Journal of Formalized Mathematics
Volume 15, 2003
University of Bialystok
Copyright (c) 2003
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Masaaki Niimura,
and
- Yasushi Fuwa
- Received January 3, 2003
- MML identifier: RADIX_3
- [
Mizar article,
MML identifier index
]
environ
vocabulary INT_1, NAT_1, ARYTM_1, ARYTM_3, POWER, MIDSP_3, FINSEQ_1, FUNCT_1,
RELAT_1, RLVECT_1, RADIX_1, FINSEQ_4, RADIX_3, GROUP_1;
notation TARSKI, XBOOLE_0, SUBSET_1, XCMPLX_0, XREAL_0, INT_1, NAT_1, FUNCT_1,
POWER, FINSEQ_1, FINSEQ_4, BINARITH, TREES_4, WSIERP_1, MIDSP_3, RADIX_1;
constructors REAL_1, POWER, BINARITH, FINSEQ_4, EULER_2, RADIX_1, MEMBERED;
clusters INT_1, RELSET_1, GROUP_2, NAT_1, XREAL_0, MEMBERED;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: Definition for Radix-2^k SD_Sub number
reserve i,n,m,k,x for Nat,
i1,i2 for Integer;
theorem :: RADIX_3:1
Radix(k) |^ n * Radix(k) = Radix(k) |^ (n+1);
definition let k;
func k-SD_Sub_S equals
:: RADIX_3:def 1
{e where e is Element of INT:
e >= -Radix(k -' 1) & e <= Radix(k -' 1) - 1 };
end;
definition let k;
func k-SD_Sub equals
:: RADIX_3:def 2
{e where e is Element of INT:
e >= -Radix(k -' 1) - 1 & e <= Radix(k -' 1) };
end;
theorem :: RADIX_3:2
i1 in k-SD_Sub implies -Radix(k-'1) - 1 <= i1 & i1 <= Radix(k-'1);
theorem :: RADIX_3:3
for k being Nat holds k-SD_Sub_S c= k-SD_Sub;
theorem :: RADIX_3:4
k-SD_Sub_S c= (k+1)-SD_Sub_S;
theorem :: RADIX_3:5
for k being Nat st 2 <= k holds k-SD_Sub c= k-SD;
theorem :: RADIX_3:6
0 in 0-SD_Sub_S;
theorem :: RADIX_3:7
0 in k-SD_Sub_S;
theorem :: RADIX_3:8
0 in k-SD_Sub;
theorem :: RADIX_3:9
for e being set st e in k-SD_Sub holds e is Integer;
theorem :: RADIX_3:10
k-SD_Sub c= INT;
theorem :: RADIX_3:11
k-SD_Sub_S c= INT;
definition let k;
cluster k-SD_Sub_S -> non empty;
cluster k-SD_Sub -> non empty;
end;
definition let k;
redefine func k-SD_Sub_S -> non empty Subset of INT;
end;
definition let k;
redefine func k-SD_Sub -> non empty Subset of INT;
end;
reserve a for Tuple of n,k-SD;
reserve a_Sub for Tuple of n,k-SD_Sub;
theorem :: RADIX_3:12
i in Seg n implies a_Sub.i is Element of k-SD_Sub;
begin :: Definition for new carry calculation method
definition let x be Integer, k be Nat;
func SDSub_Add_Carry(x,k) -> Integer equals
:: RADIX_3:def 3
1 if Radix(k -' 1) <= x,
-1 if x < -Radix(k -' 1)
otherwise 0;
end;
definition let x be Integer, k be Nat;
func SDSub_Add_Data(x,k) -> Integer equals
:: RADIX_3:def 4
x - Radix(k) * SDSub_Add_Carry(x,k);
end;
theorem :: RADIX_3:13
for x be Integer, k be Nat st 2 <= k holds
-1 <= SDSub_Add_Carry(x,k) & SDSub_Add_Carry(x,k) <= 1;
