Copyright (c) 1999 Association of Mizar Users
environ vocabulary PARTFUN1, COMPLEX1, ARYTM, ARYTM_3, RELAT_1, BOOLE, FINSEQ_4, FINSEQ_1, FUNCT_1, ARYTM_1, SEQ_1, RFUNCT_1, ABSVALUE, PARTFUN2, CFUNCT_1; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, FUNCT_1, ABSVALUE, RELSET_1, PARTFUN1, PARTFUN2, RFUNCT_1, SEQ_1, COMPLEX1, COMSEQ_1, FINSEQ_4; constructors REAL_1, ABSVALUE, PARTFUN1, PARTFUN2, RFUNCT_1, SEQ_1, COMSEQ_1, FINSEQ_4, COMPLEX1, MEMBERED; clusters XREAL_0, RELSET_1, COMPLEX1, MEMBERED; requirements NUMERALS, SUBSET, BOOLE; definitions TARSKI, PARTFUN1, RFUNCT_1, XBOOLE_0; theorems TARSKI, AXIOMS, SUBSET_1, FUNCT_1, REAL_1, ABSVALUE, PARTFUN1, PARTFUN2, RFUNCT_1, COMPLEX1, COMSEQ_1, SEQ_1, FINSEQ_4, RELAT_1, XBOOLE_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; schemes PARTFUN2; begin reserve x,X,Y for set; reserve C for non empty set; reserve c for Element of C; reserve f,f1,f2,f3,g,g1 for PartFunc of C,COMPLEX; reserve r1,r2,p1 for real number; reserve r,q,cr1,cr2 for Element of COMPLEX; :: ::DEFINITIONS OF COMPLEX FUNCTIONS :: definition mode Complex is Element of COMPLEX; end; definition let C,f1,f2; deffunc F(set) = f1/.$1 * (f2/.$1)"; func f1/f2 -> PartFunc of C,COMPLEX means :Def1: dom it = dom f1 /\ (dom f2 \ f2"{0c}) & for c st c in dom it holds it/.c = f1/.c * (f2/.c)"; existence proof defpred P[set] means $1 in dom f1 /\ (dom f2 \ f2"{0c}); consider F being PartFunc of C,COMPLEX such that A1: for c holds c in dom F iff P[c] and A2: for c st c in dom F holds F/.c = F(c) from LambdaPFD; take F; thus dom F = dom f1 /\ (dom f2 \ f2"{0c}) by A1,SUBSET_1:8; thus thesis by A2; end; uniqueness proof set X = dom f1 /\ (dom f2 \ f2"{0c}); thus for f,g being PartFunc of C,COMPLEX st (dom f=X & for c be Element of C st c in dom f holds f/.c = F(c)) & (dom g=X & for c be Element of C st c in dom g holds g/.c = F(c)) holds f = g from UnPartFuncD; end; end; definition let C,f; deffunc F(set) = (f/.$1)"; func f^ -> PartFunc of C,COMPLEX means :Def2: dom it = dom f \ f"{0c} & for c st c in dom it holds it/.c = (f/.c)"; existence proof defpred P[set] means $1 in dom f \ f"{0c}; consider F being PartFunc of C,COMPLEX such that A1: for c holds c in dom F iff P[c] and A2: for c st c in dom F holds F/.c = F(c) from LambdaPFD; take F; thus dom F = dom f \ f"{0c} by A1,SUBSET_1:8; let c; assume c in dom F; hence thesis by A2; end; uniqueness proof set X = dom f \ f"{0c}; thus for f,g being PartFunc of C,COMPLEX st (dom f=X & for c be Element of C st c in dom f holds f/.c = F(c)) & (dom g=X & for c be Element of C st c in dom g holds g/.c = F(c)) holds f = g from UnPartFuncD; end; end; canceled 2; theorem Th3: dom (f1+f2) = dom f1 /\ dom f2 & for c st c in dom(f1+f2) holds (f1+f2)/.c = (f1/.c) + (f2/.c) proof thus dom (f1+f2) = dom f1 /\ dom f2 by COMSEQ_1:def 2; now let c; assume A1:c in dom (f1+f2); hence (f1+f2)/.c = (f1+f2).c by FINSEQ_4:def 4 .= f1/.c+f2/.c by A1,COMSEQ_1:def 2; end; hence thesis; end; theorem Th4: dom (f1-f2) = dom f1 /\ dom f2 & for c st c in dom(f1-f2) holds (f1-f2)/.c = (f1/.c) - (f2/.c) proof A1: dom (f1-f2) = dom (f1+-f2) by COMSEQ_1:def 10 .= dom f1 /\ dom(-f2) by COMSEQ_1:def 2; hence dom (f1-f2) = dom f1 /\ dom f2 by COMSEQ_1:def 8; now let c; assume A2:c in dom (f1-f2); then A3: c in dom (f1+-f2) by COMSEQ_1:def 10; A4: c in dom -f2 by A1,A2,XBOOLE_0:def 3; then A5: (-f2)/.c = (-f2).c by FINSEQ_4:def 4 .= -f2/.c by A4,COMSEQ_1:def 8; thus (f1-f2)/.c = (f1-f2).c by A2,FINSEQ_4:def 4 .= (f1+-f2).c by COMSEQ_1:def 10 .= f1/.c+-f2/.c by A3,A5,COMSEQ_1:def 2 .= f1/.c-f2/.c by XCMPLX_0:def 8; end; hence thesis; end; theorem Th5: dom(f1(#)f2)=dom f1 /\ dom f2 & for c st c in dom(f1(#)f2) holds (f1(#)f2)/.c =(f1/.c) * (f2/.c) proof thus dom (f1(#)f2) = dom f1 /\ dom f2 by COMSEQ_1:def 3; now let c; assume A1:c in dom (f1(#)f2); hence (f1(#)f2)/.c = (f1(#)f2).c by FINSEQ_4:def 4 .= f1/.c * f2/.c by A1,COMSEQ_1:def 3; end; hence thesis; end; canceled; theorem Th7: dom (r(#)f) = dom f & for c st c in dom (r(#)f) holds (r(#)f)/.c = r * (f/.c) proof thus dom (r(#)f) = dom f by COMSEQ_1:def 6; now let c; assume A1:c in dom (r(#)f); hence (r(#)f)/.c = (r(#)f).c by FINSEQ_4:def 4 .= r *(f/.c) by A1,COMSEQ_1:def 6; end; hence thesis; end; canceled; theorem Th9: dom (-f) = dom f & for c st c in dom (-f) holds (-f)/.c = -f/.c proof thus dom (-f) = dom f by COMSEQ_1:def 8; now let c; assume A1:c in dom (-f); hence (-f)/.c = (-f).c by FINSEQ_4:def 4 .=-f/.c by A1,COMSEQ_1:def 8; end; hence thesis; end; Lm1: x in f"Y iff x in dom f & f/.x in Y by PARTFUN2:44; canceled 5; theorem Th15: dom (g^) c= dom g & dom g /\ (dom g \ g"{0c}) = dom g \ g"{0c} proof dom (g^) = dom g \ g"{0c} by Def2; hence dom (g^) c= dom g by XBOOLE_1:36; dom g \ g"{0c} c= dom g by XBOOLE_1:36; hence thesis by XBOOLE_1:28; end; theorem Th16: dom (f1(#)f2) \ (f1(#)f2)"{0c} = (dom f1 \ (f1)"{0c}) /\ (dom f2 \ (f2)"{0c}) proof thus dom (f1(#)f2) \ (f1(#)f2)"{0c} c= (dom f1 \ (f1)"{0c}) /\ (dom f2 \ (f2)"{0c}) proof let x; assume A1:x in dom (f1(#)f2) \ (f1(#)f2)"{0c}; then A2: x in dom (f1(#)f2) & not x in (f1(#)f2)"{0c} by XBOOLE_0:def 4; reconsider x1=x as Element of C by A1; not (f1(#)f2)/.x1 in {0c} by A2,PARTFUN2:44; then (f1(#)f2)/.x1 <> 0c by TARSKI:def 1; then (f1/.x1) * (f2/.x1) <> 0c by A2,Th5; then (f1/.x1) <> 0c & (f2/.x1) <> 0c by COMPLEX1:28; then x1 in dom f1 /\ dom f2 & not (f1/.x1) in {0c} & not (f2/.x1) in {0c} by A2,Th5,TARSKI:def 1; then x1 in dom f1 & x1 in dom f2 & not x1 in (f1)"{0c} & not (f2/.x1) in {0c } by PARTFUN2:44,XBOOLE_0:def 3; then x in dom f1 \ (f1)"{0c} & x1 in dom f2 & not x1 in (f2)"{0c} by PARTFUN2:44,XBOOLE_0:def 4; then x in dom f1 \ (f1)"{0c} & x in dom f2 \ (f2)"{0c} by XBOOLE_0:def 4; hence x in (dom f1 \ (f1)"{0c}) /\ (dom f2 \ (f2)"{0c}) by XBOOLE_0:def 3; end; thus (dom f1 \ (f1)"{0c}) /\ (dom f2 \ (f2)"{0c}) c= dom (f1(#)f2) \ (f1(#)f2)"{0c} proof let x; assume A3:x in (dom f1 \ (f1)"{0c}) /\ (dom f2 \ (f2)"{0c}); then x in dom f1 \ (f1)"{0c} & x in dom f2 \ (f2)"{0c} by XBOOLE_0:def 3; then A4: x in dom f1 & not x in (f1)"{0c} & x in dom f2 & not x in (f2)"{0c} by XBOOLE_0:def 4; reconsider x1=x as Element of C by A3; not (f1/.x1) in {0c} by A4,PARTFUN2:44; then A5: (f1/.x1) <> 0c by TARSKI:def 1; not (f2/.x1) in {0c} by A4,PARTFUN2:44; then (f2/.x1) <> 0c by TARSKI:def 1; then A6: (f1/.x1) * (f2/.x1) <>0c by A5,XCMPLX_1:6; x1 in dom f1 /\ dom f2 by A4,XBOOLE_0:def 3; then A7: x1 in dom (f1(#)f2) by Th5; then (f1(#)f2)/.x1 <> 0c by A6,Th5; then not (f1(#)f2)/.x1 in {0c} by TARSKI:def 1; then not x in (f1(#)f2)"{0c} by PARTFUN2:44; hence x in dom (f1(#)f2) \ (f1(#)f2)"{0c}by A7,XBOOLE_0:def 4; end; end; theorem Th17: c in dom (f^) implies (f/.c) <> 0c proof assume that A1: c in dom (f^) and A2: (f/.c) = 0c; A3: c in dom f \ f"{0c} by A1,Def2; then A4: c in dom f & not c in f"{0c} by XBOOLE_0:def 4; now per cases by A4,PARTFUN2:44; suppose not c in dom f; hence contradiction by A3,XBOOLE_0:def 4; suppose not (f/.c) in {0c}; hence contradiction by A2,TARSKI:def 1; end; hence contradiction; end; theorem Th18: (f^)"{0c} = {} proof assume A1: (f^)"{0c} <> {}; consider x being Element of (f^)"{0c}; A2: x in dom (f^) & (f^)/.x in {0c} by A1,Lm1; then reconsider x as Element of C; (f^)/.x = 0c by A2,TARSKI:def 1; then A3: (f/.x)" = 0c by A2,Def2; x in dom f \ f"{0c} by A2,Def2; then x in dom f & not x in f"{0c} by XBOOLE_0:def 4; then not f/.x in {0c} by PARTFUN2:44; then f/.x <> 0c by TARSKI:def 1; hence contradiction by A3,XCMPLX_1:203; end; theorem Th19: |.f.