossover(p1,p2,n1,0,0,0,n5)=crossover(p2,p1,n1,n5) & crossover(p1,p2,n1,0,0,n4,0)=crossover(p2,p1,n1,n4) & crossover(p1,p2,n1,0,n3,0,0)=crossover(p2,p1,n1,n3) & crossover(p1,p2,n1,n2,0,0,0)=crossover(p2,p1,n1,n2) proof A1:crossover(p1,p2,0,0,0,n4,n5)=crossover(p2,p1,n4,n5) proof crossover(p1,p2,0,0,0,n4,n5) =crossover(crossover(p1,p2,0,0,0,n4),crossover(p2,p1,0,0,0,n4),n5) by Def6 .=crossover(crossover(p2,p1,n4),crossover(p2,p1,0,0,0,n4),n5) by Th31 .=crossover(crossover(p2,p1,n4),crossover(p1,p2,n4),n5) by Th31; hence thesis by Def3; end; A2:crossover(p1,p2,0,0,n3,0,n5)=crossover(p2,p1,n3,n5) proof crossover(p1,p2,0,0,n3,0,n5) =crossover(crossover(p1,p2,0,0,n3,0),crossover(p2,p1,0,0,n3,0),n5) by Def6 .=crossover(crossover(p2,p1,n3),crossover(p2,p1,0,0,n3,0),n5) by Th31 .=crossover(crossover(p2,p1,n3),crossover(p1,p2,n3),n5) by Th31; hence thesis by Def3; end; A3:crossover(p1,p2,0,0,n3,n4,0)=crossover(p2,p1,n3,n4) proof crossover(p1,p2,0,0,n3,n4,0) =crossover(crossover(p1,p2,0,0,n3,n4),crossover(p2,p1,0,0,n3,n4),0) by Def6 .=crossover(crossover(p1,p2,0,0,n3,n4),crossover(p2,p1,n3,n4),0) by Th30; hence thesis by Th4; end; A4:crossover(p1,p2,0,n2,0,0,n5)=crossover(p2,p1,n2,n5) proof crossover(p1,p2,0,n2,0,0,n5) =crossover(crossover(p1,p2,0,n2,0,0),crossover(p2,p1,0,n2,0,0),n5) by Def6 .=crossover(crossover(p2,p1,n2),crossover(p2,p1,0,n2,0,0),n5) by Th31 .=crossover(crossover(p2,p1,n2),crossover(p1,p2,n2),n5) by Th31; hence thesis by Def3; end; A5:crossover(p1,p2,0,n2,0,n4,0)=crossover(p2,p1,n2,n4) proof crossover(p1,p2,0,n2,0,n4,0) =crossover(crossover(p1,p2,0,n2,0,n4),crossover(p2,p1,0,n2,0,n4),0) by Def6 .=crossover(crossover(p1,p2,0,n2,0,n4),crossover(p2,p1,n2,n4),0) by Th30; hence thesis by Th4; end; A6:crossover(p1,p2,0,n2,n3,0,0)=crossover(p2,p1,n2,n3) proof crossover(p1,p2,0,n2,n3,0,0) =crossover(crossover(p1,p2,0,n2,n3,0),crossover(p2,p1,0,n2,n3,0),0) by Def6 .=crossover(crossover(p1,p2,0,n2,n3,0),crossover(p2,p1,n2,n3),0) by Th30; hence thesis by Th4; end; A7:crossover(p1,p2,n1,0,0,0,n5)=crossover(p2,p1,n1,n5) proof crossover(p1,p2,n1,0,0,0,n5) =crossover(crossover(p1,p2,n1,0,0,0),crossover(p2,p1,n1,0,0,0),n5) by Def6 .=crossover(crossover(p2,p1,n1),crossover(p2,p1,n1,0,0,0),n5) by Th31 .=crossover(crossover(p2,p1,n1),crossover(p1,p2,n1),n5) by Th31; hence thesis by Def3; end; A8:crossover(p1,p2,n1,0,0,n4,0)=crossover(p2,p1,n1,n4) proof crossover(p1,p2,n1,0,0,n4,0) =crossover(crossover(p1,p2,n1,0,0,n4),crossover(p2,p1,n1,0,0,n4),0) by Def6 .=crossover(crossover(p1,p2,n1,0,0,n4),crossover(p2,p1,n1,n4),0) by Th30; hence thesis by Th4; end; A9:crossover(p1,p2,n1,0,n3,0,0)=crossover(p2,p1,n1,n3) proof crossover(p1,p2,n1,0,n3,0,0) =crossover(crossover(p1,p2,n1,0,n3,0),crossover(p2,p1,n1,0,n3,0),0) by Def6 .=crossover(crossover(p1,p2,n1,0,n3,0),crossover(p2,p1,n1,n3),0) by Th30; hence thesis by Th4; end; crossover(p1,p2,n1,n2,0,0,0)=crossover(p2,p1,n1,n2) proof crossover(p1,p2,n1,n2,0,0,0) =crossover(crossover(p1,p2,n1,n2,0,0),crossover(p2,p1,n1,n2,0,0),0) by Def6 .=crossover(crossover(p1,p2,n1,n2,0,0),crossover(p2,p1,n1,n2),0) by Th30; hence thesis by Th4; end; hence thesis by A1,A2,A3,A4,A5,A6,A7,A8,A9; end; theorem crossover(p1,p2,0,0,0,0,n5)=crossover(p1,p2,n5) & crossover(p1,p2,0,0,0,n4,0)=crossover(p1,p2,n4) & crossover(p1,p2,0,0,n3,0,0)=crossover(p1,p2,n3) & crossover(p1,p2,0,n2,0,0,0)=crossover(p1,p2,n2) & crossover(p1,p2,n1,0,0,0,0)=crossover(p1,p2,n1) proof A1:crossover(p1,p2,0,0,0,0,n5)=crossover(p1,p2,n5) proof crossover(p1,p2,0,0,0,0,n5) =crossover(crossover(p1,p2,0,0,0,0),crossover(p2,p1,0,0,0,0),n5) by Def6 .=crossover(p1,crossover(p2,p1,0,0,0,0),n5) by Th32; hence thesis by Th32; end; A2:crossover(p1,p2,0,0,0,n4,0)=crossover(p1,p2,n4) proof crossover(p1,p2,0,0,0,n4,0) =crossover(crossover(p1,p2,0,0,0,n4),crossover(p2,p1,0,0,0,n4),0) by Def6 .=crossover(crossover(p1,p2,0,0,0,n4),crossover(p1,p2,n4),0) by Th31; hence thesis by Th4; end; A3:crossover(p1,p2,0,0,n3,0,0)=crossover(p1,p2,n3) proof crossover(p1,p2,0,0,n3,0,0) =crossover(crossover(p1,p2,0,0,n3,0),crossover(p2,p1,0,0,n3,0),0) by Def6 .