Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Takashi Mitsuishi,
- Katsumi Wasaki,
and
- Yasunari Shidama
- Received December 7, 1999
- MML identifier: CFCONT_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary COMPLEX1, COMSEQ_1, PARTFUN1, ORDINAL2, SEQM_3, SEQ_1, RELAT_1,
FUNCT_1, CFUNCT_1, FCONT_1, SEQ_2, FINSEQ_4, ARYTM_1, ANPROJ_1, BOOLE,
FINSEQ_1, ARYTM_3, COMPTS_1, ARYTM;
notation TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, NUMBERS, XREAL_0,
REAL_1, NAT_1, PARTFUN1, FUNCT_2, SEQ_1, RELSET_1, SEQM_3, COMPLEX1,
FINSEQ_4, CFUNCT_1, COMSEQ_1, COMSEQ_2, COMSEQ_3;
constructors REAL_1, NAT_1, FINSEQ_4, SEQ_1, COMSEQ_1, COMSEQ_2, COMSEQ_3,
PARTFUN1, CFUNCT_1, COMPLEX1, MEMBERED;
clusters FUNCT_1, RELSET_1, SEQM_3, COMSEQ_1, NAT_1, COMPLEX1, MEMBERED,
NUMBERS, ORDINAL2;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin
reserve n,n1,m,m1,l,k for Nat;
reserve x,y,X,X1 for set;
reserve g,g1,g2,t,x0,x1,x2 for Element of COMPLEX;
reserve s1,s2,q1,seq,seq1,seq2,seq3 for Complex_Sequence;
reserve Y for Subset of COMPLEX;
reserve f,f1,f2,h,h1,h2 for PartFunc of COMPLEX,COMPLEX;
reserve p,r,s for Real;
reserve Ns,Nseq for increasing Seq_of_Nat;
reserve Rseq1 for Real_Sequence;
::
:: COMPLEX SEQUENCE
::
definition let h,seq;
assume rng seq c= dom h;
func h*seq -> Complex_Sequence equals
:: CFCONT_1:def 1
(h qua Function)*seq;
end;
definition let f,x0;
pred f is_continuous_in x0 means
:: CFCONT_1:def 2
x0 in dom f & for s1 st rng s1 c= dom f & s1 is convergent & lim s1 = x0 holds
f*s1 is convergent & f/.x0 = lim (f*s1);
end;
canceled;
theorem :: CFCONT_1:2
seq1=seq2-seq3 iff for n holds seq1.n=seq2.n-seq3.n;
theorem :: CFCONT_1:3
rng (seq^\n) c= rng seq;
theorem :: CFCONT_1:4
rng seq c= dom f implies seq.n in dom f;
theorem :: CFCONT_1:5
x in rng seq iff ex n st x = seq.n;
theorem :: CFCONT_1:6
seq.n in rng seq;
theorem :: CFCONT_1:7
seq1 is_subsequence_of seq implies rng seq1 c= rng seq;
theorem :: CFCONT_1:8
seq1 is_subsequence_of seq & seq is non-zero implies seq1 is non-zero;
theorem :: CFCONT_1:9
(seq1 + seq2)(#)Ns = (seq1(#)Ns) + (seq2(#)Ns) &
(seq1 - seq2)(#)Ns = (seq1(#)Ns) - (seq2(#)Ns) &
(seq1 (#) seq2)(#)Ns = (seq1(#)Ns) (#) (seq2(#)Ns);
theorem :: CFCONT_1:10
(g(#)seq)(#)Ns = g(#)(seq(#)Ns);
theorem :: CFCONT_1:11
(-seq)(#)Ns = -(seq(#)Ns) & (|.seq.|)*Ns = |.(seq(#)Ns).|;
theorem :: CFCONT_1:12
(seq(#)Ns)" = (seq")(#)Ns;
theorem :: CFCONT_1:13
(seq1/"seq)(#)Ns = (seq1(#)Ns)/"(seq(#)Ns);
theorem :: CFCONT_1:14
(for n holds seq.n in Y) implies rng seq c= Y;
canceled;
theorem :: CFCONT_1:16
rng seq c= dom f implies (f*seq).n = f/.(seq.n);
theorem :: CFCONT_1:17
rng seq c= dom f implies (f*seq)^\n=f*(seq^\n);
theorem :: CFCONT_1:18
rng seq c= dom h1 /\ dom h2 implies (h1+h2)*seq=h1*seq+h2*seq &
(h1-h2)*seq=h1*seq-h2*seq &
(h1(#)h2)*seq=(h1*seq)(#)(h2*seq);
theorem :: CFCONT_1:19
rng seq c= dom h implies (g(#)h)*seq = g(#)(h*seq);
theorem :: CFCONT_1:20
rng seq c= dom h implies -(h*seq) = (-h)*seq;
theorem :: CFCONT_1:21
rng seq c= dom (h^) implies h*seq is non-zero;
theorem :: CFCONT_1:22