|"{0} = f"{0c} & (-f)"{0c} = f"{0c} proof now let c; thus c in (|.f.|)"{0} implies c in f"{0c} proof assume c in (|.f.|)"{0}; then c in dom (|.f.|) & (|.f.|).c in {0} by FUNCT_1:def 13; then c in dom (|.f.|) & (|.f.|).c = 0 by TARSKI:def 1; then c in dom (|.f.|) & |.(f/.c).| = 0 by COMSEQ_1:def 13; then c in dom f & (f/.c) = 0c by COMPLEX1:131,COMSEQ_1:def 13; then c in dom f & (f/.c) in {0c} by TARSKI:def 1; hence thesis by PARTFUN2:44; end; assume c in (f)"{0c}; then c in dom f & (f/.c) in {0c} by PARTFUN2:44; then c in dom (|.f.|) & |.(f/.c).| = 0 by COMPLEX1:130,COMSEQ_1:def 13,TARSKI:def 1; then c in dom (|.f.|) & (|.f.|).c = 0 by COMSEQ_1:def 13; then c in dom (|.f.|) & (|.f.|).c in {0} by TARSKI:def 1; hence c in (|.f.|)"{0} by FUNCT_1:def 13; end; hence (|.f.|)"{0} = f"{0c} by SUBSET_1:8; now let c; thus c in (-f)"{0c} implies c in f"{0c} proof assume c in (-f)"{0c}; then c in dom (-f) & (-f)/.c in {0c} by PARTFUN2:44; then c in dom (-f) & (-f)/.c = 0c by TARSKI:def 1; then c in dom (-f) & --((f/.c)) = -0c by Th9; then c in dom f & (f/.c) in {0c} by Th9,REAL_1:26,TARSKI:def 1; hence thesis by PARTFUN2:44; end; assume c in (f)"{0c}; then c in dom f & (f/.c) in {0c} by PARTFUN2:44; then c in dom (-f) & (f/.c) = 0c by Th9,TARSKI:def 1; then c in dom (-f) & (-f)/.c = 0c by Th9,REAL_1:26; then c in dom (-f) & (-f)/.c in {0c} by TARSKI:def 1; hence c in (-f)"{0c} by PARTFUN2:44; end; hence thesis by SUBSET_1:8; end; theorem Th20: dom (f^^) = dom (f|(dom (f^))) proof dom (f^) = dom f \ f"{0c} by Def2; then A1: dom (f^) c= dom f by XBOOLE_1:36; thus dom (f^^) = dom (f^) \(f^)"{0c} by Def2 .= dom (f^) \ {} by Th18 .= dom f /\ dom (f^) by A1,XBOOLE_1:28 .= dom (f|(dom (f^))) by RELAT_1:90; end; theorem Th21: r<>0c implies (r(#)f)"{0c} = f"{0c} proof assume A1: r<>0c; now let c; thus c in (r(#)f)"{0c} implies c in f"{0c} proof assume c in (r(#)f)"{0c}; then c in dom (r(#)f) & (r(#)f)/.c in {0c} by PARTFUN2:44; then c in dom (r(#)f) & (r(#)f)/.c = 0c by TARSKI:def 1; then c in dom (r(#)f) & r*(f/.c) = 0c by Th7; then c in dom f & (f/.c) = 0c by A1,Th7,XCMPLX_1:6; then c in dom f & (f/.c) in {0c} by TARSKI:def 1; hence thesis by PARTFUN2:44; end; assume c in (f)"{0c}; then c in dom f & (f/.c) in {0c} by PARTFUN2:44; then c in dom f & (f/.c) = 0c by TARSKI:def 1; then c in dom (r(#)f) & r*(f/.c) = 0c by Th7,COMPLEX1:28; then c in dom (r(#)f) & (r(#)f)/.c = 0c by Th7; then c in dom (r(#)f) & (r(#)f)/.c in {0c} by TARSKI:def 1; hence c in (r(#)f)"{0c} by PARTFUN2:44; end; hence thesis by SUBSET_1:8; end; begin :: :: BASIC PROPERTIES OF OPERATIONS :: theorem (f1 + f2) + f3 = f1 + (f2 + f3) proof A1: dom (f1 + f2 + f3) = dom (f1 + f2) /\ dom f3 by COMSEQ_1:def 2 .= dom f1 /\ dom f2 /\ dom f3 by COMSEQ_1:def 2 .= dom f1 /\ (dom f2 /\ dom f3) by XBOOLE_1:16 .= dom f1 /\ dom (f2 + f3) by COMSEQ_1:def 2 .= dom (f1 + (f2 + f3)) by COMSEQ_1:def 2; now let c; assume A2: c in dom (f1 + f2 + f3); then c in dom f1 /\ dom (f2 + f3) by A1,COMSEQ_1:def 2; then A3: c in dom (f2 + f3) by XBOOLE_0:def 3; c in dom (f1 + f2) /\ dom f3 by A2,COMSEQ_1:def 2; then A4: c in dom (f1 + f2) by XBOOLE_0:def 3; thus (f1 + f2 + f3)/.c = (f1 + f2)/.c + (f3/.c) by A2,Th3 .= ((f1/.c)) + ((f2/.c)) + (f3/.c) by A4,Th3 .= ((f1/.c)) + (((f2/.c)) + (f3/.c)) by XCMPLX_1:1 .= ((f1/.c)) + (f2 + f3)/.c by A3,Th3 .= (f1 + (f2 + f3))/.c by A1,A2,Th3; end; hence thesis by A1,PARTFUN2:3; end; theorem Th23: (f1 (#) f2) (#) f3 = f1 (#) (f2 (#) f3) proof A1: dom (f1 (#) f2 (#) f3) = dom (f1 (#) f2) /\ dom f3 by Th5 .= dom f1 /\ dom f2 /\ dom f3 by Th5 .= dom f1 /\ (dom f2 /\ dom f3) by XBOOLE_1:16 .= dom f1 /\ dom (f2 (#) f3) by Th5 .= dom (f1 (#) (f2 (#) f3)) by Th5; now let c; assume A2: c in dom (f1(#)f2(#)f3); then c in dom f1 /\ dom (f2(#)f3) by A1,Th5; then A3: c in dom (f2 (#) f3) by XBOOLE_0:def 3; c in dom (f1 (#) f2) /\ dom f3 by A2,Th5; then A4: c in dom (f1 (#) f2) by XBOOLE_0:def 3; thus (f1 (#) f2 (#) f3)/.c = (f1 (#) f2)/.c * (f3/.c) by A2,Th5 .= ((f1/.c)) * ((f2/.c)) * (f3/.c) by A4,Th5 .= ((f1/.c)) * (((f2/.c)) * (f3/.c)) by XCMPLX_1:4 .= ((f1/.c)) * ((f2 (#) f3)/.c) by A3,Th5 .= (f1 (#) (f2 (#) f3))/.c by A1,A2,Th5; end; hence thesis by A1,PARTFUN2:3; end; theorem Th24: (f1 + f2) (#) f3=f1 (#) f3 + f2 (#) f3 proof A1: dom ((f1 + f2) (#) f3) = dom (f1 + f2) /\ dom f3 by Th5 .= dom f1 /\ dom f2 /\ (dom f3 /\ dom f3) by COMSEQ_1:def 2 .= dom f1 /\ dom f2 /\ dom f3 /\ dom f3 by XBOOLE_1:16 .= dom f1 /\ dom f3 /\ dom f2 /\ dom f3 by XBOOLE_1:16 .= dom f1 /\ dom f3 /\ (dom f2 /\ dom f3) by XBOOLE_1:16 .= dom (f1 (#) f3) /\ (dom f2 /\ dom f3) by Th5 .= dom (f1 (#) f3) /\ dom (f2 (#) f3) by Th5 .= dom (f1 (#) f3 + f2 (#) f3) by COMSEQ_1:def 2; now let c; assume A2: c in dom ((f1 + f2)(#)f3); then c in dom (f1(#)f3) /\ dom (f2(#)f3) by A1,COMSEQ_1:def 2; then A3: c in dom (f1(#)f3) & c in dom (f2 (#) f3) by XBOOLE_0:def 3; c in dom (f1 + f2) /\ dom f3 by A2,Th5; then A4: c in dom (f1 + f2) by XBOOLE_0:def 3; thus ((f1 + f2) (#) f3)/.c = (f1 + f2)/.c * (f3/.c) by A2,Th5 .= (((f1/.c)) + ((f2/.c))) * (f3/.c) by A4,Th3 .= ((f1/.c)) * (f3/.c) + ((f2/.c)) * (f3/.c) by XCMPLX_1:8 .= (f1 (#) f3)/.c + ((f2/.c))* (f3/.c) by A3,Th5 .= (f1 (#) f3)/.c + (f2 (#) f3)/.c by A3,Th5 .=((f1 (#) f3) + (f2 (#) f3))/.c by A1,A2,Th3; end; hence thesis by A1,PARTFUN2:3; end; theorem f3 (#) (f1 + f2)=f3(#)f1 + f3(#)f2 by Th24; theorem Th26: r(#)(f1(#)f2)=r(#)f1(#)f2 proof A1: dom (r(#)(f1 (#) f2)) = dom (f1 (#) f2) by Th7 .= dom f1 /\ dom f2 by Th5 .= dom (r(#)f1) /\ dom f2 by Th7 .= dom (r(#)f1(#)f2) by Th5; now let c; assume A2: c in dom (r(#)(f1(#)f2)); then c in dom (r(#)f1) /\ dom f2 by A1,Th5; then A3: c in dom (r(#)f1) & c in dom f2 by XBOOLE_0:def 3; A4: c in dom (f1(#)f2) by A2,Th7; thus (r(#)(f1(#)f2))/.c = r * ((f1(#)f2)/.c) by A2,Th7 .= r*(((f1/.c)) * ((f2/.c))) by A4,Th5 .= (r*((f1/.c))) * ((f2/.c)) by XCMPLX_1:4 .= (r(#)f1)/.c * ((f2/.c)) by A3,Th7 .= (r(#)f1 (#) f2)/.c by A1,A2,Th5; end; hence thesis by A1,PARTFUN2:3; end; theorem Th27: r(#)(f1(#)f2)=f1(#)(r(#)f2) proof A1: dom (r(#)(f1 (#) f2)) = dom (f1 (#) f2) by Th7 .= dom f1 /\ dom f2 by Th5 .= dom f1 /\ dom (r(#)f2) by Th7 .= dom (f1(#)(r(#)f2)) by Th5; now let c; assume A2: c in dom (r(#)(f1(#)f2)); then c in dom f1 /\ dom (r(#)f2) by A1,Th5; then A3: c in dom f1 & c in dom (r(#)f2) by XBOOLE_0:def 3; A4: c in dom (f1(#)f2) by A2,Th7; thus (r(#)(f1(#)f2))/.c = r * ((f1(#)f2)/.c) by A2,Th7 .= r * (((f1/.c)) * ((f2/.c))) by A4,Th5 .= ((f1/.c)) * (r * ((f2/.c))) by XCMPLX_1:4 .= ((f1/.c)) * ((r(#)f2)/.c) by A3,Th7 .= (f1(#)(r(#)f2))/.c by A1,A2,Th5; end; hence thesis by A1,PARTFUN2:3; end; theorem Th28: (f1 - f2)(#)f3=f1(#)f3 - f2(#)f3 proof A1: dom ((f1 - f2) (#) f3) = dom (f1 - f2) /\ dom f3 by Th5 .= dom f1 /\ dom f2 /\ (dom f3 /\ dom f3) by Th4 .= dom f1 /\ dom f2 /\ dom f3 /\ dom f3 by XBOOLE_1:16 .= dom f1 /\ dom f3 /\ dom f2 /\ dom f3 by XBOOLE_1:16 .= dom f1 /\ dom f3 /\ (dom f2 /\ dom f3) by XBOOLE_1:16 .= dom (f1 (#) f3) /\ (dom f2 /\ dom f3) by Th5 .= dom (f1 (#) f3) /\ dom (f2 (#) f3) by Th5 .= dom (f1 (#) f3 - f2 (#) f3) by Th4; now let c; assume A2: c in dom ((f1 - f2)(#)f3); then c in dom (f1(#)f3) /\ dom (f2(#)f3) by A1,Th4; then A3: c in dom (f1(#)f3) & c in dom (f2 (#) f3) by XBOOLE_0:def 3; c in dom (f1 - f2) /\ dom f3 by A2,Th5; then A4: c in dom (f1 - f2) by XBOOLE_0:def 3; thus ((f1 - f2) (#) f3)/.c = (f1 - f2)/.c * (f3/.c) by A2,Th5 .