environ vocabulary PARTFUN1, COMPLEX1, ARYTM, ARYTM_3, RELAT_1, BOOLE, FINSEQ_4, FINSEQ_1, FUNCT_1, ARYTM_1, SEQ_1, RFUNCT_1, ABSVALUE, PARTFUN2, CFUNCT_1; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, FUNCT_1, ABSVALUE, RELSET_1, PARTFUN1, PARTFUN2, RFUNCT_1, SEQ_1, COMPLEX1, COMSEQ_1, FINSEQ_4; constructors REAL_1, ABSVALUE, PARTFUN1, PARTFUN2, RFUNCT_1, SEQ_1, COMSEQ_1, FINSEQ_4, COMPLEX1, MEMBERED; clusters XREAL_0, RELSET_1, COMPLEX1, MEMBERED; requirements NUMERALS, SUBSET, BOOLE; begin reserve x,X,Y for set; reserve C for non empty set; reserve c for Element of C; reserve f,f1,f2,f3,g,g1 for PartFunc of C,COMPLEX; reserve r1,r2,p1 for real number; reserve r,q,cr1,cr2 for Element of COMPLEX; :: ::DEFINITIONS OF COMPLEX FUNCTIONS :: definition mode Complex is Element of COMPLEX; end; definition let C,f1,f2; func f1/f2 -> PartFunc of C,COMPLEX means :: CFUNCT_1:def 1 dom it = dom f1 /\ (dom f2 \ f2"{0c}) & for c st c in dom it holds it/.c = f1/.c * (f2/.c)"; end; definition let C,f; func f^ -> PartFunc of C,COMPLEX means :: CFUNCT_1:def 2 dom it = dom f \ f"{0c} & for c st c in dom it holds it/.c = (f/.c)"; end; canceled 2; theorem :: CFUNCT_1:3 dom (f1+f2) = dom f1 /\ dom f2 & for c st c in dom(f1+f2) holds (f1+f2)/.c = (f1/.c) + (f2/.c); theorem :: CFUNCT_1:4 dom (f1-f2) = dom f1 /\ dom f2 & for c st c in dom(f1-f2) holds (f1-f2)/.c = (f1/.c) - (f2/.c); theorem :: CFUNCT_1:5 dom(f1(#)f2)=dom f1 /\ dom f2 & for c st c in dom(f1(#)f2) holds (f1(#)f2)/.c =(f1/.c) * (f2/.c); canceled; theorem :: CFUNCT_1:7 dom (r(#)f) = dom f & for c st c in dom (r(#)f) holds (r(#)f)/.c = r * (f/.c); canceled; theorem :: CFUNCT_1:9 dom (-f) = dom f & for c st c in dom (-f) holds (-f)/.c = -f/.c; canceled 5; theorem :: CFUNCT_1:15 dom (g^) c= dom g & dom g /\ (dom g \ g"{0c}) = dom g \ g"{0c}; theorem :: CFUNCT_1:16 dom (f1(#)f2) \ (f1(#)f2)"{0c} = (dom f1 \ (f1)"{0c}) /\ (dom f2 \ (f2)"{0c}); theorem :: CFUNCT_1:17 c in dom (f^) implies (f/.c) <> 0c; theorem :: CFUNCT_1:18 (f^)"{0c} = {}; theorem :: CFUNCT_1:19 |.f.|"{0} = f"{0c} & (-f)"{0c} = f"{0c}; theorem :: CFUNCT_1:20 dom (f^^) = dom (f|(dom (f^))); theorem :: CFUNCT_1:21 r<>0c implies (r(#)f)"{0c} = f"{0c}; begin :: :: BASIC PROPERTIES OF OPERATIONS :: theorem :: CFUNCT_1:22 (f1 + f2) + f3 = f1 + (f2 + f3); theorem :: CFUNCT_1:23 (f1 (#) f2) (#) f3 = f1 (#) (f2 (#) f3); theorem :: CFUNCT_1:24 (f1 + f2) (#) f3=f1 (#) f3 + f2 (#) f3; theorem :: CFUNCT_1:25 f3 (#) (f1 + f2)=f3(#)f1 + f3(#)f2; theorem :: CFUNCT_1:26 r(#)(f1(#)f2)=r(#)f1(#)f2; theorem :: CFUNCT_1:27 r(#)(f1(#)f2)=f1(#)(r(#)f2); theorem :: CFUNCT_1:28 (f1 - f2)(#)f3=f1(#)f3 - f2(#)f3; theorem :: CFUNCT_1:29 f3(#)f1 - f3(#)f2 = f3(#)(f1 - f2); theorem :: CFUNCT_1:30 r(#)(f1 + f2) = r(#)f1 + r(#)f2; theorem :: CFUNCT_1:31 (r*q)(#)f = r(#)(q(#)f); theorem :: CFUNCT_1:32 r(#)(f1 - f2) = r(#)f1 - r(#)f2; theorem :: CFUNCT_1:33 f1-f2 = (-1r)(#)(f2-f1); theorem :: CFUNCT_1:34 f1 - (f2 + f3) = f1 - f2 - f3; theorem :: CFUNCT_1:35 1r(#)f = f; theorem :: CFUNCT_1:36 f1 - (f2 - f3) = f1 - f2 + f3; theorem :: CFUNCT_1:37 f1 + (f2 - f3) =f1 + f2 - f3; theorem :: CFUNCT_1:38 |.f1(#)f2.| = |.f1.|(#)|.f2.|; theorem :: CFUNCT_1:39 |.r(#)f.| = |.r.|(#)|.f.|; theorem :: CFUNCT_1:40 -f = (-1r)(#)f; theorem :: CFUNCT_1:41 -(-f) = f; canceled; theorem :: CFUNCT_1:43 f1 - (-f2) = f1 + f2; theorem :: CFUNCT_1:44 f^^ = f|(dom (f^)); theorem :: CFUNCT_1:45 (f1(#)f2)^ = (f1^)(#)(f2^); theorem :: CFUNCT_1:46 r<>0c implies (r(#)f)^ = r" (#) (f^); theorem :: CFUNCT_1:47 1r<>0c; theorem :: CFUNCT_1:48 (-1r)"=-1r; theorem :: CFUNCT_1:49 (-f)^ = (-1r)(#)(f^); theorem :: CFUNCT_1:50 (|.f.|)^ = |.(f^).|; theorem :: CFUNCT_1:51 f/g = f(#) (g^); theorem :: CFUNCT_1:52 r(#)(g/f) = (r(#)g)/f; theorem :: CFUNCT_1:53 (f/g)(#)g = (f|dom(g^)); theorem :: CFUNCT_1:54 (f/g)(#)(f1/g1) = (f(#)f1)/(g(#)g1); theorem :: CFUNCT_1:55 (f1/f2)^ = (f2|dom(f2^))/f1; theorem :: CFUNCT_1:56 g (#) (f1/f2) = (g (#) f1)/f2; theorem :: CFUNCT_1:57 g/(f1/f2) = (g(#)(f2|dom(f2^)))/f1; theorem :: CFUNCT_1:58 -f/g = (-f)/g & f/(-g) = -f/g; theorem :: CFUNCT_1:59 f1/f + f2/f = (f1 + f2)/f & f1/f - f2/f = (f1 - f2)/f; theorem :: CFUNCT_1:60 f1/f + g1/g = (f1(#)g + g1(#)f)/(f(#)g); theorem :: CFUNCT_1:61 (f/g)/(f1/g1) = (f(#)(g1|dom(g1^)))/(g(#)f1); theorem :: CFUNCT_1:62 f1/f - g1/g = (f1(#)g - g1(#)f)/(f(#)g); theorem :: CFUNCT_1:63 |.f1/f2.| = |.f1.|/|.f2.|; theorem :: CFUNCT_1:64 (f1+f2)|X = f1|X + f2|X & (f1+f2)|X = f1|X + f2 & (f1+f2)|X = f1 + f2|X; theorem :: CFUNCT_1:65 (f1(#)f2)|X = f1|X (#) f2|X & (f1(#)f2)|X = f1|X (#) f2 & (f1(#)f2)|X = f1 (#) f2|X; theorem :: CFUNCT_1:66 (-f)|X = -(f|X) & (f^)|X = (f|X)^ & (|.f.|)|X = |.(f|X).|; theorem :: CFUNCT_1:67 (f1-f2)|X = f1|X - f2|X & (f1-f2)|X = f1|X - f2 &(f1-f2)|X = f1 - f2|X; theorem :: CFUNCT_1:68 (f1/f2)|X = f1|X / f2|X & (f1/f2)|X = f1|X / f2 &(f1/f2)|X = f1 / f2|X; theorem :: CFUNCT_1:69 (r(#)f)|X = r(#)(f|X); begin :: :: TOTAL PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX :: theorem :: CFUNCT_1:70 (f1 is total & f2 is total iff f1+f2 is total) & (f1 is total & f2 is total iff f1-f2 is total) & (f1 is total & f2 is total iff f1(#)f2 is total); theorem :: CFUNCT_1:71 f is total iff r(#)f is total; theorem :: CFUNCT_1:72 f is total iff -f is total; theorem :: CFUNCT_1:73 f is total iff |.f.