=crossover(crossover(p1,p2,0,0,n3,0),crossover(p1,p2,n3),0) by Th31; hence thesis by Th4; end; A4:crossover(p1,p2,0,n2,0,0,0)=crossover(p1,p2,n2) proof crossover(p1,p2,0,n2,0,0,0) =crossover(crossover(p1,p2,0,n2,0,0),crossover(p2,p1,0,n2,0,0),0) by Def6 .=crossover(crossover(p1,p2,0,n2,0,0),crossover(p1,p2,n2),0) by Th31; hence thesis by Th4; end; crossover(p1,p2,n1,0,0,0,0)=crossover(p1,p2,n1) proof crossover(p1,p2,n1,0,0,0,0) =crossover(crossover(p1,p2,n1,0,0,0),crossover(p2,p1,n1,0,0,0),0) by Def6 .=crossover(crossover(p1,p2,n1,0,0,0),crossover(p1,p2,n1),0) by Th31; hence thesis by Th4; end; hence thesis by A1,A2,A3,A4; end; theorem crossover(p1,p2,0,0,0,0,0)=p2 proof crossover(p1,p2,0,0,0,0,0) =crossover(crossover(p1,p2,0,0,0,0),crossover(p2,p1,0,0,0,0),0) by Def6 .=crossover(crossover(p1,p2,0,0,0,0),p2,0) by Th32; hence thesis by Th4; end; theorem Th46:(n1>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n4,n5)) & (n2>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n4,n5)) & (n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n4,n5)) & (n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3,n5)) & (n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3,n4)) proof A1:n1>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n4,n5) proof assume A2:n1 >= len p1; then n1 >= len S by Def1; then A3: n1 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A2,Th33 .=crossover(crossover(p1,p2,n2,n3,n4), crossover(p2,p1,n2,n3,n4),n5) by A3,Th33; hence thesis by Def5; end; A4:n2>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n4,n5) proof assume A5:n2 >= len p1; then n2 >= len S by Def1; then A6: n2 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A5,Th33 .=crossover(crossover(p1,p2,n1,n3,n4), crossover(p2,p1,n1,n3,n4),n5) by A6,Th33; hence thesis by Def5; end; A7:n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n4,n5) proof assume A8:n3 >= len p1; then n3 >= len S by Def1; then A9: n3 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n2,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A8,Th33 .=crossover(crossover(p1,p2,n1,n2,n4), crossover(p2,p1,n1,n2,n4),n5) by A9,Th33; hence thesis by Def5; end; A10:n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3,n5) proof assume A11:n4 >= len p1; then n4 >= len S by Def1; then A12: n4 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n2,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A11,Th33 .=crossover(crossover(p1,p2,n1,n2,n3), crossover(p2,p1,n1,n2,n3),n5) by A12,Th33; hence thesis by Def5; end; n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3,n4) proof assume n5 >= len p1; then n5 >= len S by Def1; then A13: n5 >= len crossover(p1,p2,n1,n2,n3,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6; hence thesis by A13,Th5; end; hence thesis by A1,A4,A7,A10; end; theorem (n1>=len p1 & n2>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n4,n5)) & (n1>=len p1 & n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n4,n5)) & (n1>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n5)) & (n1>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n4)) & (n2>=len p1 & n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n4,n5)) & (n2>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n5)) & (n2>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n4)) & (n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n5)) & (n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n4)) & (n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3)) proof A1:n1>=len p1 & n2>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n4,n5) proof assume A2:n1 >= len p1 & n2 >= len p1; then n1 >= len S & n2 >= len S by Def1; then A3: n1 >= len p2 & n2 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A2,Th34 .=crossover(crossover(p1,p2,n3,n4), crossover(p2,p1,n3,n4),n5) by A3,Th34; hence thesis by Def4; end; A4:n1>=len p1 & n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n4,n5) proof assume A5:n1 >= len p1 & n3 >= len p1; then n1 >= len S & n3 >= len S by Def1; then A6: n1 >= len p2 & n3 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A5,Th34 .