= (((f1/.c)) - ((f2/.c))) * (f3/.c) by A4,Th4 .= ((f1/.c)) * (f3/.c) - ((f2/.c)) * (f3/.c) by XCMPLX_1:40 .= (f1 (#) f3)/.c - ((f2/.c)) * (f3/.c) by A3,Th5 .= (f1 (#) f3)/.c - (f2 (#) f3)/.c by A3,Th5 .=((f1 (#) f3) - (f2 (#) f3))/.c by A1,A2,Th4; end; hence thesis by A1,PARTFUN2:3; end; theorem f3(#)f1 - f3(#)f2 = f3(#)(f1 - f2) by Th28; theorem r(#)(f1 + f2) = r(#)f1 + r(#)f2 proof A1: dom (r(#)(f1 + f2)) = dom (f1 + f2) by Th7 .= dom f1 /\ dom f2 by COMSEQ_1:def 2 .= dom f1 /\ dom (r(#)f2) by Th7 .= dom (r(#)f1) /\ dom (r(#)f2) by Th7 .= dom (r(#)f1 + r(#)f2) by COMSEQ_1:def 2; now let c; assume A2: c in dom (r(#)(f1 + f2)); then c in dom (r(#)f1) /\ dom (r(#)f2) by A1,COMSEQ_1:def 2; then A3: c in dom (r(#)f1) & c in dom (r(#)f2) by XBOOLE_0:def 3; A4: c in dom (f1 + f2) by A2,Th7; thus (r(#)(f1 + f2))/.c = r * ((f1 + f2)/.c) by A2,Th7 .= r * (((f1/.c)) + ((f2/.c))) by A4,Th3 .= r * ((f1/.c)) + r * ((f2/.c)) by XCMPLX_1:8 .= (r(#)f1)/.c + r * ((f2/.c)) by A3,Th7 .= (r(#)f1)/.c + (r(#)f2)/.c by A3,Th7 .= (r(#)f1 + r(#)f2)/.c by A1,A2,Th3; end; hence thesis by A1,PARTFUN2:3; end; theorem Th31: (r*q)(#)f = r(#)(q(#)f) proof A1: dom ((r*q) (#) f) = dom f by Th7 .= dom (q(#)f) by Th7 .= dom (r(#)(q(#)f)) by Th7; now let c; assume A2: c in dom ((r*q)(#)f); then A3: c in dom (q(#)f) by A1,Th7; thus ((r*q)(#)f)/.c = r*q * (f/.c) by A2,Th7 .= r*(q * (f/.c)) by XCMPLX_1:4 .= r * ((q(#)f)/.c) by A3,Th7 .= (r(#)(q(#)f))/.c by A1,A2,Th7; end; hence thesis by A1,PARTFUN2:3; end; theorem r(#)(f1 - f2) = r(#)f1 - r(#)f2 proof A1: dom (r(#)(f1 - f2)) = dom (f1 - f2) by Th7 .= dom f1 /\ dom f2 by Th4 .= dom f1 /\ dom (r(#)f2) by Th7 .= dom (r(#)f1) /\ dom (r(#)f2) by Th7 .= dom (r(#)f1 - r(#)f2) by Th4; now let c; assume A2: c in dom (r(#)(f1 - f2)); then c in dom (r(#)f1) /\ dom (r(#)f2) by A1,Th4; then A3: c in dom (r(#)f1) & c in dom (r(#)f2) by XBOOLE_0:def 3; A4: c in dom (f1 - f2) by A2,Th7; thus (r(#)(f1 - f2))/.c = r * ((f1 - f2)/.c) by A2,Th7 .= r * (((f1/.c)) - ((f2/.c))) by A4,Th4 .= r * ((f1/.c)) - r * ((f2/.c)) by XCMPLX_1:40 .= (r(#)f1)/.c - r * ((f2/.c)) by A3,Th7 .= (r(#)f1)/.c - (r(#)f2)/.c by A3,Th7 .= (r(#)f1 - r(#)f2)/.c by A1,A2,Th4; end; hence thesis by A1,PARTFUN2:3; end; theorem f1-f2 = (-1r)(#)(f2-f1) proof A1: dom (f1 - f2) = dom f2 /\ dom f1 by Th4 .= dom (f2 - f1) by Th4 .= dom ((-1r)(#)(f2 - f1)) by Th7; now let c such that A2: c in dom (f1-f2); A3: dom (f1 - f2) = dom f2 /\ dom f1 by Th4 .= dom (f2 - f1) by Th4; thus (f1 - f2)/.c = ((f1/.c)) - ((f2/.c)) by A2,Th4 .= -(((f2/.c)) - ((f1/.c))) by XCMPLX_1:143 .= (-1r)*(((f2/.c)) - ((f1/.c))) by COMPLEX1:46 .= (-1r)*((f2 - f1)/.c) by A2,A3,Th4 .= ((-1r)(#)(f2 - f1))/.c by A1,A2,Th7; end; hence thesis by A1,PARTFUN2:3; end; theorem f1 - (f2 + f3) = f1 - f2 - f3 proof A1: dom (f1 - (f2 + f3)) = dom f1 /\ dom (f2 + f3) by Th4 .= dom f1 /\ (dom f2 /\ dom f3) by COMSEQ_1:def 2 .= dom f1 /\ dom f2 /\ dom f3 by XBOOLE_1:16 .= dom (f1 - f2) /\ dom f3 by Th4 .= dom (f1 - f2 - f3) by Th4; now let c; assume A2: c in dom (f1 - (f2 + f3)); then c in dom (f1 - f2) /\ dom f3 by A1,Th4; then A3: c in dom (f1 - f2) by XBOOLE_0:def 3; c in dom f1 /\ dom (f2 + f3) by A2,Th4; then A4: c in dom (f2 + f3) by XBOOLE_0:def 3; thus (f1 - (f2 + f3))/.c = ((f1/.c)) - (f2 + f3)/.c by A2,Th4 .= ((f1/.c)) - (((f2/.c)) + (f3/.c)) by A4,Th3 .= ((f1/.c)) - ((f2/.c)) - (f3/.c) by XCMPLX_1:36 .= (f1 - f2)/.c - (f3/.c) by A3,Th4 .= (f1 - f2 - f3)/.c by A1,A2,Th4; end; hence thesis by A1,PARTFUN2:3; end; theorem Th35: 1r(#)f = f proof A1: dom (1r(#)f) = dom f by Th7; now let c; assume c in dom (1r(#)f); hence (1r(#)f)/.c = 1r * (f/.c) by Th7 .= (f/.c) by COMPLEX1:29; end; hence thesis by A1,PARTFUN2:3; end; theorem f1 - (f2 - f3) = f1 - f2 + f3 proof A1: dom (f1 - (f2 - f3)) = dom f1 /\ dom (f2 - f3) by Th4 .= dom f1 /\ (dom f2 /\ dom f3) by Th4 .= dom f1 /\ dom f2 /\ dom f3 by XBOOLE_1:16 .= dom (f1 - f2) /\ dom f3 by Th4 .= dom (f1 - f2 + f3) by COMSEQ_1:def 2; now let c; assume A2: c in dom (f1 - (f2 - f3)); then c in dom (f1 - f2) /\ dom f3 by A1,COMSEQ_1:def 2; then A3: c in dom (f1 - f2) by XBOOLE_0:def 3; c in dom f1 /\ dom (f2 - f3) by A2,Th4; then A4: c in dom (f2 - f3) by XBOOLE_0:def 3; thus (f1 - (f2 - f3))/.c = ((f1/.c)) - (f2 - f3)/.c by A2,Th4 .= ((f1/.c)) - (((f2/.c)) - (f3/.c)) by A4,Th4 .= ((f1/.c)) - ((f2/.c)) + (f3/.c) by XCMPLX_1:37 .= (f1 - f2)/.c + (f3/.c) by A3,Th4 .= (f1 - f2 + f3)/.c by A1,A2,Th3; end; hence thesis by A1,PARTFUN2:3; end; theorem f1 + (f2 - f3) =f1 + f2 - f3 proof A1: dom (f1 + (f2 - f3)) = dom f1 /\ dom (f2 - f3) by COMSEQ_1:def 2 .= dom f1 /\ (dom f2 /\ dom f3) by Th4 .= dom f1 /\ dom f2 /\ dom f3 by XBOOLE_1:16 .= dom (f1 + f2) /\ dom f3 by COMSEQ_1:def 2 .= dom (f1 + f2 - f3) by Th4; now let c; assume A2: c in dom (f1 + (f2 - f3)); then c in dom (f1 + f2) /\ dom f3 by A1,Th4; then A3: c in dom (f1 + f2) by XBOOLE_0:def 3; c in dom f1 /\ dom (f2 - f3) by A2,COMSEQ_1:def 2; then A4: c in dom (f2 - f3) by XBOOLE_0:def 3; thus (f1 + (f2 - f3))/.c = ((f1/.c)) + (f2 - f3)/.c by A2,Th3 .= ((f1/.c)) + (((f2/.c)) - (f3/.c)) by A4,Th4 .= ((f1/.c)) + ((f2/.c)) - (f3/.c) by XCMPLX_1:29 .= (f1 + f2)/.c - (f3/.c) by A3,Th3 .= (f1 + f2 - f3)/.c by A1,A2,Th4; end; hence thesis by A1,PARTFUN2:3; end; theorem Th38: |.f1(#)f2.| = |.f1.|(#)|.f2.| proof A1: dom (|.f1 (#) f2.|) = dom (f1 (#) f2) by COMSEQ_1:def 13 .= dom f1 /\ dom f2 by Th5 .= dom f1 /\ dom (|.f2.|) by COMSEQ_1:def 13 .= dom (|.f1.|) /\ dom (|.f2.|) by COMSEQ_1:def 13 .= dom (|.f1.|(#)|.f2.|) by SEQ_1:def 5; now let c; assume A2: c in dom (|.f1 (#) f2.|); then c in dom (|.f1.|) /\ dom (|.f2.|) by A1,SEQ_1:def 5; then A3: c in dom (|.f1.|) & c in dom (|.f2.|) by XBOOLE_0:def 3; A4: c in dom (f1 (#) f2) by A2,COMSEQ_1:def 13; thus (|.(f1(#)f2).|).c = |.(f1(#)f2)/.c.| by A2,COMSEQ_1:def 13 .= |.((f1/.c)) * ((f2/.c)).| by A4,Th5 .= |.((f1/.c)).| * |.((f2/.c)).| by COMPLEX1:151 .= ((|.f1.|).c) *( |.((f2/.c)).|) by A3,COMSEQ_1:def 13 .= ((|.f1.|).c) * ((|.f2.|).c) by A3,COMSEQ_1:def 13 .= (|.f1.|(#)|.f2.|).c by A1,A2,SEQ_1:def 5; end; hence thesis by A1,PARTFUN1:34; end; theorem Th39: |.r(#)f.| = |.r.|(#)|.f.| proof A1: dom (|.r(#)f.|) = dom (r(#)f) by COMSEQ_1:def 13 .= dom f by Th7 .= dom (|.f.|) by COMSEQ_1:def 13 .= dom (|.r.|(#)|.f.|) by SEQ_1:def 6; now let c; assume A2: c in dom (|.r(#)f.|); then A3: c in dom (|.f.|) by A1,SEQ_1:def 6; A4: c in dom (r(#)f) by A2,COMSEQ_1:def 13; thus (|.r(#)f.|).c = |.(r(#)f)/.c.| by A2,COMSEQ_1:def 13 .=|.r*((f/.c)).| by A4,Th7 .=|.r.|*|.((f/.c)).| by COMPLEX1:151 .=|.r.|*((|.f.|).c) by A3,COMSEQ_1:def 13 .=(|.r.|(#)|.f.|).c by A1,A2,SEQ_1:def 6; end; hence thesis by A1,PARTFUN1:34; end; theorem Th40: -f = (-1r)(#)f proof A1: dom (-f) = dom f by Th9 .= dom ((-1r)(#)f) by Th7; now let c; assume A2: c in dom ((-1r)(#)f); hence (-f)/.c = -((f/.c)) by A1,Th9 .= (-1r) * (f/.c) by COMPLEX1:46 .= ((-1r)(#)f)/.c by A2,Th7; end; hence thesis by A1,PARTFUN2:3; end; theorem Th41: -(-f) = f proof thus -(-f) = (-1r)(#)(-f) by Th40 .= (-1r)(#)((-1r)(#)f) by Th40 .= ((-1r)*(-1r))(#)f by Th31 .= (1r*1r)(#)f by XCMPLX_1:177 .= 1r(#)f by COMPLEX1:29 .= f by Th35; end; canceled; theorem f1 - (-f2) = f1 + f2 proof thus f1 - (-f2) = f1 + (-(-f2)) by COMSEQ_1:def 10 .