rng seq c= dom (h^) implies (h^)*seq =(h*seq)";
theorem :: CFCONT_1:23
rng seq c= dom h implies Re ( (h*seq)(#)Ns ) = Re (h*(seq(#)Ns));
theorem :: CFCONT_1:24
rng seq c= dom h implies Im ( (h*seq)(#)Ns ) = Im (h*(seq(#)Ns));
theorem :: CFCONT_1:25
rng seq c= dom h implies (h*seq)(#)Ns = h * (seq(#)Ns);
theorem :: CFCONT_1:26
rng seq1 c= dom h & seq2 is_subsequence_of seq1 implies
h*seq2 is_subsequence_of h*seq1;
theorem :: CFCONT_1:27
h is total implies (h*seq).n = h/.(seq.n);
theorem :: CFCONT_1:28
h is total implies h*(seq^\n) = (h*seq)^\n;
theorem :: CFCONT_1:29
h1 is total & h2 is total implies (h1+h2)*seq = h1*seq + h2*seq &
(h1-h2)*seq = h1*seq - h2*seq & (h1(#)h2)*seq = (h1*seq) (#) (h2*seq);
theorem :: CFCONT_1:30
h is total implies (g(#)h)*seq = g(#)(h*seq);
theorem :: CFCONT_1:31
rng seq c= dom (h|X) implies (h|X)*seq = h*seq;
theorem :: CFCONT_1:32
rng seq c= dom (h|X) & (rng seq c= dom (h|Y) or X c= Y) implies
(h|X)*seq = (h|Y)*seq;
theorem :: CFCONT_1:33
rng seq c= dom (h|X) & h"{0c}={} implies ((h^)|X)*seq = ((h|X)*seq)";
definition let seq;
redefine canceled;
attr seq is constant means
:: CFCONT_1:def 4
ex g st for n holds seq.n=g;
end;
theorem :: CFCONT_1:34
seq is constant iff ex g st rng seq={g};
theorem :: CFCONT_1:35
seq is constant iff for n holds seq.n=seq.(n+1);
theorem :: CFCONT_1:36
seq is constant iff for n,k holds seq.n=seq.(n+k);
theorem :: CFCONT_1:37
seq is constant iff for n,m holds seq.n=seq.m;
theorem :: CFCONT_1:38
seq ^\k is_subsequence_of seq;
theorem :: CFCONT_1:39
seq1 is_subsequence_of seq & seq is convergent implies
seq1 is convergent;
theorem :: CFCONT_1:40
seq1 is_subsequence_of seq & seq is convergent implies
lim seq1=lim seq;
theorem :: CFCONT_1:41
seq is convergent & (ex k st for n st k<=n holds seq1.n=seq.n)
implies seq1 is convergent;
theorem :: CFCONT_1:42
seq is convergent & (ex k st for n st k<=n holds seq1.n=seq.n)
implies lim seq=lim seq1;
theorem :: CFCONT_1:43
seq is convergent implies ((seq ^\k) is convergent &
lim (seq ^\k)=lim seq);
theorem :: CFCONT_1:44
seq is convergent & (ex k st seq=seq1 ^\k)
implies seq1 is convergent;
theorem :: CFCONT_1:45
seq is convergent & (ex k st seq=seq1 ^\k)
implies lim seq1 =lim seq;
theorem :: CFCONT_1:46
seq is convergent & lim seq<>0c implies ex k st (seq ^\k) is non-zero;
theorem :: CFCONT_1:47
seq is convergent & lim seq<>0c implies
ex seq1 st seq1 is_subsequence_of seq & seq1 is non-zero;
theorem :: CFCONT_1:48
seq is constant implies seq is convergent;
theorem :: CFCONT_1:49
(seq is constant & g in rng seq or
seq is constant & (ex n st seq.n=g)) implies lim seq=g;
theorem :: CFCONT_1:50
seq is constant implies for n holds lim seq=seq.n;
theorem :: CFCONT_1:51
seq is convergent & lim seq<>0c implies
for seq1 st seq1 is_subsequence_of seq & seq1 is non-zero holds
lim (seq1")=(lim seq)";
theorem :: CFCONT_1:52
seq is constant & seq1 is convergent implies
lim (seq+seq1) =(seq.0) + lim seq1 &
lim (seq-seq1) =(seq.0) - lim seq1 &
lim (seq1-seq) =(lim seq1) -seq.0 &
lim (seq(#)seq1) =(seq.0) * (lim seq1);