=crossover(crossover(p1,p2,n2,n4), crossover(p2,p1,n2,n4),n5) by A6,Th34; hence thesis by Def4; end; A7:n1>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n5) proof assume A8:n1 >= len p1 & n4 >= len p1; then n1 >= len S & n4 >= len S by Def1; then A9: n1 >= len p2 & n4 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A8,Th34 .=crossover(crossover(p1,p2,n2,n3), crossover(p2,p1,n2,n3),n5) by A9,Th34; hence thesis by Def4; end; A10:n1>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n4) proof assume A11:n1 >= len p1 & n5 >= len p1; then n5 >= len S by Def1; then A12: n5 >= len crossover(p1,p2,n2,n3,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A11,Th33; hence thesis by A12,Th5; end; A13:n2>=len p1 & n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n4,n5) proof assume A14:n2 >= len p1 & n3 >= len p1; then n2 >= len S & n3 >= len S by Def1; then A15: n2 >= len p2 & n3 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A14,Th34 .=crossover(crossover(p1,p2,n1,n4), crossover(p2,p1,n1,n4),n5) by A15,Th34; hence thesis by Def4; end; A16:n2>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n5) proof assume A17:n2 >= len p1 & n4 >= len p1; then n2 >= len S & n4 >= len S by Def1; then A18: n2 >= len p2 & n4 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A17,Th34 .=crossover(crossover(p1,p2,n1,n3), crossover(p2,p1,n1,n3),n5) by A18,Th34; hence thesis by Def4; end; A19:n2>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n4) proof assume A20:n2 >= len p1 & n5 >= len p1; then n5 >= len S by Def1; then A21: n5 >= len crossover(p1,p2,n1,n3,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A20,Th33; hence thesis by A21,Th5; end; A22:n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n5) proof assume A23:n3 >= len p1 & n4 >= len p1; then n3 >= len S & n4 >= len S by Def1; then A24: n3 >= len p2 & n4 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n2), crossover(p2,p1,n1,n2,n3,n4),n5) by A23,Th34 .=crossover(crossover(p1,p2,n1,n2), crossover(p2,p1,n1,n2),n5) by A24,Th34; hence thesis by Def4; end; A25:n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n4) proof assume A26:n3 >= len p1 & n5 >= len p1; then n5 >= len S by Def1; then A27: n5 >= len crossover(p1,p2,n1,n2,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n2,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A26,Th33; hence thesis by A27,Th5; end; n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3) proof assume A28:n4 >= len p1 & n5 >= len p1; then n5 >= len S by Def1; then A29: n5 >= len crossover(p1,p2,n1,n2,n3) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n2,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A28,Th33; hence thesis by A29,Th5; end; hence thesis by A1,A4,A7,A10,A13,A16,A19,A22,A25; end; theorem (n1>=len p1 & n2>=len p1 & n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4,n5)) & (n1>=len p1 & n2>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n5)) & (n1>=len p1 & n2>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n4)) & (n1>=len p1 & n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n5)) & (n1>=len p1 & n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n4)) & (n1>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3)) & (n2>=len p1 & n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n5)) & (n2>=len p1 & n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n4)) & (n2>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3)) & (n3>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2)) proof A1:(n1>=len p1 & n2>=len p1 & n3>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4,n5)) proof assume A2:n1>=len p1 & n2>=len p1 & n3>=len p1; then n1>=len S & n2>=len S & n3>=len S by Def1; then A3: n1>=len p2 & n2>=len p2 & n3>=len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A2,Th35 .