= f1 + f2 by Th41; end; theorem Th44: f^^ = f|(dom (f^)) proof A1: dom (f^^) = dom (f|(dom (f^))) by Th20; now let c; assume A2: c in dom (f^^); then c in dom f /\ dom (f^) by A1,RELAT_1:90; then A3:c in dom f & c in dom (f^) by XBOOLE_0:def 3; thus (f^^)/.c = ((f^)/.c)" by A2,Def2 .= (((f/.c))")" by A3,Def2 .= (f|(dom (f^)))/.c by A1,A2,PARTFUN2:32; end; hence thesis by A1,PARTFUN2:3; end; theorem Th45: (f1(#)f2)^ = (f1^)(#)(f2^) proof A1: dom ((f1(#)f2)^) = dom (f1(#)f2) \ (f1(#)f2)"{0c} by Def2 .= (dom f1 \ f1"{0c}) /\ (dom f2 \ (f2)"{0c}) by Th16 .= dom (f1^) /\ (dom f2 \ (f2)"{0c}) by Def2 .= dom (f1^) /\ dom (f2^) by Def2 .= dom ((f1^) (#) (f2^)) by Th5; now let c; assume A2: c in dom ((f1(#)f2)^); then c in dom (f1^) /\ dom (f2^) by A1,Th5; then A3: c in dom (f1^) & c in dom (f2^) by XBOOLE_0:def 3; c in dom (f1(#)f2) \ (f1(#)f2)"{0c} by A2,Def2; then A4: c in dom (f1(#)f2) by XBOOLE_0:def 4; thus ((f1(#)f2)^)/.c = ((f1(#)f2)/.c)" by A2,Def2 .= (((f1/.c)) * ((f2/.c)))" by A4,Th5 .= (((f1/.c)))"* (((f2/.c)))" by XCMPLX_1:205 .= ((f1^)/.c)*(((f2/.c)))" by A3,Def2 .= ((f1^)/.c) *((f2^)/.c) by A3,Def2 .= ((f1^) (#) (f2^))/.c by A1,A2,Th5; end; hence thesis by A1,PARTFUN2:3; end; theorem Th46: r<>0c implies (r(#)f)^ = r" (#) (f^) proof assume A1: r<>0c; A2: dom ((r(#)f)^) = dom (r(#)f) \ (r(#)f)"{0c} by Def2 .= dom (r(#)f) \ f"{0c} by A1,Th21 .= dom f \ f"{0c} by Th7 .= dom (f^) by Def2 .= dom (r"(#)(f^)) by Th7; now let c; assume A3: c in dom ((r(#)f)^); then c in dom (r(#)f) \ (r(#)f)"{0c} by Def2; then A4: c in dom (r(#)f) by XBOOLE_0:def 4; A5: c in dom (f^) by A2,A3,Th7; thus ((r(#)f)^)/.c = ((r(#)f)/.c)" by A3,Def2 .= (r*((f/.c)))" by A4,Th7 .= r"* ((f/.c))" by XCMPLX_1:205 .= r"* ((f^)/.c) by A5,Def2 .= (r" (#) (f^))/.c by A2,A3,Th7; end; hence thesis by A2,PARTFUN2:3; end; theorem 1r<>0c by COMPLEX1:12,15; theorem Th48: (-1r)"=-1r proof A1:-1r<>0c by COMPLEX1:12,15,XCMPLX_1:135; (-1r)"=(-1r)"*1r by COMPLEX1:29 .=(-1r)"*((-1r)"*(-1r)) by A1,COMPLEX1:65 .=(-1r)"*(-1r)"*(-1r) by XCMPLX_1:4 .=((-1r)*(-1r))"*(-1r) by XCMPLX_1:205 .=(-(1r*(-1r)))"*(-1r) by XCMPLX_1:175 .=(-(-1r))"*(-1r) by COMPLEX1:29 .=-1r by COMPLEX1:29,71; hence thesis; end; theorem Th49: (-f)^ = (-1r)(#)(f^) proof A1:-1r<>0c by COMPLEX1:12,15,XCMPLX_1:135; thus (-f)^=((-1r)(#)f)^ by Th40 .= (-1r)(#)(f^) by A1,Th46,Th48; end; theorem Th50: (|.f.|)^ = |.(f^).| proof A1: dom ((|.f.|)^) = dom (|.f.|) \ (|.f.|)"{0} by RFUNCT_1:def 8 .= dom f \ (|.f.|)"{0} by COMSEQ_1:def 13 .= dom f \ f"{0c} by Th19 .= dom (f^) by Def2 .= dom (|.(f^).|) by COMSEQ_1:def 13; now let c; assume A2: c in dom ((|.f.|)^); then c in dom (|.f.|) \ (|.f.|)"{0} by RFUNCT_1:def 8; then A3: c in dom (|.f.|) by XBOOLE_0:def 4; (|.f.|).c <>0 by A2,RFUNCT_1:13; then A4: (f/.c) <> 0c by A3,COMPLEX1:130,COMSEQ_1:def 13; A5: c in dom (f^) by A1,A2,COMSEQ_1:def 13; thus ((|.f.|)^).c = ((|.f.|).c)" by A2,RFUNCT_1:def 8 .= (|.(f/.c) .|)" by A3,COMSEQ_1:def 13 .= |.1r.|/|.(f/.c) .| by COMPLEX1:134,XCMPLX_1:217 .= |.1r/(f/.c) .| by A4,COMPLEX1:153 .= |.((f/.c))" .| by A4,COMPLEX1:84 .= |.(f^)/.c .| by A5,Def2 .= (|.(f^).|).c by A1,A2,COMSEQ_1:def 13; end; hence thesis by A1,PARTFUN1:34; end; theorem Th51: f/g = f(#) (g^) proof A1: dom (f/g) = dom f /\ (dom g \ g"{0c}) by Def1 .= dom f /\ dom (g^) by Def2 .= dom (f(#)(g^)) by Th5; now let c; assume A2: c in dom (f/g); then c in dom f /\ (dom g \ g"{0c}) by Def1; then A3: c in dom f /\ dom (g^) by Def2; then A4: c in dom (g^) by XBOOLE_0:def 3; A5: c in dom (f (#) (g^)) by A3,Th5; thus (f/g)/.c = (f/.c) * (g/.c)" by A2,Def1 .= (f/.c) * ((g^)/.c) by A4,Def2 .= (f (#) (g^))/.c by A5,Th5; end; hence thesis by A1,PARTFUN2:3; end; theorem Th52: r(#)(g/f) = (r(#)g)/f proof thus r(#)(g/f) = r(#)(g(#)(f^)) by Th51 .= (r(#)g)(#)(f^) by Th26 .= (r(#)g)/f by Th51; end; theorem (f/g)(#)g = (f|dom(g^)) proof A1: dom (g^) c= dom g by Th15; A2: dom ((f/g)(#)g) = dom (f/g) /\ dom g by Th5 .= dom f /\ (dom g \ g"{0c}) /\ dom g by Def1 .= dom f /\ ((dom g \ g"{0c}) /\ dom g) by XBOOLE_1:16 .= dom f /\ (dom (g^) /\ dom g) by Def2 .= dom f /\ dom (g^) by A1,XBOOLE_1:28 .= dom (f|(dom (g^))) by RELAT_1:90; now let c; assume A3: c in dom ((f/g)(#)g); then A4: c in dom f /\ dom (g^) by A2,RELAT_1:90; then A5: c in dom (f(#)(g^)) by Th5; A6: c in dom f & c in dom (g^) by A4,XBOOLE_0:def 3; then A7: g/.c <> 0c by Th17; thus ((f/g)(#)g)/.c = ((f/g)/.c) * (g/.c )by A3,Th5 .= (f(#)(g^))/.c * (g/.c) by Th51 .= ((f/.c)) *((g^)/.c) * (g/.c) by A5,Th5 .= ((f/.c))*(g/.c)"*(g/.c) by A6,Def2 .= ((f/.c))*((g/.c)" * (g/.c)) by XCMPLX_1:4 .= ((f/.c))*1r by A7,COMPLEX1:65 .= (f/.c) by COMPLEX1:29 .= (f|(dom (g^)))/.c by A2,A3,PARTFUN2:32; end; hence thesis by A2,PARTFUN2:3; end; theorem Th54: (f/g)(#)(f1/g1) = (f(#)f1)/(g(#)g1) proof A1: dom ((f/g)(#)(f1/g1)) = dom (f/g) /\ dom (f1/g1) by Th5 .= dom f /\ (dom g \ g"{0c}) /\ dom (f1/g1) by Def1 .= dom f /\ (dom g \ g"{0c}) /\ (dom f1 /\ (dom g1 \ g1"{0c})) by Def1 .= dom f /\ ((dom g \ g"{0c}) /\ (dom f1 /\ (dom g1 \ g1"{0c}))) by XBOOLE_1: 16 .= dom f /\ (dom f1 /\ ((dom g \ g"{0c}) /\ (dom g1 \ g1"{0c}))) by XBOOLE_1: 16 .= dom f /\ dom f1 /\ ((dom g \ g"{0c}) /\ (dom g1 \ g1"{0c})) by XBOOLE_1:16 .= dom (f(#)f1) /\ ((dom g \ g"{0c}) /\ (dom g1 \ g1"{0c})) by Th5 .= dom (f(#)f1) /\ (dom (g(#)g1) \ (g(#)g1)"{0c}) by Th16 .= dom ((f(#)f1)/(g(#)g1)) by Def1; now let c; assume A2: c in dom ((f/g)(#)(f1/g1)); then c in dom (f/g) /\ dom (f1/g1) by Th5; then c in dom (f (#)(g^)) /\ dom (f1/g1) by Th51; then c in dom (f (#)(g^)) /\ dom (f1(#)(g1^)) by Th51; then A3: c in dom (f (#)(g^)) & c in dom (f1(#)(g1^)) by XBOOLE_0:def 3; then c in dom f /\ dom(g^) & c in dom f1 /\ dom(g1^) by Th5; then c in dom f & c in dom(g^) & c in dom f1 & c in dom(g1^) by XBOOLE_0:def 3 ; then c in dom f /\ dom f1 & c in dom (g^) /\ dom (g1^) by XBOOLE_0:def 3; then A4: c in dom (f(#)f1) & c in dom((g^)(#)(g1^)) by Th5; then c in dom (f(#)f1) & c in dom((g(#)g1)^) by Th45; then c in dom (f(#)f1) /\ dom((g(#)g1)^) by XBOOLE_0:def 3; then A5: c in dom ((f(#)f1)(#)((g(#)g1)^)) by Th5; thus ((f/g)(#)(f1/g1))/.c = ((f/g)/.c)* ((f1/g1)/.c) by A2,Th5 .= ((f(#)(g^))/.c) * ((f1/g1)/.c) by Th51 .= ((f(#)(g^))/.c) * ((f1(#)(g1^))/.c) by Th51 .= ((f/.c)) * ((g^)/.c) *((f1(#)(g1^))/.c) by A3,Th5 .= ((f/.c)) * ((g^)/.c) * ((((f1/.c)))* ((g1^)/.c)) by A3,Th5 .= ((f/.c)) * ((g^)/.c) * (((f1/.c))) * ((g1^)/.c) by XCMPLX_1:4 .= ((f/.c)) * ((((f1/.c))) * ((g^)/.c)) * ((g1^)/.c) by XCMPLX_1:4 .= ((f/.c)) * (((((f1/.c))) * ((g^)/.c)) *( (g1^)/.c)) by XCMPLX_1:4 .= ((f/.c)) * ((((f1/.c))) * (((g^)/.c) * ((g1^)/.c))) by XCMPLX_1:4 .= ((f/.c)) * ((((f1/.c))) * (((g^)(#)(g1^))/.c)) by A4,Th5 .= ((f/.c)) * (((f1/.c))) * (((g^)(#)(g1^))/.c) by XCMPLX_1:4 .= ((f/.c)) * (((f1/.c))) * (((g(#)g1)^)/.c) by Th45 .= ((f(#)f1)/.c) * (((g(#)g1)^)/.c) by A4,Th5 .= ((f(#)f1)(#)((g(#)g1)^))/.c by A5,Th5 .= ((f(#)f1)/(g(#)g1))/.c by Th51; end; hence thesis by A1,PARTFUN2:3; end; theorem Th55: (f1/f2)^ = (f2|dom(f2^))/f1 proof thus (f1/f2)^ = (f1(#)(f2^))^ by Th51 .= (f1^)(#)(f2^^) by Th45 .= (f2|dom(f2^))(#)(f1^) by Th44 .= (f2|dom(f2^))/f1 by Th51; end; theorem Th56: g (#) (f1/f2) = (g (#) f1)/f2 proof thus g (#) (f1/f2) = g (#) (f1 (#) (f2^)) by Th51 .= g (#) f1 (#) (f2^) by Th23 .= (g (#) f1)/f2 by Th51; end; theorem g/(f1/f2) = (g(#)(f2|dom(f2^)))/f1 proof thus g/(f1/f2) = g (#) ((f1/f2)^) by Th51 .