| is total; theorem :: CFUNCT_1:74 f^ is total iff f"{0c} = {} & f is total; theorem :: CFUNCT_1:75 f1 is total & f2"{0c} = {} & f2 is total iff f1/f2 is total; theorem :: CFUNCT_1:76 f1 is total & f2 is total implies (f1+f2)/.c = ((f1/.c)) + ((f2/.c)) & (f1-f2)/.c = ((f1/.c)) - ((f2/.c)) & (f1(#) f2)/.c = ((f1/.c)) * ((f2/.c)); theorem :: CFUNCT_1:77 f is total implies (r(#)f)/.c = r * ((f/.c)); theorem :: CFUNCT_1:78 f is total implies (-f)/.c = - (f/.c) & (|.f.|).c = |. (f/.c) .|; theorem :: CFUNCT_1:79 f^ is total implies (f^)/.c = ((f/.c))"; theorem :: CFUNCT_1:80 f1 is total & f2^ is total implies (f1/f2)/.c = ((f1/.c)) *(((f2/.c)))"; begin :: :: BOUNDED AND CONSTANT PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX :: definition let C,f,Y; pred f is_bounded_on Y means :: CFUNCT_1:def 3 |.f.| is_bounded_on Y; end; theorem :: CFUNCT_1:81 f is_bounded_on Y iff ex p be real number st for c st c in Y /\ dom f holds |.(f/.c).|<= p; theorem :: CFUNCT_1:82 Y c= X & f is_bounded_on X implies f is_bounded_on Y; theorem :: CFUNCT_1:83 X misses dom f implies f is_bounded_on X; theorem :: CFUNCT_1:84 f is_bounded_on Y implies r(#)f is_bounded_on Y; theorem :: CFUNCT_1:85 |.f.| is_bounded_below_on X; theorem :: CFUNCT_1:86 f is_bounded_on Y implies |.f.| is_bounded_on Y & -f is_bounded_on Y; theorem :: CFUNCT_1:87 (f1 is_bounded_on X & f2 is_bounded_on Y) implies f1+f2 is_bounded_on (X /\ Y); theorem :: CFUNCT_1:88 f1 is_bounded_on X & f2 is_bounded_on Y implies f1(#)f2 is_bounded_on (X /\ Y) & f1-f2 is_bounded_on X /\ Y; theorem :: CFUNCT_1:89 f is_bounded_on X & f is_bounded_on Y implies f is_bounded_on X \/ Y; theorem :: CFUNCT_1:90 f1 is_constant_on X & f2 is_constant_on Y implies (f1 + f2) is_constant_on (X /\ Y) & (f1 - f2) is_constant_on (X /\ Y) & (f1 (#) f2) is_constant_on (X /\ Y); theorem :: CFUNCT_1:91 f is_constant_on Y implies q(#)f is_constant_on Y; theorem :: CFUNCT_1:92 f is_constant_on Y implies |.f.| is_constant_on Y & -f is_constant_on Y; theorem :: CFUNCT_1:93 f is_constant_on Y implies f is_bounded_on Y; theorem :: CFUNCT_1:94 f is_constant_on Y implies (for r holds r(#)f is_bounded_on Y) & (-f is_bounded_on Y) & |.f.| is_bounded_on Y; theorem :: CFUNCT_1:95 (f1 is_bounded_on X & f2 is_constant_on Y implies f1+f2 is_bounded_on (X /\ Y)); theorem :: CFUNCT_1:96 (f1 is_bounded_on X & f2 is_constant_on Y implies f1-f2 is_bounded_on X /\ Y & f2-f1 is_bounded_on X /\ Y & f1(#)f2 is_bounded_on X /\ Y);