=crossover(crossover(p1,p2,n4),crossover(p2,p1,n4),n5) by A3,Th35; hence thesis by Def3; end; A4:(n1>=len p1 & n2>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n5)) proof assume A5:n1>=len p1 & n2>=len p1 & n4>=len p1; then n1>=len S & n2>=len S & n4>=len S by Def1; then A6: n1>=len p2 & n2>=len p2 & n4>=len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A5,Th35 .=crossover(crossover(p1,p2,n3),crossover(p2,p1,n3),n5) by A6,Th35; hence thesis by Def3; end; A7:(n1>=len p1 & n2>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n4)) proof assume A8:n1>=len p1 & n2>=len p1 & n5>=len p1; then n5>=len S by Def1; then A9: n5>=len crossover(p1,p2,n3,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A8,Th34; hence thesis by A9,Th5; end; A10:(n1>=len p1 & n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n5)) proof assume A11:n1>=len p1 & n3>=len p1 & n4>=len p1; then n1>=len S & n3>=len S & n4>=len S by Def1; then A12: n1>=len p2 & n3>=len p2 & n4>=len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2), crossover(p2,p1,n1,n2,n3,n4),n5) by A11,Th35 .=crossover(crossover(p1,p2,n2),crossover(p2,p1,n2),n5) by A12,Th35; hence thesis by Def3; end; A13:(n1>=len p1 & n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n4)) proof assume A14:n1>=len p1 & n3>=len p1 & n5>=len p1; then n5>=len S by Def1; then A15: n5>=len crossover(p1,p2,n2,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A14,Th34; hence thesis by A15,Th5; end; A16:(n1>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3)) proof assume A17:n1>=len p1 & n4>=len p1 & n5>=len p1; then n5>=len S by Def1; then A18: n5>=len crossover(p1,p2,n2,n3) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A17,Th34; hence thesis by A18,Th5; end; A19:(n2>=len p1 & n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n5)) proof assume A20:n2>=len p1 & n3>=len p1 & n4>=len p1; then n2>=len S & n3>=len S & n4>=len S by Def1; then A21: n2>=len p2 & n3>=len p2 & n4>=len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1), crossover(p2,p1,n1,n2,n3,n4),n5) by A20,Th35 .=crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n5) by A21,Th35; hence thesis by Def3; end; A22:(n2>=len p1 & n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n4)) proof assume A23:n2>=len p1 & n3>=len p1 & n5>=len p1; then n5>=len S by Def1; then A24: n5>=len crossover(p1,p2,n1,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A23,Th34; hence thesis by A24,Th5; end; A25:(n2>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3)) proof assume A26:n2>=len p1 & n4>=len p1 & n5>=len p1; then n5>=len S by Def1; then A27: n5>=len crossover(p1,p2,n1,n3) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A26,Th34; hence thesis by A27,Th5; end; (n3>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2)) proof assume A28:n3>=len p1 & n4>=len p1 & n5>=len p1; then n5>=len S by Def1; then A29: n5>=len crossover(p1,p2,n1,n2) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1,n2), crossover(p2,p1,n1,n2,n3,n4),n5) by A28,Th34; hence thesis by A29,Th5; end; hence thesis by A1,A4,A7,A10,A13,A16,A19,A22,A25; end; theorem (n1>=len p1 & n2>=len p1 & n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n5)) & (n1>=len p1 & n2>=len p1 & n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4)) & (n1>=len p1 & n2>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3)) & (n1>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2)) & (n2>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1)) proof A1:(n1>=len p1 & n2>=len p1 & n3>=len p1 & n4>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n5)) proof assume A2:n1>=len p1 & n2>=len p1 & n3>=len p1 & n4>=len p1; then n1>=len S & n2>=len S & n3>=len S & n4>=len S by Def1; then A3: n1>=len p2 & n2>=len p2 & n3>=len p2 & n4>=len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(p1,crossover(p2,p1,n1,n2,n3,n4),n5) by A2,Th36; hence thesis by A3,Th36; end; A4:(n1>=len p1 & n2>=len p1 & n3>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4)) proof assume A5:n1>=len p1 & n2>=len p1 & n3>=len p1 & n5>=len p1; then n5>=len S by Def1; then A6: n5>=len