= g (#) ((f2|dom(f2^))/f1) by Th55 .= (g (#) (f2|dom(f2^)))/f1 by Th56; end; theorem -f/g = (-f)/g & f/(-g) = -f/g proof thus -f/g = (-1r)(#)(f/g) by Th40 .= ((-1r) (#) f)/g by Th52 .= (-f)/g by Th40; thus f/(-g) = f (#) ((-g)^) by Th51 .= f (#) ((-1r) (#) (g^)) by Th49 .= (-1r) (#) (f (#) (g^)) by Th27 .= -(f (#) (g^)) by Th40 .= -(f/g) by Th51; end; theorem f1/f + f2/f = (f1 + f2)/f & f1/f - f2/f = (f1 - f2)/f proof thus f1/f + f2/f = f1(#)(f^) +f2/f by Th51 .= f1(#)(f^) + f2(#)(f^) by Th51 .= (f1+f2) (#) (f^) by Th24 .= (f1+f2)/f by Th51; thus f1/f - f2/f = f1(#)(f^) - f2/f by Th51 .= f1(#)(f^) -f2(#)(f^) by Th51 .= (f1-f2)(#)(f^) by Th28 .= (f1-f2)/f by Th51; end; theorem Th60: f1/f + g1/g = (f1(#)g + g1(#)f)/(f(#)g) proof A1: dom ((f1/f) + (g1/g)) = dom (f1/f) /\ dom (g1/g) by COMSEQ_1:def 2 .= dom f1 /\ (dom f \ f"{0c}) /\ dom (g1/g) by Def1 .= dom f1 /\ (dom f \ f"{0c}) /\ (dom g1 /\ (dom g \ g"{0c})) by Def1 .= dom f1 /\ (dom f /\ (dom f \ f"{0c})) /\ (dom g1 /\ (dom g \ g"{0c})) by Th15 .= dom f /\ (dom f \ f"{0c}) /\ dom f1 /\ (dom g /\ (dom g \ g"{0c}) /\ dom g1) by Th15 .= dom f /\ (dom f \ f"{0c}) /\ (dom f1 /\ (dom g /\ (dom g \ g"{0c}) /\ dom g1)) by XBOOLE_1:16 .= dom f /\ (dom f \ f"{0c}) /\ (dom f1 /\ (dom g /\ (dom g \ g"{0c})) /\ dom g1) by XBOOLE_1:16 .= dom f /\ (dom f \ f"{0c}) /\ (dom f1 /\ dom g /\ (dom g \ g"{0c}) /\ dom g1) by XBOOLE_1:16 .= dom f /\ (dom f \ f"{0c}) /\ (dom (f1(#) g) /\ (dom g \ g"{0c}) /\ dom g1) by Th5 .= dom f /\ (dom f \ f"{0c}) /\ (dom (f1(#)g) /\ (dom g1 /\ (dom g \ g"{0c}))) by XBOOLE_1:16 .= dom (f1(#)g) /\ ((dom f \ f"{0c}) /\ dom f /\ (dom g1 /\ (dom g \ g"{0c}))) by XBOOLE_1:16 .= dom (f1(#)g) /\ ((dom f \ f"{0c}) /\ (dom f /\ (dom g1 /\ (dom g \ g"{0c})))) by XBOOLE_1:16 .= dom (f1(#)g) /\ ((dom f \ f"{0c}) /\ (dom g1 /\ dom f /\ (dom g \ g"{0c}))) by XBOOLE_1:16 .= dom (f1(#)g) /\ ((dom f \ f"{0c}) /\ (dom (g1(#)f) /\ (dom g \ g"{0c}))) by Th5 .= dom (f1(#)g) /\ (dom (g1(#)f) /\ ((dom f \ f"{0c}) /\ (dom g \ g"{0c}))) by XBOOLE_1:16 .= dom (f1(#)g) /\ dom (g1(#)f) /\ ((dom f \ f"{0c}) /\ (dom g \ g"{0c})) by XBOOLE_1:16 .= dom (f1(#)g + g1(#)f) /\ ((dom f \ f"{0c}) /\ (dom g \ g"{0c})) by COMSEQ_1:def 2 .= dom (f1(#)g + g1(#)f) /\ (dom (f(#)g) \ (f(#)g)"{0c}) by Th16 .= dom ((f1(#)g + g1(#)f)/(f(#)g)) by Def1; now let c; assume A2: c in dom ((f1/f) + (g1/g)); then A3: c in dom (f1/f) /\ dom (g1/g) by COMSEQ_1:def 2; then A4: c in dom (f1/f) & c in dom (g1/g) by XBOOLE_0:def 3; c in dom (f1 (#)(f^)) /\ dom (g1/g) by A3,Th51; then c in dom (f1 (#)(f^)) /\ dom (g1(#)(g^)) by Th51; then c in dom (f1 (#)(f^)) & c in dom (g1(#)(g^)) by XBOOLE_0:def 3; then c in dom f1 /\ dom(f^) & c in dom g1 /\ dom(g^) by Th5; then A5: c in dom f1 & c in dom(f^) & c in dom g1 & c in dom(g^) by XBOOLE_0:def 3; then A6: (f/.c) <> 0c & g/.c <> 0c by Th17; c in dom f1 /\ dom g1 & c in dom (f^) /\ dom (g^) by A5,XBOOLE_0:def 3; then c in dom f1 /\ dom g1 & c in dom ((f^)(#)(g^)) by Th5; then A7: c in dom f1 /\ dom g1 & c in dom ((f(#)g)^) by Th45; A8: dom (g^) c= dom g & dom (f^) c= dom f by Th15; then c in dom f /\ dom g by A5,XBOOLE_0:def 3; then A9:c in dom (f(#)g) by Th5; c in dom f1 /\ dom g & c in dom g1 /\ dom f by A5,A8,XBOOLE_0:def 3; then A10: c in dom (f1(#)g) & c in dom (g1(#)f) by Th5; then c in dom (f1(#)g) /\ dom (g1(#)f) by XBOOLE_0:def 3; then A11: c in dom (f1(#)g + g1(#)f) by COMSEQ_1:def 2; then c in dom (f1(#)g + g1(#)f) /\ dom ((f(#)g)^) by A7,XBOOLE_0:def 3; then c in dom ((f1(#)g + g1(#)f)(#)((f(#)g)^)) by Th5; then A12: c in dom ((f1(#)g + g1(#)f)/(f(#)g)) by Th51; thus (f1/f + g1/g)/.c = (f1/f)/.c + (g1/g)/.c by A2,Th3 .= (((f1/.c))) * ((f/.c))" + (g1/g)/.c by A4,Def1 .= (((f1/.c))) * ((f/.c))" + (g1/.c) *(g/.c)" by A4,Def1 .= (((f1/.c))) *1r* ((f/.c))" + (g1/.c) * (g/.c)" by COMPLEX1:29 .= (((f1/.c))) *1r* ((f/.c))" + (g1/.c) * 1r * (g/.c)" by COMPLEX1:29 .= (((f1/.c))) *(1r*((f/.c))") + (g1/.c) * 1r * (g/.c)" by XCMPLX_1:4 .= (((f1/.c))) *(1r* ((f/.c))") + (g1/.c) * (1r * (g/.c)") by XCMPLX_1:4 .= (((f1/.c))) *((g/.c) *(g/.c)"* ((f/.c))") + (g1/.c) * (1r * (g/.c)") by A6,COMPLEX1:65 .= (((f1/.c))) *((g/.c) *(g/.c)"* ((f/.c))") + (g1/.c) * (((f/.c)) *((f/.c))" * (g/.c)") by A6,COMPLEX1:65 .= (((f1/.c))) *(g/.c *((g/.c)"* ((f/.c))")) + (g1/.c) * (((f/.c)) *((f/.c))" * (g/.c)") by XCMPLX_1:4 .= (((f1/.c))) *((g/.c) *((g/.c)"* ((f/.c))")) + (g1/.c) * (((f/.c)) *(((f/.c))" * (g/.c)")) by XCMPLX_1:4 .= (((f1/.c))) *((g/.c) *((g/.c * (f/.c))")) + (g1/.c) * (((f/.c)) *(((f/.c))" * (g/.c)")) by XCMPLX_1:205 .= (((f1/.c))) *((g/.c) *(((f/.c)* (g/.c))")) + (g1/.c) * (((f/.c)) *(((f/.c) * (g/.c))")) by XCMPLX_1:205 .= (((f1/.c))) *((g/.c) * ((f(#)g)/.c)") + (g1/.c) * (((f/.c)) *(((f/.c) * (g/.c))")) by A9,Th5 .= (((f1/.c))) *((g/.c) *((f(#)g)/.c)") + (g1/.c) *(((f/.c)) *((f(#)g)/.c)") by A9,Th5 .= (((f1/.c))) *(g/.c) * ((f(#)g)/.c)" + (g1/.c) * (((f/.c)) * ((f(#) g)/.c)") by XCMPLX_1:4 .= (((f1/.c))) *(g/.c) * ((f(#)g)/.c)" + (g1/.c) * ((f/.c)) * ((f(#) g)/.c)" by XCMPLX_1:4 .= (f1(#)g)/.c * ((f(#)g)/.c)" + (g1/.c) *(f/.c) *((f(#)g)/.c)" by A10,Th5 .= (f1(#)g)/.c * ((f(#)g)/.c)" + (g1(#)f)/.c *((f(#)g)/.c)" by A10,Th5 .= ((f1(#)g)/.c + (g1(#)f)/.c) *((f(#)g)/.c)" by XCMPLX_1:8 .= (f1(#)g + g1(#)f)/.c *((f(#)g)/.c)" by A11,Th3 .= ((f1(#)g + g1(#)f)/(f(#)g))/.c by A12,Def1; end; hence f1/f + g1/g = (f1(#)g + g1(#)f)/(f(#)g) by A1,PARTFUN2:3; end; theorem (f/g)/(f1/g1) = (f(#)(g1|dom(g1^)))/(g(#)f1) proof thus (f/g)/(f1/g1) = (f/g)(#)((f1/g1)^) by Th51 .= (f/g)(#)(((g1|dom(g1^)))/f1) by Th55 .= (f(#)(g1|dom(g1^)))/(g(#)f1) by Th54; end; theorem f1/f - g1/g = (f1(#)g - g1(#)f)/(f(#)g) proof thus f1/f - g1/g = f1/f +- g1/g by COMSEQ_1:def 10 .= f1/f + (-1r)(#) (g1/g) by Th40 .= f1/f + ((-1r)(#) g1)/g by Th52 .= (f1(#)g + (-1r)(#) g1(#)f)/(f(#)g) by Th60 .= (f1(#)g + (-1r)(#) (g1(#)f))/(f(#)g) by Th26 .= (f1(#)g + - (g1(#)f))/(f(#)g) by Th40 .= (f1(#)g - (g1(#)f))/(f(#)g) by COMSEQ_1:def 10; end; theorem |.f1/f2.| = |.f1.|/|.f2.| proof thus |.f1/f2.| = |.f1(#)(f2^).| by Th51 .= |.f1.|(#)|.(f2^).| by Th38 .= |.f1.|(#)((|.f2.|)^) by Th50 .= |.f1.|/|.f2.| by RFUNCT_1:47; end; theorem Th64: (f1+f2)|X = f1|X + f2|X & (f1+f2)|X = f1|X + f2 & (f1+f2)|X = f1 + f2|X proof A1: dom ((f1+f2)|X) = dom (f1+f2) /\ X by RELAT_1:90 .= dom f1 /\ dom f2 /\ (X /\ X) by COMSEQ_1:def 2 .= dom f1 /\ (dom f2 /\ (X /\ X)) by XBOOLE_1:16 .= dom f1 /\ (dom f2 /\ X /\ X) by XBOOLE_1:16 .= dom f1 /\ (X /\ dom (f2|X)) by RELAT_1:90 .= dom f1 /\ X /\ dom (f2|X) by XBOOLE_1:16 .= dom (f1|X) /\ dom (f2|X) by RELAT_1:90 .= dom ((f1|X)+(f2|X)) by COMSEQ_1:def 2; now let c; assume A2: c in dom ((f1+f2)|X); then c in dom (f1+f2) /\ X by RELAT_1:90; then A3: c in dom (f1+f2) & c in X by XBOOLE_0:def 3; then c in dom f1 /\ dom f2 by COMSEQ_1:def 2; then c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then c in dom f1 /\ X & c in dom f2 /\ X by A3,XBOOLE_0:def 3; then A4: c in dom (f1|X) & c in dom (f2|X) by RELAT_1:90; then c in dom (f1|X) /\ dom (f2|X) by XBOOLE_0:def 3; then A5: c in dom ((f1|X) + (f2|X)) by COMSEQ_1:def 2; thus ((f1+f2)|X)/.c = (f1+f2)/.c by A2,PARTFUN2:32 .= (((f1/.c))) + (((f2/.c))) by A3,Th3 .= ((f1|X)/.c) + (((f2/.c))) by A4,PARTFUN2:32 .= ((f1|X)/.c) + ((f2|X)/.c) by A4,PARTFUN2:32 .= ((f1|X)+(f2|X))/.c by A5,Th3; end; hence (f1+f2)|X = f1|X + f2|X by A1,PARTFUN2:3; A6: dom ((f1+f2)|X) = dom (f1+f2) /\ X by RELAT_1:90 .