scheme CompSeqChoice { P[set,set] }:
ex s1 st for n holds P[n,s1.n]
provided
for n ex g st P[n,g];
begin
::
:: CONTINUITY OF COMPLEX FUNCTIONS
::
theorem :: CFCONT_1:53
f is_continuous_in x0 iff x0 in dom f & for s1 st rng s1 c= dom f &
s1 is convergent & lim s1=x0 & (for n holds s1.n<>x0) holds
f*s1 is convergent & f/.x0=lim(f*s1);
theorem :: CFCONT_1:54
f is_continuous_in x0 iff x0 in dom f &
for r st 0<r ex s st 0<s & for x1 st x1 in dom f & |.x1-x0.|<s holds
|.f/.x1-f/.x0.|<r;
theorem :: CFCONT_1:55
f1 is_continuous_in x0 & f2 is_continuous_in x0 implies
f1+f2 is_continuous_in x0 &
f1-f2 is_continuous_in x0 &
f1(#)f2 is_continuous_in x0;
theorem :: CFCONT_1:56
f is_continuous_in x0 implies g(#)f is_continuous_in x0;
theorem :: CFCONT_1:57
f is_continuous_in x0 implies -f is_continuous_in x0;
theorem :: CFCONT_1:58
f is_continuous_in x0 & f/.x0<>0c implies f^ is_continuous_in x0;
theorem :: CFCONT_1:59
f1 is_continuous_in x0 & f1/.x0<>0c & f2 is_continuous_in x0 implies
f2/f1 is_continuous_in x0;
definition let f,X;
pred f is_continuous_on X means
:: CFCONT_1:def 5
X c= dom f & for x0 st x0 in X holds f|X is_continuous_in x0;
end;
theorem :: CFCONT_1:60
for X,f holds f is_continuous_on X iff X c= dom f &
for s1 st rng s1 c= X & s1 is convergent & lim s1 in X holds
f*s1 is convergent & f/.(lim s1) = lim (f*s1);
theorem :: CFCONT_1:61
f is_continuous_on X iff X c= dom f &
for x0,r st x0 in X & 0<r ex s st 0<s & for x1 st x1 in X &
|.x1-x0.| < s holds |.f/.x1 - f/.x0.| < r;
theorem :: CFCONT_1:62
f is_continuous_on X iff f|X is_continuous_on X;
theorem :: CFCONT_1:63
f is_continuous_on X & X1 c= X implies f is_continuous_on X1;
theorem :: CFCONT_1:64
x0 in dom f implies f is_continuous_on {x0};
theorem :: CFCONT_1:65
for X,f1,f2 st f1 is_continuous_on X & f2 is_continuous_on X holds
f1+f2 is_continuous_on X & f1-f2 is_continuous_on X & f1(#)
f2 is_continuous_on X;
theorem :: CFCONT_1:66
for X,X1,f1,f2 st f1 is_continuous_on X & f2 is_continuous_on X1 holds
f1+f2 is_continuous_on X /\ X1 & f1-f2 is_continuous_on X /\ X1 &
f1(#)f2 is_continuous_on X /\ X1;
theorem :: CFCONT_1:67
for g,X,f st f is_continuous_on X holds g(#)f is_continuous_on X;
theorem :: CFCONT_1:68
f is_continuous_on X implies -f is_continuous_on X;
theorem :: CFCONT_1:69
f is_continuous_on X & f"{0c} = {} implies f^ is_continuous_on X;
theorem :: CFCONT_1:70
f is_continuous_on X & (f|X)"{0c} = {} implies f^ is_continuous_on X;
theorem :: CFCONT_1:71
f1 is_continuous_on X & f1"{0c} = {} & f2 is_continuous_on X implies
f2/f1 is_continuous_on X;
theorem :: CFCONT_1:72
f is total & (for x1,x2 holds f/.(x1+x2) = f/.x1 + f/.x2) &
(ex x0 st f is_continuous_in x0) implies f is_continuous_on COMPLEX;
definition let X;
attr X is compact means
:: CFCONT_1:def 6
for s1 st (rng s1) c= X ex s2 st s2 is_subsequence_of s1 &
s2 is convergent & (lim s2) in X;
end;
theorem :: CFCONT_1:73
for f st dom f is compact & f is_continuous_on (dom f) holds (rng f) is compact
;
theorem :: CFCONT_1:74
Y c= dom f & Y is compact & f is_continuous_on Y implies
(f.:Y) is compact;
Back to top