crossover(p1,p2,n4) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by A5,Th35; hence thesis by A6,Th5; end; A7:(n1>=len p1 & n2>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3)) proof assume A8:n1>=len p1 & n2>=len p1 & n4>=len p1 & n5>=len p1; then n5>=len S by Def1; then A9: n5>=len crossover(p1,p2,n3) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n3), crossover(p2,p1,n1,n2,n3,n4),n5) by A8,Th35; hence thesis by A9,Th5; end; A10:(n1>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2)) proof assume A11:n1>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1; then n5>=len S by Def1; then A12: n5>=len crossover(p1,p2,n2) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2), crossover(p2,p1,n1,n2,n3,n4),n5) by A11,Th35; hence thesis by A12,Th5; end; (n2>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1)) proof assume A13:n2>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1; then n5>=len S by Def1; then A14: n5>=len crossover(p1,p2,n1) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n1), crossover(p2,p1,n1,n2,n3,n4),n5) by A13,Th35; hence thesis by A14,Th5; end; hence thesis by A1,A4,A7,A10; end; theorem n1>=len p1 & n2>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5)=p1 proof assume A1:n1>=len p1 & n2>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(p1,crossover(p2,p1,n1,n2,n3,n4),n5) by A1,Th36; hence thesis by A1,Th5; end; theorem Th51: crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n1,n3,n4,n5) & crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n2,n1,n4,n5) & crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4,n2,n3,n1,n5) & crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n5,n2,n3,n4,n1) proof A1:crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n1,n3,n4,n5) proof crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n1,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Th37 .=crossover(crossover(p1,p2,n2,n1,n3,n4), crossover(p2,p1,n2,n1,n3,n4),n5) by Th37; hence thesis by Def6; end; A2:crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n2,n1,n4,n5) proof crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n3,n2,n1,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Th37 .=crossover(crossover(p1,p2,n3,n2,n1,n4), crossover(p2,p1,n3,n2,n1,n4),n5) by Th37; hence thesis by Def6; end; A3:crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4,n2,n3,n1,n5) proof crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n4,n2,n3,n1), crossover(p2,p1,n1,n2,n3,n4),n5) by Th37 .=crossover(crossover(p1,p2,n4,n2,n3,n1), crossover(p2,p1,n4,n2,n3,n1),n5) by Th37; hence thesis by Def6; end; crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n5,n2,n3,n4,n1) proof set q1=crossover(p1,p2,n2,n3,n4); set q2=crossover(p2,p1,n2,n3,n4); A4: crossover(p2,p1,n2,n3,n4,n1)=crossover(q2,q1,n1) by Def5; A5: crossover(p1,p2,n2,n3,n4,n5)=crossover(q1,q2,n5) by Def5; A6: crossover(p2,p1,n2,n3,n4,n5)=crossover(q2,q1,n5) by Def5; crossover(p1,p2,n1,n2,n3,n4,n5) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n3,n4,n1), crossover(p2,p1,n1,n2,n3,n4),n5) by Th37 .=crossover(crossover(p1,p2,n2,n3,n4,n1), crossover(p2,p1,n2,n3,n4,n1),n5) by Th37 .=crossover(crossover(q1,q2,n1),crossover(q2,q1,n1),n5) by A4,Def5 .=crossover(q1,q2,n1,n5) by Def3 .=crossover(q1,q2,n5,n1) by Th13 .=crossover(crossover(q1,q2,n5),crossover(q2,q1,n5),n1) by Def3 .=crossover(crossover(p1,p2,n5,n2,n3,n4), crossover(p2,p1,n2,n3,n4,n5),n1) by A5,A6,Th37 .=crossover(crossover(p1,p2,n5,n2,n3,n4), crossover(p2,p1,n5,n2,n3,n4),n1) by Th37; hence thesis by Def6; end; hence thesis by A1,A2,A3; end; theorem Th52: crossover(p1,p2,n1,n1,n3,n4,n5)=crossover(p1,p2,n3,n4,n5) & crossover(p1,p2,n1,n2,n1,n4,n5)=crossover(p1,p2,n2,n4,n5) & crossover(p1,p2,n1,n2,n3,n1,n5)=crossover(p1,p2,n2,n3,n5) & crossover(p1,p2,n1,n2,n3,n4,n1)=crossover(p1,p2,n2,n3,n4) proof thus crossover(p1,p2,n1,n1,n3,n4,n5)=crossover(p1,p2,n3,n4,n5) proof crossover(p1,p2,n1,n1,n3,n4,n5) =crossover(crossover(p1,p2,n1,n1,n3,n4), crossover(p2,p1,n1,n1,n3,n4),n5) by Def6 .