= dom f1 /\ dom f2 /\ X by COMSEQ_1:def 2 .= dom f1 /\ X /\ dom f2 by XBOOLE_1:16 .= dom (f1|X) /\ dom f2 by RELAT_1:90 .= dom ((f1|X)+ f2) by COMSEQ_1:def 2; now let c; assume A7: c in dom ((f1+f2)|X); then c in dom (f1+f2) /\ X by RELAT_1:90; then A8: c in dom (f1+f2) & c in X by XBOOLE_0:def 3; then c in dom f1 /\ dom f2 by COMSEQ_1:def 2; then c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then c in dom f1 /\ X & c in dom f2 by A8,XBOOLE_0:def 3; then A9: c in dom (f1|X) & c in dom f2 by RELAT_1:90; then c in dom (f1|X) /\ dom f2 by XBOOLE_0:def 3; then A10: c in dom ((f1|X) + f2) by COMSEQ_1:def 2; thus ((f1+f2)|X)/.c = (f1+f2)/.c by A7,PARTFUN2:32 .= (((f1/.c))) +(((f2/.c))) by A8,Th3 .= ((f1|X)/.c) +(((f2/.c))) by A9,PARTFUN2:32 .= ((f1|X)+f2)/.c by A10,Th3; end; hence (f1+f2)|X = f1|X + f2 by A6,PARTFUN2:3; A11: dom ((f1+f2)|X) = dom (f1+f2) /\ X by RELAT_1:90 .= dom f1 /\ dom f2 /\ X by COMSEQ_1:def 2 .= dom f1 /\ (dom f2 /\ X) by XBOOLE_1:16 .= dom f1 /\ dom (f2|X) by RELAT_1:90 .= dom (f1 + (f2|X)) by COMSEQ_1:def 2; now let c; assume A12: c in dom ((f1+f2)|X); then c in dom (f1+f2) /\ X by RELAT_1:90; then A13: c in dom (f1+f2) & c in X by XBOOLE_0:def 3; then c in dom f1 /\ dom f2 by COMSEQ_1:def 2; then c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then c in dom f1 & c in dom f2 /\ X by A13,XBOOLE_0:def 3; then A14: c in dom f1 & c in dom (f2|X) by RELAT_1:90; then c in dom f1 /\ dom (f2|X) by XBOOLE_0:def 3; then A15: c in dom (f1 + (f2|X)) by COMSEQ_1:def 2; thus ((f1+f2)|X)/.c = (f1+f2)/.c by A12,PARTFUN2:32 .= (((f1/.c))) +(((f2/.c))) by A13,Th3 .= (((f1/.c))) +((f2|X)/.c) by A14,PARTFUN2:32 .= (f1+(f2|X))/.c by A15,Th3; end; hence thesis by A11,PARTFUN2:3; end; theorem Th65: (f1(#)f2)|X = f1|X (#) f2|X & (f1(#)f2)|X = f1|X (#) f2 & (f1(#)f2)|X = f1 (#) f2|X proof A1: dom ((f1(#)f2)|X) = dom (f1(#)f2) /\ X by RELAT_1:90 .= dom f1 /\ dom f2 /\ (X /\ X) by Th5 .= dom f1 /\ (dom f2 /\ (X /\ X)) by XBOOLE_1:16 .= dom f1 /\ (dom f2 /\ X /\ X) by XBOOLE_1:16 .= dom f1 /\ (X /\ dom (f2|X)) by RELAT_1:90 .= dom f1 /\ X /\ dom (f2|X) by XBOOLE_1:16 .= dom (f1|X) /\ dom (f2|X) by RELAT_1:90 .= dom ((f1|X)(#)(f2|X)) by Th5; now let c; assume A2: c in dom ((f1(#)f2)|X); then c in dom (f1(#)f2) /\ X by RELAT_1:90; then A3: c in dom (f1(#)f2) & c in X by XBOOLE_0:def 3; then c in dom f1 /\ dom f2 by Th5; then c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then c in dom f1 /\ X & c in dom f2 /\ X by A3,XBOOLE_0:def 3; then A4: c in dom (f1|X) & c in dom (f2|X) by RELAT_1:90; then c in dom (f1|X) /\ dom (f2|X) by XBOOLE_0:def 3; then A5: c in dom ((f1|X) (#) (f2|X)) by Th5; thus ((f1(#)f2)|X)/.c = (f1(#)f2)/.c by A2,PARTFUN2:32 .= (((f1/.c))) *(((f2/.c))) by A3,Th5 .= ((f1|X)/.c) *(((f2/.c))) by A4,PARTFUN2:32 .= ((f1|X)/.c) *((f2|X)/.c) by A4,PARTFUN2:32 .= ((f1|X)(#)(f2|X))/.c by A5,Th5; end; hence (f1(#)f2)|X = f1|X (#) f2|X by A1,PARTFUN2:3; A6: dom ((f1(#)f2)|X) = dom (f1(#)f2) /\ X by RELAT_1:90 .= dom f1 /\ dom f2 /\ X by Th5 .= dom f1 /\ X /\ dom f2 by XBOOLE_1:16 .= dom (f1|X) /\ dom f2 by RELAT_1:90 .= dom ((f1|X)(#) f2) by Th5; now let c; assume A7: c in dom ((f1(#)f2)|X); then c in dom (f1(#)f2) /\ X by RELAT_1:90; then A8: c in dom (f1(#)f2) & c in X by XBOOLE_0:def 3; then c in dom f1 /\ dom f2 by Th5; then c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then c in dom f1 /\ X & c in dom f2 by A8,XBOOLE_0:def 3; then A9: c in dom (f1|X) & c in dom f2 by RELAT_1:90; then c in dom (f1|X) /\ dom f2 by XBOOLE_0:def 3; then A10: c in dom ((f1|X) (#) f2) by Th5; thus ((f1(#)f2)|X)/.c = (f1(#)f2)/.c by A7,PARTFUN2:32 .= (((f1/.c))) *(((f2/.c))) by A8,Th5 .= ((f1|X)/.c) *(((f2/.c))) by A9,PARTFUN2:32 .= ((f1|X)(#)f2)/.c by A10,Th5; end; hence (f1(#)f2)|X = f1|X (#) f2 by A6,PARTFUN2:3; A11: dom ((f1(#)f2)|X) = dom (f1(#)f2) /\ X by RELAT_1:90 .= dom f1 /\ dom f2 /\ X by Th5 .= dom f1 /\ (dom f2 /\ X) by XBOOLE_1:16 .= dom f1 /\ dom (f2|X) by RELAT_1:90 .= dom (f1 (#) (f2|X)) by Th5; now let c; assume A12: c in dom ((f1(#)f2)|X); then c in dom (f1(#)f2) /\ X by RELAT_1:90; then A13: c in dom (f1(#)f2) & c in X by XBOOLE_0:def 3; then c in dom f1 /\ dom f2 by Th5; then c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then c in dom f1 & c in dom f2 /\ X by A13,XBOOLE_0:def 3; then A14: c in dom f1 & c in dom (f2|X) by RELAT_1:90; then c in dom f1 /\ dom (f2|X) by XBOOLE_0:def 3; then A15: c in dom (f1 (#) (f2|X)) by Th5; thus ((f1(#)f2)|X)/.c = (f1(#)f2)/.c by A12,PARTFUN2:32 .= (((f1/.c))) *(((f2/.c))) by A13,Th5 .= (((f1/.c))) *((f2|X)/.c) by A14,PARTFUN2:32 .= (f1(#)(f2|X))/.c by A15,Th5; end; hence thesis by A11,PARTFUN2:3; end; theorem Th66: (-f)|X = -(f|X) & (f^)|X = (f|X)^ & (|.f.|)|X = |.(f|X).| proof A1: dom ((-f)|X) = dom (-f) /\ X by RELAT_1:90 .= dom f /\ X by Th9 .= dom (f|X) by RELAT_1:90 .= dom (-(f|X)) by Th9; now let c; assume A2: c in dom ((-f)|X); then c in dom (-f) /\ X by RELAT_1:90; then A3: c in dom (-f) & c in X by XBOOLE_0:def 3; then c in dom f by Th9; then c in dom f /\ X by A3,XBOOLE_0:def 3; then A4: c in dom (f|X) by RELAT_1:90; then A5: c in dom (-(f|X)) by Th9; thus ((-f)|X)/.c = (-f)/.c by A2,PARTFUN2:32 .= -((f/.c)) by A3,Th9 .= -((f|X)/.c) by A4,PARTFUN2:32 .= (-(f|X))/.c by A5,Th9; end; hence (-f)|X = -(f|X) by A1,PARTFUN2:3; A6: dom ((f|X)^) c= dom (f|X) by Th15; A7: dom ((f^)|X) = dom (f^) /\ X by RELAT_1:90 .= (dom f \ f"{0c}) /\ X by Def2 .= dom f /\ X \ f"{0c} /\ X by XBOOLE_1:50 .= dom (f|X) \ X /\ f"{0c} by RELAT_1:90 .= dom (f|X) \ (f|X)"{0c} by FUNCT_1:139 .= dom ((f|X)^) by Def2; now let c; assume A8: c in dom ((f^)|X); then c in dom (f^) /\ X by RELAT_1:90; then A9: c in dom (f^) & c in X by XBOOLE_0:def 3; thus ((f^)|X)/.c = (f^)/.c by A8,PARTFUN2:32 .= ((f/.c))" by A9,Def2 .= ((f|X)/.c)" by A6,A7,A8,PARTFUN2:32 .= ((f|X)^)/.c by A7,A8,Def2; end; hence (f^)|X = (f|X)^ by A7,PARTFUN2:3; A10: dom ((|.f.|)|X) = dom (|.f.|) /\ X by RELAT_1:90 .= dom f /\ X by COMSEQ_1:def 13 .= dom (f|X) by RELAT_1:90 .= dom (|.(f|X).|) by COMSEQ_1:def 13; now let c; assume A11: c in dom ((|.f.|)|X); then c in dom (|.f.|) /\ X by RELAT_1:90; then A12: c in dom (|.f.|) & c in X by XBOOLE_0:def 3; A13: c in dom (f|X) by A10,A11,COMSEQ_1:def 13; thus ((|.f.|)|X).c = (|.f.|).c by A11,FUNCT_1:70 .= |.(f/.c).| by A12,COMSEQ_1:def 13 .= |.(f|X)/.c.| by A13,PARTFUN2:32 .= (|.(f|X).|).c by A10,A11,COMSEQ_1:def 13; end; hence thesis by A10,PARTFUN1:34; end; theorem (f1-f2)|X = f1|X - f2|X & (f1-f2)|X = f1|X - f2 &(f1-f2)|X = f1 - f2|X proof thus (f1-f2)|X = (f1+-f2)|X by COMSEQ_1:def 10 .= (f1|X)+ (-f2)|X by Th64 .= (f1|X)+ -(f2|X) by Th66 .= (f1|X) - (f2|X) by COMSEQ_1:def 10; thus (f1-f2)|X = (f1+-f2)|X by COMSEQ_1:def 10 .= (f1|X)+ -f2 by Th64 .= (f1|X) - f2 by COMSEQ_1:def 10; thus (f1-f2)|X = (f1+-f2)|X by COMSEQ_1:def 10 .= f1+ (-f2)|X by Th64 .= f1 +- (f2|X) by Th66 .= f1 - (f2|X) by COMSEQ_1:def 10; end; theorem (f1/f2)|X = f1|X / f2|X & (f1/f2)|X = f1|X / f2 &(f1/f2)|X = f1 / f2|X proof thus (f1/f2)|X = (f1(#)(f2^))|X by Th51 .= (f1|X) (#) (f2^|X) by Th65 .= (f1|X) (#) ((f2|X)^) by Th66 .= (f1|X)/(f2|X) by Th51; thus (f1/f2)|X = (f1(#)(f2^))|X by Th51 .= (f1|X) (#) (f2^) by Th65 .= (f1|X)/f2 by Th51; thus (f1/f2)|X = (f1(#)(f2^))|X by Th51 .= f1 (#) (f2^)|X by Th65 .= f1 (#) ((f2|X)^) by Th66 .