Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Takashi Mitsuishi,
- Katsumi Wasaki,
and
- Yasunari Shidama
- Received December 7, 1999
- MML identifier: CFUNCT_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary PARTFUN1, COMPLEX1, ARYTM, ARYTM_3, RELAT_1, BOOLE, FINSEQ_4,
FINSEQ_1, FUNCT_1, ARYTM_1, SEQ_1, RFUNCT_1, ABSVALUE, PARTFUN2,
CFUNCT_1;
notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
FUNCT_1, ABSVALUE, RELSET_1, PARTFUN1, PARTFUN2, RFUNCT_1, SEQ_1,
COMPLEX1, COMSEQ_1, FINSEQ_4;
constructors REAL_1, ABSVALUE, PARTFUN1, PARTFUN2, RFUNCT_1, SEQ_1, COMSEQ_1,
FINSEQ_4, COMPLEX1, MEMBERED;
clusters XREAL_0, RELSET_1, COMPLEX1, MEMBERED;
requirements NUMERALS, SUBSET, BOOLE;
begin
reserve x,X,Y for set;
reserve C for non empty set;
reserve c for Element of C;
reserve f,f1,f2,f3,g,g1 for PartFunc of C,COMPLEX;
reserve r1,r2,p1 for real number;
reserve r,q,cr1,cr2 for Element of COMPLEX;
::
::DEFINITIONS OF COMPLEX FUNCTIONS
::
definition
mode Complex is Element of COMPLEX;
end;
definition let C,f1,f2;
func f1/f2 -> PartFunc of C,COMPLEX means
:: CFUNCT_1:def 1
dom it = dom f1 /\ (dom f2 \ f2"{0c}) &
for c st c in dom it holds it/.c = f1/.c * (f2/.c)";
end;
definition let C,f;
func f^ -> PartFunc of C,COMPLEX means
:: CFUNCT_1:def 2
dom it = dom f \ f"{0c} & for c st c in dom it holds it/.c = (f/.c)";
end;
canceled 2;
theorem :: CFUNCT_1:3
dom (f1+f2) = dom f1 /\ dom f2 &
for c st c in dom(f1+f2) holds (f1+f2)/.c = (f1/.c) + (f2/.c);
theorem :: CFUNCT_1:4
dom (f1-f2) = dom f1 /\ dom f2 &
for c st c in dom(f1-f2) holds (f1-f2)/.c = (f1/.c) - (f2/.c);
theorem :: CFUNCT_1:5
dom(f1(#)f2)=dom f1 /\ dom f2
& for c st c in dom(f1(#)f2) holds (f1(#)f2)/.c =(f1/.c) * (f2/.c);
canceled;
theorem :: CFUNCT_1:7
dom (r(#)f) = dom f & for c st c in dom (r(#)f) holds (r(#)f)/.c = r * (f/.c);
canceled;
theorem :: CFUNCT_1:9
dom (-f) = dom f & for c st c in dom (-f) holds (-f)/.c = -f/.c;
canceled 5;
theorem :: CFUNCT_1:15
dom (g^) c= dom g & dom g /\ (dom g \ g"{0c}) = dom g \ g"{0c};
theorem :: CFUNCT_1:16
dom (f1(#)f2) \ (f1(#)f2)"{0c} = (dom f1 \ (f1)"{0c}) /\ (dom f2 \ (f2)"{0c});
theorem :: CFUNCT_1:17
c in dom (f^) implies (f/.c) <> 0c;
theorem :: CFUNCT_1:18
(f^)"{0c} = {};
theorem :: CFUNCT_1:19
|.f.|"{0} = f"{0c} & (-f)"{0c} = f"{0c};
theorem :: CFUNCT_1:20
dom (f^^) = dom (f|(dom (f^)));
theorem :: CFUNCT_1:21
r<>0c implies (r(#)f)"{0c} = f"{0c};
begin
::
:: BASIC PROPERTIES OF OPERATIONS
::
theorem :: CFUNCT_1:22
(f1 + f2) + f3 = f1 + (f2 + f3);
theorem :: CFUNCT_1:23
(f1 (#) f2) (#) f3 = f1 (#) (f2 (#) f3);
theorem :: CFUNCT_1:24
(f1 + f2) (#) f3=f1 (#) f3 + f2 (#) f3;
theorem :: CFUNCT_1:25