=crossover(crossover(p1,p2,n3,n4), crossover(p2,p1,n1,n1,n3,n4),n5) by Th38 .=crossover(crossover(p1,p2,n3,n4),crossover(p2,p1,n3,n4),n5) by Th38; hence thesis by Def4; end; thus crossover(p1,p2,n1,n2,n1,n4,n5)=crossover(p1,p2,n2,n4,n5) proof crossover(p1,p2,n1,n2,n1,n4,n5) =crossover(crossover(p1,p2,n1,n2,n1,n4), crossover(p2,p1,n1,n2,n1,n4),n5) by Def6 .=crossover(crossover(p1,p2,n2,n4), crossover(p2,p1,n1,n2,n1,n4),n5) by Th38 .=crossover(crossover(p1,p2,n2,n4),crossover(p2,p1,n2,n4),n5) by Th38; hence thesis by Def4; end; thus crossover(p1,p2,n1,n2,n3,n1,n5)=crossover(p1,p2,n2,n3,n5) proof crossover(p1,p2,n1,n2,n3,n1,n5) =crossover(crossover(p1,p2,n1,n2,n3,n1), crossover(p2,p1,n1,n2,n3,n1),n5) by Def6 .=crossover(crossover(p1,p2,n2,n3), crossover(p2,p1,n1,n2,n3,n1),n5) by Th38 .=crossover(crossover(p1,p2,n2,n3),crossover(p2,p1,n2,n3),n5) by Th38; hence thesis by Def4; end; set q1=crossover(p1,p2,n2,n3,n4); set q2=crossover(p2,p1,n2,n3,n4); A1: crossover(p2,p1,n2,n3,n4,n1)=crossover(q2,q1,n1) by Def5; crossover(p1,p2,n1,n2,n3,n4,n1) =crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n1) by Def6 .=crossover(crossover(p1,p2,n2,n3,n4,n1), crossover(p2,p1,n1,n2,n3,n4),n1) by Th37 .=crossover(crossover(p1,p2,n2,n3,n4,n1), crossover(p2,p1,n2,n3,n4,n1),n1) by Th37 .=crossover(crossover(q1,q2,n1),crossover(q2,q1,n1),n1) by A1,Def5 .=crossover(q1,q2,n1,n1) by Def3; hence thesis by Th12; end; begin :::::::::::::::::::::::::::::::::::::: :: Properties of 6-points crossover :: :::::::::::::::::::::::::::::::::::::: theorem Th53:crossover(p1,p2,n1,n2,n3,n4,n5,n6) is Individual of S proof reconsider q1=crossover(p1,p2,n1,n2,n3,n4,n5), q2=crossover(p2,p1,n1,n2,n3,n4,n5) as Individual of S; crossover(q1,q2,n6) is Individual of S; hence thesis by Def7; end; definition let S be Gene-Set,p1,p2 be Individual of S,n1,n2,n3,n4,n5,n6; redefine func crossover(p1,p2,n1,n2,n3,n4,n5,n6) -> Individual of S; correctness by Th53; end; theorem crossover(p1,p2,0,n2,n3,n4,n5,n6)=crossover(p2,p1,n2,n3,n4,n5,n6) & crossover(p1,p2,n1,0,n3,n4,n5,n6)=crossover(p2,p1,n1,n3,n4,n5,n6) & crossover(p1,p2,n1,n2,0,n4,n5,n6)=crossover(p2,p1,n1,n2,n4,n5,n6) & crossover(p1,p2,n1,n2,n3,0,n5,n6)=crossover(p2,p1,n1,n2,n3,n5,n6) & crossover(p1,p2,n1,n2,n3,n4,0,n6)=crossover(p2,p1,n1,n2,n3,n4,n6) & crossover(p1,p2,n1,n2,n3,n4,n5,0)=crossover(p2,p1,n1,n2,n3,n4,n5) proof thus crossover(p1,p2,0,n2,n3,n4,n5,n6)=crossover(p2,p1,n2,n3,n4,n5,n6) proof crossover(p1,p2,0,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,0,n2,n3,n4,n5), crossover(p2,p1,0,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p2,p1,n2,n3,n4,n5), crossover(p2,p1,0,n2,n3,n4,n5),n6) by Th41 .=crossover(crossover(p2,p1,n2,n3,n4,n5), crossover(p1,p2,n2,n3,n4,n5),n6) by Th41; hence thesis by Def6; end; thus crossover(p1,p2,n1,0,n3,n4,n5,n6)=crossover(p2,p1,n1,n3,n4,n5,n6) proof crossover(p1,p2,n1,0,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,0,n3,n4,n5), crossover(p2,p1,n1,0,n3,n4,n5),n6) by Def7 .=crossover(crossover(p2,p1,n1,n3,n4,n5), crossover(p2,p1,n1,0,n3,n4,n5),n6) by Th41 .=crossover(crossover(p2,p1,n1,n3,n4,n5), crossover(p1,p2,n1,n3,n4,n5),n6) by Th41; hence thesis by Def6; end; thus crossover(p1,p2,n1,n2,0,n4,n5,n6)=crossover(p2,p1,n1,n2,n4,n5,n6) proof crossover(p1,p2,n1,n2,0,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,0,n4,n5), crossover(p2,p1,n1,n2,0,n4,n5),n6) by Def7 .=crossover(crossover(p2,p1,n1,n2,n4,n5), crossover(p2,p1,n1,n2,0,n4,n5),n6) by Th41 .=crossover(crossover(p2,p1,n1,n2,n4,n5), crossover(p1,p2,n1,n2,n4,n5),n6) by Th41; hence thesis by Def6; end; thus crossover(p1,p2,n1,n2,n3,0,n5,n6)=crossover(p2,p1,n1,n2,n3,n5,n6) proof crossover(p1,p2,n1,n2,n3,0,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,0,n5), crossover(p2,p1,n1,n2,n3,0,n5),n6) by Def7 .=crossover(crossover(p2,p1,n1,n2,n3,n5), crossover(p2,p1,n1,n2,n3,0,n5),n6) by Th41 .