theorem :: RADIX_3:14
2 <= k & i1 in k-SD implies
SDSub_Add_Data(i1,k) >= -Radix(k-'1) &
SDSub_Add_Data(i1,k) <= Radix(k-'1) - 1;
theorem :: RADIX_3:15
for x be Integer, k be Nat st 2 <= k holds
SDSub_Add_Carry(x,k) in k-SD_Sub_S;
theorem :: RADIX_3:16
2 <= k & i1 in k-SD & i2 in k-SD implies
SDSub_Add_Data(i1,k) + SDSub_Add_Carry(i2,k) in k-SD_Sub;
theorem :: RADIX_3:17
2 <= k implies SDSub_Add_Carry(0,k) = 0;
begin :: Definition for translation from Radix-2^k SD number
definition let i,k,n be Nat, x be Tuple of n,(k-SD_Sub);
func DigA_SDSub(x,i) -> Integer equals
:: RADIX_3:def 5
x.i if i in Seg n,
0 if i = 0;
end;
definition let i,k,n be Nat, x be Tuple of n,(k-SD);
func SD2SDSubDigit(x,i,k) -> Integer equals
:: RADIX_3:def 6
SDSub_Add_Data(DigA(x,i),k)+SDSub_Add_Carry(DigA(x,i-'1),k) if i in Seg n,
SDSub_Add_Carry(DigA(x,i-'1), k) if i = n + 1
otherwise 0;
end;
theorem :: RADIX_3:18
2 <= k & i in Seg (n+1) implies
SD2SDSubDigit(a,i,k) is Element of k-SD_Sub;
definition let i,k,n be Nat, x be Tuple of n,(k-SD);
assume
2 <= k & i in Seg (n+1);
func SD2SDSubDigitS(x,i,k) -> Element of k-SD_Sub equals
:: RADIX_3:def 7
SD2SDSubDigit(x,i,k);
end;
definition let n,k be Nat, x be Tuple of n,(k-SD);
func SD2SDSub(x) -> Tuple of (n+1),(k-SD_Sub) means
:: RADIX_3:def 8
for i be Nat st i in Seg (n+1) holds
DigA_SDSub(it,i) = SD2SDSubDigitS(x,i,k);
end;
theorem :: RADIX_3:19
i in Seg n implies DigA_SDSub(a_Sub,i) is Element of k-SD_Sub;
theorem :: RADIX_3:20
2 <= k & i1 in k-SD & i2 in k-SD_Sub implies
SDSub_Add_Data(i1+i2,k) in k-SD_Sub_S;
begin :: Definiton for Translation from Radix-2^k SD_Sub number to INT
definition let i,k,n be Nat, x be Tuple of n,(k-SD_Sub);
func DigB_SDSub(x,i) -> Element of INT equals
:: RADIX_3:def 9
DigA_SDSub(x,i);
end;
definition let i,k,n be Nat, x be Tuple of n, k-SD_Sub;
func SDSub2INTDigit(x,i,k) -> Element of INT equals
:: RADIX_3:def 10
(Radix(k) |^ (i -'1)) * DigB_SDSub(x,i);
end;
definition let n,k be Nat, x be Tuple of n, k-SD_Sub;
func SDSub2INT(x) -> Tuple of n,INT means
:: RADIX_3:def 11
for i be Nat st i in Seg n holds it/.i = SDSub2INTDigit(x,i,k);
end;
definition let n,k be Nat, x be Tuple of n,(k-SD_Sub);
func SDSub2IntOut(x) -> Integer equals
:: RADIX_3:def 12
Sum SDSub2INT(x);
end;
theorem :: RADIX_3:21
for i st i in Seg n holds 2 <= k implies
DigA_SDSub(SD2SDSub(DecSD(m,n+1,k)),i)
= DigA_SDSub(SD2SDSub(DecSD((m mod (Radix(k) |^ n)),n,k)),i);
theorem :: RADIX_3:22
for n st n >= 1 holds
for k,x st
k >= 2 & x is_represented_by n,k holds
x = SDSub2IntOut( SD2SDSub(DecSD(x,n,k)) );
Back to top