= f1/(f2|X) by Th51; end; theorem (r(#)f)|X = r(#)(f|X) proof A1: dom ((r(#)f)|X) = dom (r(#)f) /\ X by RELAT_1:90 .= dom f /\ X by Th7 .= dom (f|X) by RELAT_1:90 .= dom (r(#)(f|X)) by Th7; now let c; assume A2: c in dom ((r(#)f)|X); then c in dom (r(#)f) /\ X by RELAT_1:90; then A3: c in dom (r(#)f) & c in X by XBOOLE_0:def 3; then c in dom f by Th7; then c in dom f /\ X by A3,XBOOLE_0:def 3; then A4: c in dom (f|X) by RELAT_1:90; then A5: c in dom (r(#)(f|X)) by Th7; thus ((r(#)f)|X)/.c = (r(#)f)/.c by A2,PARTFUN2:32 .= r*((f/.c)) by A3,Th7 .= r*((f|X)/.c) by A4,PARTFUN2:32 .= (r(#)(f|X))/.c by A5,Th7; end; hence thesis by A1,PARTFUN2:3; end; begin :: :: TOTAL PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX :: theorem Th70: (f1 is total & f2 is total iff f1+f2 is total) & (f1 is total & f2 is total iff f1-f2 is total) & (f1 is total & f2 is total iff f1(#)f2 is total) proof thus f1 is total & f2 is total iff f1+f2 is total proof thus f1 is total & f2 is total implies f1+f2 is total proof assume f1 is total & f2 is total; then dom f1 = C & dom f2 = C by PARTFUN1:def 4; hence dom (f1+f2) = C /\ C by COMSEQ_1:def 2 .= C; end; assume f1+f2 is total; then dom (f1+f2) = C by PARTFUN1:def 4; then dom f1 /\ dom f2 = C by COMSEQ_1:def 2; then C c= dom f1 & C c= dom f2 by XBOOLE_1:17; hence dom f1 = C & dom f2 = C by XBOOLE_0:def 10; end; thus f1 is total & f2 is total iff f1-f2 is total proof thus f1 is total & f2 is total implies f1-f2 is total proof assume f1 is total & f2 is total; then dom f1 = C & dom f2 = C by PARTFUN1:def 4; hence dom (f1-f2) = C /\ C by Th4 .= C; end; assume f1-f2 is total; then dom (f1-f2) = C by PARTFUN1:def 4; then dom f1 /\ dom f2 = C by Th4; then C c= dom f1 & C c= dom f2 by XBOOLE_1:17; hence dom f1 = C & dom f2 = C by XBOOLE_0:def 10; end; thus f1 is total & f2 is total implies f1(#)f2 is total proof assume f1 is total & f2 is total; then dom f1 = C & dom f2 = C by PARTFUN1:def 4; hence dom (f1(#)f2) = C /\ C by Th5 .= C; end; assume f1(#)f2 is total; then dom (f1(#)f2) = C by PARTFUN1:def 4; then dom f1 /\ dom f2 = C by Th5; then C c= dom f1 & C c= dom f2 by XBOOLE_1:17; hence dom f1 = C & dom f2 = C by XBOOLE_0:def 10; end; theorem Th71: f is total iff r(#)f is total proof thus f is total implies r(#)f is total proof assume f is total; then dom f = C by PARTFUN1:def 4; hence dom (r(#)f) = C by Th7; end; assume r(#)f is total; then dom (r(#)f) = C by PARTFUN1:def 4; hence dom f = C by Th7; end; theorem Th72: f is total iff -f is total proof thus f is total implies -f is total proof assume A1: f is total; -f = (-1r)(#)f by Th40; hence -f is total by A1,Th71; end; assume A2: -f is total; -f = (-1r)(#)f by Th40; hence f is total by A2,Th71 ; end; theorem Th73: f is total iff |.f.| is total proof thus f is total implies |.f.| is total proof assume f is total; then dom f = C by PARTFUN1:def 4; hence dom (|.f.|) = C by COMSEQ_1:def 13; end; assume |.f.| is total; then dom (|.f.|) = C by PARTFUN1:def 4; hence dom f = C by COMSEQ_1:def 13; end; theorem Th74: f^ is total iff f"{0c} = {} & f is total proof thus f^ is total implies f"{0c} = {} & f is total proof assume f^ is total; then A1: dom (f^) = C by PARTFUN1:def 4; f"{0c} c= C; then f"{0c} c= dom f \ f"{0c} by A1,Def2; hence f"{0c} = {} by XBOOLE_1:38; then C = dom f \ {} by A1,Def2; hence dom f = C; end; assume A2: f"{0c} = {} & f is total; thus dom (f^) = dom f \ f"{0c} by Def2 .= C by A2,PARTFUN1:def 4; end; theorem Th75: f1 is total & f2"{0c} = {} & f2 is total iff f1/f2 is total proof thus f1 is total & f2"{0c} = {} & f2 is total implies f1/f2 is total proof assume A1: f1 is total & f2"{0c} = {} & f2 is total; then f2^ is total by Th74; then f1(#)(f2^) is total by A1,Th70; hence f1/f2 is total by Th51; end; assume f1/f2 is total; then A2: f1(#)(f2^) is total by Th51; hence f1 is total by Th70; f2^ is total by A2,Th70; hence thesis by Th74; end; theorem f1 is total & f2 is total implies (f1+f2)/.c = ((f1/.c)) + ((f2/.c)) & (f1-f2)/.c = ((f1/.c)) - ((f2/.c)) & (f1(#) f2)/.c = ((f1/.c)) * ((f2/.c)) proof assume A1: f1 is total & f2 is total; then f1+f2 is total by Th70; then dom (f1+f2) = C by PARTFUN1:def 4; hence (f1+f2)/.c = ((f1/.c)) + ((f2/.c)) by Th3; f1-f2 is total by A1,Th70; then dom (f1-f2) = C by PARTFUN1:def 4; hence (f1-f2)/.c = ((f1/.c)) - ((f2/.c)) by Th4; f1(#)f2 is total by A1,Th70; then dom (f1(#)f2) = C by PARTFUN1:def 4; hence (f1(#)f2)/.c = ((f1/.c)) * ((f2/.c)) by Th5; end; theorem f is total implies (r(#)f)/.c = r * ((f/.c)) proof assume f is total; then r(#)f is total by Th71; then dom (r(#)f) = C by PARTFUN1:def 4; hence (r(#)f)/.c = r * ((f/.c)) by Th7; end; theorem f is total implies (-f)/.c = - (f/.c) & (|.f.|).c = |. (f/.c) .| proof assume A1: f is total; then -f is total by Th72; then dom (-f) = C by PARTFUN1:def 4; hence (-f)/.c = - (f/.c) by Th9; |.f.| is total by A1,Th73; then dom (|.f.|) = C by PARTFUN1:def 4; hence (|.f.|).c = |. (f/.c) .| by COMSEQ_1:def 13; end; theorem f^ is total implies (f^)/.c = ((f/.c))" proof assume f^ is total; then dom (f^) = C by PARTFUN1:def 4; hence (f^)/.c = ((f/.c))" by Def2; end; theorem f1 is total & f2^ is total implies (f1/f2)/.c = ((f1/.c)) *(((f2/.c)))" proof assume f1 is total & f2^ is total; then f1 is total & f2"{0c} = {} & f2 is total by Th74; then f1/f2 is total by Th75; then dom (f1/f2) = C by PARTFUN1:def 4; hence thesis by Def1; end; begin :: :: BOUNDED AND CONSTANT PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX :: definition let C,f,Y; pred f is_bounded_on Y means :Def3: |.f.| is_bounded_on Y; end; theorem Th81: f is_bounded_on Y iff ex p be real number st for c st c in Y /\ dom f holds |.(f/.c).|<= p proof hereby assume f is_bounded_on Y; then |.f.| is_bounded_on Y by Def3; then consider p be real number such that A1: for c st c in Y /\ dom |.f.| holds abs(|.f.|.c) <= p by RFUNCT_1:90; A2:dom |.f.| = dom f by COMSEQ_1:def 13; now let c such that A3: c in Y /\ dom f; A4: Y /\ dom f c= dom f by XBOOLE_1:17; A5: abs(|.f.|.c) <= p by A1,A2,A3; A6: abs(|.f.|.c)= abs(|.(f/.c).|) by A2,A3,A4,COMSEQ_1:def 13; 0<=|.(f/.c).| by COMPLEX1:132; hence |.(f/.c).| <= p by A5,A6,ABSVALUE:def 1; end; hence ex p be real number st for c st c in Y /\ dom f holds |.(f/.c).| <= p; end; given p be real number such that A7: for c st c in Y /\ dom f holds |.(f/.c).| <= p; A8:dom |.f.| = dom f by COMSEQ_1:def 13; now let c such that A9: c in Y /\ dom |.f.|; A10: Y /\ dom |.f.| c= dom |.f.| by XBOOLE_1:17; A11: |.(f/.c).| <= p by A7,A8,A9; A12: abs(|.f.|.c)= abs(|.(f/.c).|) by A9,A10,COMSEQ_1:def 13; 0<=|.(f/.c).| by COMPLEX1:132; hence abs(|.f.|.c) <= p by A11,A12,ABSVALUE:def 1; end; then |.f.| is_bounded_on Y by RFUNCT_1:90; hence f is_bounded_on Y by Def3; end; theorem Y c= X & f is_bounded_on X implies f is_bounded_on Y proof assume Y c= X & f is_bounded_on X; then Y c= X & |.f.| is_bounded_on X by Def3; then |.f.| is_bounded_on Y by RFUNCT_1:91; hence thesis by Def3; end; theorem X misses dom f implies f is_bounded_on X proof assume X /\ dom f = {}; then for c holds c in X /\ dom f implies |.(f/.c).| <= 0; hence thesis by Th81; end; theorem Th84: f is_bounded_on Y implies r(#)f is_bounded_on Y proof assume f is_bounded_on Y; then |.f.| is_bounded_on Y by Def3; then |.r.|(#) |.f.| is_bounded_on Y by RFUNCT_1:97; then |.r(#)f.| is_bounded_on Y by Th39; hence r(#)f is_bounded_on Y by Def3; end; theorem |.f.