=crossover(crossover(p2,p1,n1,n2,n3,n5), crossover(p1,p2,n1,n2,n3,n5),n6) by Th41; hence thesis by Def6; end; thus crossover(p1,p2,n1,n2,n3,n4,0,n6)=crossover(p2,p1,n1,n2,n3,n4,n6) proof crossover(p1,p2,n1,n2,n3,n4,0,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,0), crossover(p2,p1,n1,n2,n3,n4,0),n6) by Def7 .=crossover(crossover(p2,p1,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4,0),n6) by Th41 .=crossover(crossover(p2,p1,n1,n2,n3,n4), crossover(p1,p2,n1,n2,n3,n4),n6) by Th41; hence thesis by Def6; end; thus crossover(p1,p2,n1,n2,n3,n4,n5,0) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),0) by Def7 .=crossover(p2,p1,n1,n2,n3,n4,n5) by Th4; end; theorem (n1 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n2,n3,n4,n5,n6)) & (n2 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n3,n4,n5,n6)) & (n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n4,n5,n6)) & (n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n5,n6)) & (n5 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n4,n6)) & (n6 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n4,n5)) proof A1:n1 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n2,n3,n4,n5,n6) proof assume A2:n1 >= len p1; then n1 >= len S by Def1; then A3: n1 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by A2,Th46 .=crossover(crossover(p1,p2,n2,n3,n4,n5), crossover(p2,p1,n2,n3,n4,n5),n6) by A3,Th46; hence thesis by Def6; end; A4:n2 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n3,n4,n5,n6) proof assume A5:n2 >= len p1; then n2 >= len S by Def1; then A6: n2 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n1,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by A5,Th46 .=crossover(crossover(p1,p2,n1,n3,n4,n5), crossover(p2,p1,n1,n3,n4,n5),n6) by A6,Th46; hence thesis by Def6; end; A7:n3 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n4,n5,n6) proof assume A8:n3 >= len p1; then n3 >= len S by Def1; then A9: n3 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n1,n2,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by A8,Th46 .=crossover(crossover(p1,p2,n1,n2,n4,n5), crossover(p2,p1,n1,n2,n4,n5),n6) by A9,Th46; hence thesis by Def6; end; A10:n4 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n5,n6) proof assume A11:n4 >= len p1; then n4 >= len S by Def1; then A12: n4 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n1,n2,n3,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by A11,Th46 .=crossover(crossover(p1,p2,n1,n2,n3,n5), crossover(p2,p1,n1,n2,n3,n5),n6) by A12,Th46; hence thesis by Def6; end; A13:n5 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n4,n6) proof assume A14:n5 >= len p1; then n5 >= len S by Def1; then A15: n5 >= len p2 by Def1; crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by A14,Th46 .=crossover(crossover(p1,p2,n1,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4),n6) by A15,Th46; hence thesis by Def6; end; n6 >= len p1 implies crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n4,n5) proof assume n6 >= len p1; then n6 >= len S by Def1; then A16: n6 >= len crossover(p1,p2,n1,n2,n3,n4,n5) by Def1; crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7; hence thesis by A16,Th5; end; hence thesis by A1,A4,A7,A10,A13; end; theorem Th56: crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n2,n1,n3,n4,n5,n6) & crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n3,n2,n1,n4,n5,n6) & crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n4,n2,n3,n1,n5,n6) & crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n5,n2,n3,n4,n1,n6) & crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n6,n2,n3,n4,n5,n1) proof thus crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n2,n1,n3,n4,n5,n6) proof crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n2,n1,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Th51 .=crossover(crossover(p1,p2,n2,n1,n3,n4,n5), crossover(p2,p1,n2,n1,n3,n4,n5),n6) by Th51; hence thesis by Def7; end; thus crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n3,n2,n1,n4,n5,n6) proof crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n3,n2,n1,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Th51 .