f3 (#) (f1 + f2)=f3(#)f1 + f3(#)f2;
theorem :: CFUNCT_1:26
r(#)(f1(#)f2)=r(#)f1(#)f2;
theorem :: CFUNCT_1:27
r(#)(f1(#)f2)=f1(#)(r(#)f2);
theorem :: CFUNCT_1:28
(f1 - f2)(#)f3=f1(#)f3 - f2(#)f3;
theorem :: CFUNCT_1:29
f3(#)f1 - f3(#)f2 = f3(#)(f1 - f2);
theorem :: CFUNCT_1:30
r(#)(f1 + f2) = r(#)f1 + r(#)f2;
theorem :: CFUNCT_1:31
(r*q)(#)f = r(#)(q(#)f);
theorem :: CFUNCT_1:32
r(#)(f1 - f2) = r(#)f1 - r(#)f2;
theorem :: CFUNCT_1:33
f1-f2 = (-1r)(#)(f2-f1);
theorem :: CFUNCT_1:34
f1 - (f2 + f3) = f1 - f2 - f3;
theorem :: CFUNCT_1:35
1r(#)f = f;
theorem :: CFUNCT_1:36
f1 - (f2 - f3) = f1 - f2 + f3;
theorem :: CFUNCT_1:37
f1 + (f2 - f3) =f1 + f2 - f3;
theorem :: CFUNCT_1:38
|.f1(#)f2.| = |.f1.|(#)|.f2.|;
theorem :: CFUNCT_1:39
|.r(#)f.| = |.r.|(#)|.f.|;
theorem :: CFUNCT_1:40
-f = (-1r)(#)f;
theorem :: CFUNCT_1:41
-(-f) = f;
canceled;
theorem :: CFUNCT_1:43
f1 - (-f2) = f1 + f2;
theorem :: CFUNCT_1:44
f^^ = f|(dom (f^));
theorem :: CFUNCT_1:45
(f1(#)f2)^ = (f1^)(#)(f2^);
theorem :: CFUNCT_1:46
r<>0c implies (r(#)f)^ = r" (#) (f^);
theorem :: CFUNCT_1:47
1r<>0c;
theorem :: CFUNCT_1:48
(-1r)"=-1r;
theorem :: CFUNCT_1:49
(-f)^ = (-1r)(#)(f^);
theorem :: CFUNCT_1:50
(|.f.|)^ = |.(f^).|;
theorem :: CFUNCT_1:51
f/g = f(#) (g^);
theorem :: CFUNCT_1:52
r(#)(g/f) = (r(#)g)/f;
theorem :: CFUNCT_1:53
(f/g)(#)g = (f|dom(g^));
theorem :: CFUNCT_1:54
(f/g)(#)(f1/g1) = (f(#)f1)/(g(#)g1);
theorem :: CFUNCT_1:55
(f1/f2)^ = (f2|dom(f2^))/f1;
theorem :: CFUNCT_1:56
g (#) (f1/f2) = (g (#) f1)/f2;
theorem :: CFUNCT_1:57
g/(f1/f2) = (g(#)(f2|dom(f2^)))/f1;
theorem :: CFUNCT_1:58
-f/g = (-f)/g & f/(-g) = -f/g;
theorem :: CFUNCT_1:59
f1/f + f2/f = (f1 + f2)/f & f1/f - f2/f = (f1 - f2)/f;
theorem :: CFUNCT_1:60
f1/f + g1/g = (f1(#)g + g1(#)f)/(f(#)g);
theorem :: CFUNCT_1:61
(f/g)/(f1/g1) = (f(#)(g1|dom(g1^)))/(g(#)f1);
theorem :: CFUNCT_1:62
f1/f - g1/g = (f1(#)g - g1(#)f)/(f(#)g);
theorem :: CFUNCT_1:63
|.f1/f2.| = |.f1.|/|.f2.|;
theorem :: CFUNCT_1:64
(f1+f2)|X = f1|X + f2|X & (f1+f2)|X = f1|X + f2 & (f1+f2)|X = f1 + f2|X;
theorem :: CFUNCT_1:65
(f1(#)f2)|X = f1|X (#) f2|X & (f1(#)f2)|X = f1|X (#) f2 & (f1(#)f2)|X = f1 (#)
f2|X;
theorem :: CFUNCT_1:66
(-f)|X = -(f|X) & (f^)|X = (f|X)^ & (|.f.|)|X = |.(f|X).|;
theorem :: CFUNCT_1:67
(f1-f2)|X = f1|X - f2|X & (f1-f2)|X = f1|X - f2 &(f1-f2)|X = f1 - f2|X;
theorem :: CFUNCT_1:68
(f1/f2)|X = f1|X / f2|X & (f1/f2)|X = f1|X / f2 &(f1/f2)|X = f1 / f2|X;
theorem :: CFUNCT_1:69
(r(#)f)|X = r(#)(f|X);
begin
::
:: TOTAL PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX
::
theorem :: CFUNCT_1:70
(f1 is total & f2 is total iff f1+f2 is total) &
(f1 is total & f2 is total iff f1-f2 is total) &