| is_bounded_below_on X proof take 0; let c; assume c in X /\ dom (|.f.|); then A1: c in dom (|.f.|) by XBOOLE_0:def 3; 0 <= |. (f/.c) .| by COMPLEX1:132 ; hence 0 <= (|.f.|).c by A1,COMSEQ_1:def 13; end; theorem Th86: f is_bounded_on Y implies |.f.| is_bounded_on Y & -f is_bounded_on Y proof assume A1: f is_bounded_on Y; hence |.f.| is_bounded_on Y by Def3; (-1r)(#)f is_bounded_on Y by A1,Th84; hence thesis by Th40; end; theorem Th87: (f1 is_bounded_on X & f2 is_bounded_on Y) implies f1+f2 is_bounded_on (X /\ Y) proof assume A1: f1 is_bounded_on X & f2 is_bounded_on Y; then consider r1 such that A2: for c st c in X /\ dom f1 holds |.((f1/.c)).| <= r1 by Th81; consider r2 such that A3: for c st c in Y /\ dom f2 holds |.((f2/.c)).| <= r2 by A1,Th81; ex p1 st for c st c in X /\ Y /\ dom (f1+f2) holds |.(f1+f2)/.c.| <= p1 proof take r0=r1+r2; let c; assume c in X /\ Y /\ dom (f1+f2); then A4: c in X /\ Y & c in dom (f1+f2) by XBOOLE_0:def 3; then c in X & c in Y & c in dom f1 /\ dom f2 by COMSEQ_1:def 2,XBOOLE_0:def 3; then c in X & c in Y & c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then A5: c in X /\ dom f1 & c in Y /\ dom f2 by XBOOLE_0:def 3; then A6: |.((f1/.c)).| <= r1 by A2; |.((f2/.c)).| <= r2 by A3,A5; then A7:|.((f1/.c)).|+|.((f2/.c)).| <= r0 by A6,REAL_1:55; |.((f1/.c)) + ((f2/.c)).| <= |.((f1/.c)).|+|.((f2/.c)).| by COMPLEX1:142; then |.((f1/.c)) + ((f2/.c)).| <= r0 by A7,AXIOMS:22; hence |.(f1+f2)/.c.| <= r0 by A4,Th3; end; hence f1+f2 is_bounded_on X /\ Y by Th81; end; theorem Th88: f1 is_bounded_on X & f2 is_bounded_on Y implies f1(#)f2 is_bounded_on (X /\ Y) & f1-f2 is_bounded_on X /\ Y proof assume A1: f1 is_bounded_on X & f2 is_bounded_on Y; then consider r1 such that A2: for c st c in X /\ dom f1 holds |.((f1/.c)).| <= r1 by Th81; consider r2 such that A3: for c st c in Y /\ dom f2 holds |.((f2/.c)).| <= r2 by A1,Th81; now take r=r1*r2; let c; assume c in X /\ Y /\ dom (f1(#)f2); then A4: c in X /\ Y & c in dom (f1(#)f2) by XBOOLE_0:def 3; then c in X & c in Y & c in dom f1 /\ dom f2 by Th5,XBOOLE_0:def 3; then c in X & c in Y & c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then A5: c in X /\ dom f1 & c in Y /\ dom f2 by XBOOLE_0:def 3; then A6: |.((f1/.c)).| <= r1 by A2; A7: |.((f2/.c)).| <= r2 by A3,A5; A8: 0<=|.((f1/.c)).| by COMPLEX1:132; 0<=|.((f2/.c)).| by COMPLEX1:132; then |.((f1/.c)).|*|.((f2/.c)).| <= r by A6,A7,A8,RFUNCT_1:2; then |.((f1/.c)) * ((f2/.c)).| <= r by COMPLEX1:151; hence |.(f1(#)f2)/.c.| <= r by A4,Th5; end; hence f1(#)f2 is_bounded_on X /\ Y by Th81; -f2 is_bounded_on Y by A1,Th86; then f1+-f2 is_bounded_on (X /\ Y) by A1,Th87; hence thesis by COMSEQ_1:def 10; end; theorem f is_bounded_on X & f is_bounded_on Y implies f is_bounded_on X \/ Y proof assume A1: f is_bounded_on X & f is_bounded_on Y; then A2: |.f.| is_bounded_on X by Def3; |.f.| is_bounded_on Y by A1,Def3; then |.f.| is_bounded_on X \/ Y by A2,RFUNCT_1:104; hence f is_bounded_on X \/ Y by Def3; end; theorem f1 is_constant_on X & f2 is_constant_on Y implies (f1 + f2) is_constant_on (X /\ Y) & (f1 - f2) is_constant_on (X /\ Y) & (f1 (#) f2) is_constant_on (X /\ Y) proof assume A1: f1 is_constant_on X & f2 is_constant_on Y; then consider cr1 such that A2: for c st c in X /\ dom f1 holds ((f1/.c)) = cr1 by PARTFUN2:def 3; consider cr2 such that A3: for c st c in Y /\ dom f2 holds ((f2/.c)) = cr2 by A1,PARTFUN2:def 3; now let c; assume c in X /\ Y /\ dom (f1+f2); then A4: c in X /\ Y & c in dom (f1+f2) by XBOOLE_0:def 3; then c in X & c in Y & c in (dom f1 /\ dom f2) by COMSEQ_1:def 2,XBOOLE_0:def 3; then c in X & c in Y & c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then A5: c in X /\ dom f1 & c in Y /\ dom f2 by XBOOLE_0:def 3; thus (f1+f2)/.c =((f1/.c)) + ((f2/.c)) by A4,Th3 .= cr1 + ((f2/.c)) by A2,A5 .= cr1 + cr2 by A3,A5; end; hence (f1 + f2) is_constant_on (X /\ Y) by PARTFUN2:def 3; now let c; assume c in X /\ Y /\ dom (f1-f2); then A6: c in X /\ Y & c in dom (f1-f2) by XBOOLE_0:def 3; then c in X & c in Y & c in (dom f1 /\ dom f2) by Th4,XBOOLE_0:def 3; then c in X & c in Y & c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then A7: c in X /\ dom f1 & c in Y /\ dom f2 by XBOOLE_0:def 3; thus (f1-f2)/.c = ((f1/.c)) - ((f2/.c)) by A6,Th4 .= cr1 - ((f2/.c)) by A2,A7 .= cr1 - cr2 by A3,A7; end; hence (f1 - f2) is_constant_on (X /\ Y) by PARTFUN2:def 3; now let c; assume c in X /\ Y /\ dom (f1(#)f2); then A8: c in X /\ Y & c in dom (f1(#)f2) by XBOOLE_0:def 3; then c in X & c in Y & c in (dom f1 /\ dom f2) by Th5,XBOOLE_0:def 3; then c in X & c in Y & c in dom f1 & c in dom f2 by XBOOLE_0:def 3; then A9: c in X /\ dom f1 & c in Y /\ dom f2 by XBOOLE_0:def 3; thus (f1(#)f2)/.c =((f1/.c)) * ((f2/.c)) by A8,Th5 .= cr1 * ((f2/.c)) by A2,A9 .= cr1 * cr2 by A3,A9; end; hence thesis by PARTFUN2:def 3; end; theorem Th91: f is_constant_on Y implies q(#)f is_constant_on Y proof assume f is_constant_on Y; then consider r such that A1: for c st c in Y /\ dom f holds (f/.c) = r by PARTFUN2:def 3; now let c; assume c in Y /\ dom (q(#)f); then A2: c in dom (q(#)f) & c in Y by XBOOLE_0:def 3; then c in dom f by Th7; then A3: c in Y /\ dom f by A2,XBOOLE_0:def 3; thus (q(#)f)/.c = q * (f/.c) by A2,Th7 .= q*r by A1,A3; end; hence q(#)f is_constant_on Y by PARTFUN2:def 3; end; theorem Th92: f is_constant_on Y implies |.f.| is_constant_on Y & -f is_constant_on Y proof assume f is_constant_on Y; then consider r such that A1: for c st c in Y /\ dom f holds (f/.c) = r by PARTFUN2:def 3; now let c; assume c in Y /\ dom (|.f.|); then A2: c in dom (|.f.|) & c in Y by XBOOLE_0:def 3; then c in dom f by COMSEQ_1:def 13; then A3: c in Y /\ dom f by A2,XBOOLE_0:def 3; thus (|.f.|).c = |.(f/.c).| by A2,COMSEQ_1:def 13 .= |.r.| by A1,A3; end; hence |.f.| is_constant_on Y by PARTFUN2:76; now take p=-r; let c; assume A4: c in Y /\ dom (-f); then c in Y /\ dom f by Th9; then A5: -(f/.c) = p by A1; c in dom (-f) by A4,XBOOLE_0:def 3; hence (-f)/.c = p by A5,Th9; end; hence thesis by PARTFUN2:def 3; end; theorem Th93: f is_constant_on Y implies f is_bounded_on Y proof assume f is_constant_on Y; then consider r such that A1: for c st c in Y /\ dom f holds (f/.c) = r by PARTFUN2:def 3; now take p=|.r.|; let c; assume c in Y /\ dom f; hence |.(f/.c).| <= p by A1; end; hence thesis by Th81; end; theorem f is_constant_on Y implies (for r holds r(#)f is_bounded_on Y) & (-f is_bounded_on Y) & |.f.| is_bounded_on Y proof assume A1: f is_constant_on Y; now let r; r(#)f is_constant_on Y by A1,Th91; hence r(#)f is_bounded_on Y by Th93; end; hence for r holds r(#)f is_bounded_on Y; -f is_constant_on Y by A1,Th92; hence -f is_bounded_on Y by Th93; |.f.| is_constant_on Y by A1,Th92; hence |.f.| is_bounded_on Y by RFUNCT_1:108; end; theorem Th95: (f1 is_bounded_on X & f2 is_constant_on Y implies f1+f2 is_bounded_on (X /\ Y)) proof assume A1: f1 is_bounded_on X & f2 is_constant_on Y; then f2 is_bounded_on Y by Th93; hence thesis by A1,Th87; end; theorem (f1 is_bounded_on X & f2 is_constant_on Y implies f1-f2 is_bounded_on X /\ Y & f2-f1 is_bounded_on X /\ Y & f1(#)f2 is_bounded_on X /\ Y) proof assume A1: f1 is_bounded_on X & f2 is_constant_on Y; then -f2 is_constant_on Y by Th92; then f1+(-f2) is_bounded_on X /\ Y by A1,Th95; hence f1-f2 is_bounded_on X /\ Y by COMSEQ_1:def 10; A2: f2 is_bounded_on Y by A1,Th93; hence f2-f1 is_bounded_on X /\ Y by A1,Th88; thus thesis by A1,A2,Th88; end;