=crossover(crossover(p1,p2,n3,n2,n1,n4,n5), crossover(p2,p1,n3,n2,n1,n4,n5),n6) by Th51; hence thesis by Def7; end; thus crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n4,n2,n3,n1,n5,n6) proof crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n4,n2,n3,n1,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Th51 .=crossover(crossover(p1,p2,n4,n2,n3,n1,n5), crossover(p2,p1,n4,n2,n3,n1,n5),n6) by Th51; hence thesis by Def7; end; thus crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n5,n2,n3,n4,n1,n6) proof crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n5,n2,n3,n4,n1), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Th51 .=crossover(crossover(p1,p2,n5,n2,n3,n4,n1), crossover(p2,p1,n5,n2,n3,n4,n1),n6) by Th51; hence thesis by Def7; end; set q1=crossover(p1,p2,n5,n2,n3,n4); set q2=crossover(p2,p1,n5,n2,n3,n4); A1: crossover(p2,p1,n5,n2,n3,n4,n1)=crossover(q2,q1,n1) by Def6; A2: crossover(p1,p2,n5,n2,n3,n4,n6)=crossover(q1,q2,n6) by Def6; A3: crossover(p2,p1,n5,n2,n3,n4,n6)=crossover(q2,q1,n6) by Def6; crossover(p1,p2,n1,n2,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n5), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n5,n2,n3,n4,n1), crossover(p2,p1,n1,n2,n3,n4,n5),n6) by Th51 .=crossover(crossover(p1,p2,n5,n2,n3,n4,n1), crossover(p2,p1,n5,n2,n3,n4,n1),n6) by Th51 .=crossover(crossover(q1,q2,n1),crossover(q2,q1,n1),n6) by A1,Def6 .=crossover(q1,q2,n1,n6) by Def3 .=crossover(q1,q2,n6,n1) by Th13 .=crossover(crossover(q1,q2,n6),crossover(q2,q1,n6),n1) by Def3 .=crossover(crossover(p1,p2,n6,n2,n3,n4,n5), crossover(p2,p1,n5,n2,n3,n4,n6),n1) by A2,A3,Th51 .=crossover(crossover(p1,p2,n6,n2,n3,n4,n5), crossover(p2,p1,n6,n2,n3,n4,n5),n1) by Th51; hence thesis by Def7; end; theorem crossover(p1,p2,n1,n1,n3,n4,n5,n6)=crossover(p1,p2,n3,n4,n5,n6) & crossover(p1,p2,n1,n2,n1,n4,n5,n6)=crossover(p1,p2,n2,n4,n5,n6) & crossover(p1,p2,n1,n2,n3,n1,n5,n6)=crossover(p1,p2,n2,n3,n5,n6) & crossover(p1,p2,n1,n2,n3,n4,n1,n6)=crossover(p1,p2,n2,n3,n4,n6) & crossover(p1,p2,n1,n2,n3,n4,n5,n1)=crossover(p1,p2,n2,n3,n4,n5) proof thus crossover(p1,p2,n1,n1,n3,n4,n5,n6)=crossover(p1,p2,n3,n4,n5,n6) proof crossover(p1,p2,n1,n1,n3,n4,n5,n6) =crossover(crossover(p1,p2,n1,n1,n3,n4,n5), crossover(p2,p1,n1,n1,n3,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n3,n4,n5), crossover(p2,p1,n1,n1,n3,n4,n5),n6) by Th52 .=crossover(crossover(p1,p2,n3,n4,n5), crossover(p2,p1,n3,n4,n5),n6) by Th52; hence thesis by Def5; end; thus crossover(p1,p2,n1,n2,n1,n4,n5,n6)=crossover(p1,p2,n2,n4,n5,n6) proof crossover(p1,p2,n1,n2,n1,n4,n5,n6) =crossover(crossover(p1,p2,n1,n2,n1,n4,n5), crossover(p2,p1,n1,n2,n1,n4,n5),n6) by Def7 .=crossover(crossover(p1,p2,n2,n4,n5), crossover(p2,p1,n1,n2,n1,n4,n5),n6) by Th52 .=crossover(crossover(p1,p2,n2,n4,n5), crossover(p2,p1,n2,n4,n5),n6) by Th52; hence thesis by Def5; end; thus crossover(p1,p2,n1,n2,n3,n1,n5,n6)=crossover(p1,p2,n2,n3,n5,n6) proof crossover(p1,p2,n1,n2,n3,n1,n5,n6) =crossover(crossover(p1,p2,n1,n2,n3,n1,n5), crossover(p2,p1,n1,n2,n3,n1,n5),n6) by Def7 .=crossover(crossover(p1,p2,n2,n3,n5), crossover(p2,p1,n1,n2,n3,n1,n5),n6) by Th52 .=crossover(crossover(p1,p2,n2,n3,n5), crossover(p2,p1,n2,n3,n5),n6) by Th52; hence thesis by Def5; end; thus crossover(p1,p2,n1,n2,n3,n4,n1,n6)=crossover(p1,p2,n2,n3,n4,n6) proof crossover(p1,p2,n1,n2,n3,n4,n1,n6) =crossover(crossover(p1,p2,n1,n2,n3,n4,n1), crossover(p2,p1,n1,n2,n3,n4,n1),n6) by Def7 .=crossover(crossover(p1,p2,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4,n1),n6) by Th52 .=crossover(crossover(p1,p2,n2,n3,n4), crossover(p2,p1,n2,n3,n4),n6) by Th52; hence thesis by Def5; end; crossover(p1,p2,n1,n2,n3,n4,n5,n1) =crossover(p1,p2,n5,n2,n3,n4,n1,n1) by Th56 .=crossover(p1,p2,n1,n2,n3,n4,n1,n5) by Th56 .=crossover(crossover(p1,p2,n1,n2,n3,n4,n1), crossover(p2,p1,n1,n2,n3,n4,n1),n5) by Def7 .=crossover(crossover(p1,p2,n2,n3,n4), crossover(p2,p1,n1,n2,n3,n4,n1),n5) by Th52 .=crossover(crossover(p1,p2,n2,n3,n4), crossover(p2,p1,n2,n3,n4),n5) by Th52; hence thesis by Def5; end;