(f1 is total & f2 is total iff f1(#)f2 is total);
theorem :: CFUNCT_1:71
f is total iff r(#)f is total;
theorem :: CFUNCT_1:72
f is total iff -f is total;
theorem :: CFUNCT_1:73
f is total iff |.f.| is total;
theorem :: CFUNCT_1:74
f^ is total iff f"{0c} = {} & f is total;
theorem :: CFUNCT_1:75
f1 is total & f2"{0c} = {} & f2 is total iff f1/f2 is total;
theorem :: CFUNCT_1:76
f1 is total & f2 is total implies (f1+f2)/.c = ((f1/.c)) + ((f2/.c)) &
(f1-f2)/.c = ((f1/.c)) - ((f2/.c)) & (f1(#)
f2)/.c = ((f1/.c)) * ((f2/.c));
theorem :: CFUNCT_1:77
f is total implies (r(#)f)/.c = r * ((f/.c));
theorem :: CFUNCT_1:78
f is total implies (-f)/.c = - (f/.c) & (|.f.|).c = |. (f/.c) .|;
theorem :: CFUNCT_1:79
f^ is total implies (f^)/.c = ((f/.c))";
theorem :: CFUNCT_1:80
f1 is total & f2^ is total implies (f1/f2)/.c = ((f1/.c)) *(((f2/.c)))";
begin
::
:: BOUNDED AND CONSTANT PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX
::
definition let C,f,Y;
pred f is_bounded_on Y means
:: CFUNCT_1:def 3
|.f.| is_bounded_on Y;
end;
theorem :: CFUNCT_1:81
f is_bounded_on Y iff ex p be real number st
for c st c in Y /\ dom f holds |.(f/.c).|<= p;
theorem :: CFUNCT_1:82
Y c= X & f is_bounded_on X implies f is_bounded_on Y;
theorem :: CFUNCT_1:83
X misses dom f implies f is_bounded_on X;
theorem :: CFUNCT_1:84
f is_bounded_on Y implies r(#)f is_bounded_on Y;
theorem :: CFUNCT_1:85
|.f.| is_bounded_below_on X;
theorem :: CFUNCT_1:86
f is_bounded_on Y implies |.f.| is_bounded_on Y & -f is_bounded_on Y;
theorem :: CFUNCT_1:87
(f1 is_bounded_on X & f2 is_bounded_on Y) implies
f1+f2 is_bounded_on (X /\ Y);
theorem :: CFUNCT_1:88
f1 is_bounded_on X & f2 is_bounded_on Y implies
f1(#)f2 is_bounded_on (X /\ Y) & f1-f2 is_bounded_on X /\ Y;
theorem :: CFUNCT_1:89
f is_bounded_on X & f is_bounded_on Y implies
f is_bounded_on X \/ Y;
theorem :: CFUNCT_1:90
f1 is_constant_on X & f2 is_constant_on Y implies
(f1 + f2) is_constant_on (X /\ Y) &
(f1 - f2) is_constant_on (X /\ Y) &
(f1 (#) f2) is_constant_on (X /\ Y);
theorem :: CFUNCT_1:91
f is_constant_on Y implies q(#)f is_constant_on Y;
theorem :: CFUNCT_1:92
f is_constant_on Y implies |.f.| is_constant_on Y &
-f is_constant_on Y;
theorem :: CFUNCT_1:93
f is_constant_on Y implies f is_bounded_on Y;
theorem :: CFUNCT_1:94
f is_constant_on Y implies (for r holds r(#)f is_bounded_on Y) &
(-f is_bounded_on Y) &
|.f.| is_bounded_on Y;
theorem :: CFUNCT_1:95
(f1 is_bounded_on X & f2 is_constant_on Y implies
f1+f2 is_bounded_on (X /\ Y));
theorem :: CFUNCT_1:96
(f1 is_bounded_on X & f2 is_constant_on Y implies
f1-f2 is_bounded_on X /\ Y &
f2-f1 is_bounded_on X /\ Y & f1(#)f2 is_bounded_on X /\ Y);
Back to top