Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Yoshinori Fujisawa,
and
- Yasushi Fuwa
- Received September 7, 1999
- MML identifier: RADIX_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary INT_1, NAT_1, ARYTM_1, ARYTM_3, POWER, MIDSP_3, FINSEQ_1, FUNCT_1,
RELAT_1, RLVECT_1, RADIX_1, FINSEQ_4, GROUP_1;
notation TARSKI, XBOOLE_0, SUBSET_1, XCMPLX_0, XREAL_0, INT_1, NAT_1, FUNCT_1,
POWER, FINSEQ_1, FINSEQ_4, BINARITH, TREES_4, WSIERP_1, MIDSP_3;
constructors REAL_1, POWER, BINARITH, FINSEQ_4, EULER_2, WSIERP_1, MEMBERED,
INT_1;
clusters INT_1, RELSET_1, GROUP_2, NAT_1, XREAL_0, MEMBERED;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: Some Useful Theorems
reserve i,k,m,n,p,x,y for Nat,
i1,i2,i3 for Integer,
e for set;
canceled;
theorem :: RADIX_1:2
n mod k = k - 1 implies (n+1) mod k = 0;
theorem :: RADIX_1:3
k <> 0 & n mod k < k - 1 implies (n+1) mod k = (n mod k) + 1;
theorem :: RADIX_1:4
m <> 0 implies (k mod (m*n)) mod n = k mod n;
theorem :: RADIX_1:5
k <> 0 implies (n+1) mod k = 0 or (n+1) mod k = (n mod k) + 1;
theorem :: RADIX_1:6
i <> 0 & k <> 0 implies (n mod (i |^ k)) div (i |^ (k -'1)) < i;
theorem :: RADIX_1:7
k <= n implies m |^ k divides m |^ n;
theorem :: RADIX_1:8
i2 > 0 & i3 >= 0 implies (i1 mod (i2*i3)) mod i3 = i1 mod i3;
begin :: Definition for Radix-2^k, k-SD
definition let n;
func Radix(n) -> Nat equals
:: RADIX_1:def 1
2 to_power n;
end;
definition let k;
func k-SD -> set equals
:: RADIX_1:def 2
{e where e is Element of INT:e <= Radix(k)-1 & e >= -Radix(k)+1};
end;
theorem :: RADIX_1:9
Radix(n) <> 0;
theorem :: RADIX_1:10
for e holds e in 0-SD iff e = 0;
theorem :: RADIX_1:11
0-SD = {0};
theorem :: RADIX_1:12
k-SD c= (k+1)-SD;
theorem :: RADIX_1:13
e in k-SD implies e is Integer;
theorem :: RADIX_1:14
k-SD c= INT;
theorem :: RADIX_1:15
i1 in k-SD implies i1 <= Radix(k)-1 & i1 >= -Radix(k)+1;
theorem :: RADIX_1:16
0 in k-SD;
definition let k;
cluster k-SD -> non empty;
end;
definition let k;
redefine func k-SD -> non empty Subset of INT;
end;
begin :: Functions for generating Radix-2^k SD numbers from natural numbers
:: and natural numbers from Radix-2^k SD numbers
reserve a for Tuple of n,(k-SD);
canceled;
theorem :: RADIX_1:18
i in Seg n implies a.i is Element of k-SD;
definition let i,k,n be Nat, x be Tuple of n,(k-SD);
func DigA(x,i) -> Integer equals
:: RADIX_1:def 3
x.i if i in Seg n,
0 if i = 0;
end;
definition let i,k,n be Nat, x be Tuple of n,(k-SD);
func DigB(x,i) -> Element of INT equals
:: RADIX_1:def 4
DigA(x,i);
end;
theorem :: RADIX_1:19
i in Seg n implies DigA(a,i) is Element of k-SD;
theorem :: RADIX_1:20
for x be Tuple of 1,INT st x/.1 = m holds x = <*m*>;
definition let i,k,n be Nat, x be Tuple of n,(k-SD);
func SubDigit(x,i,k) -> Element of INT equals
:: RADIX_1:def 5
(Radix(k) |^ (i -'1))*DigB(x,i);
end;
definition let n,k be Nat, x be Tuple of n,(k-SD);
func DigitSD(x) -> Tuple of n,INT means
:: RADIX_1:def 6
for i be Nat st i in Seg n holds it/.i = SubDigit(x,i,k);
end;
definition let n,k be Nat, x be Tuple of n,(k-SD);
func SDDec(x) -> Integer equals
:: RADIX_1:def 7
Sum DigitSD(x);
end;
definition let i,k,x be Nat;
func DigitDC(x,i,k) -> Element of k-SD equals
:: RADIX_1:def 8
(x mod (Radix(k) |^ i)) div (Radix(k) |^ (i -'1));
end;
definition let k,n,x be Nat;
func DecSD(x,n,k) -> Tuple of n,(k-SD) means
:: RADIX_1:def 9
for i be Nat st i in Seg n holds DigA(it,i) = DigitDC(x,i,k);
end;
begin :: Definition for carry & data components of Addition
definition let x be Integer;
func SD_Add_Carry(x) -> Integer equals
:: RADIX_1:def 10
1 if x > 2,
-1 if x < -2
otherwise 0;
end;
theorem :: RADIX_1:21
SD_Add_Carry(0) = 0;
definition let x be Integer, k be Nat;
func SD_Add_Data(x,k) -> Integer equals
:: RADIX_1:def 11
x - SD_Add_Carry(x)*Radix(k);
end;
theorem :: RADIX_1:22
SD_Add_Data(0,k) = 0;
theorem :: RADIX_1:23
k >= 2 & i1 in k-SD & i2 in k-SD implies
-Radix(k)+2 <= SD_Add_Data(i1+i2,k) & SD_Add_Data(i1+i2,k) <= Radix(k)-2;
begin :: Definition for checking whether or not a natural number can be
:: expressed as n digits Radix-2^k SD number
definition let n,x,k be Nat;
pred x is_represented_by n,k means
:: RADIX_1:def 12
x < (Radix(k) |^ n);
end;
theorem :: RADIX_1:24
m is_represented_by 1,k implies DigA(DecSD(m,1,k),1) = m;
theorem :: RADIX_1:25
for n st n >= 1 holds
for m st m is_represented_by n,k holds m = SDDec(DecSD(m,n,k));
theorem :: RADIX_1:26
k >= 2 & m is_represented_by 1,k & n is_represented_by 1,k implies
SD_Add_Carry(DigA(DecSD(m,1,k),1)+DigA(DecSD(n,1,k),1)) = SD_Add_Carry(m+n)
;
theorem :: RADIX_1:27
m is_represented_by (n+1),k implies
DigA(DecSD(m,(n+1),k),n+1) = m div (Radix(k) |^ n);
begin :: Definition for Addition operation for a high-speed adder algorithm
:: on Radix-2^k SD number
definition let k,i,n be Nat, x,y be Tuple of n,(k-SD);
assume i in Seg n & k >= 2;
func Add(x,y,i,k) -> Element of k-SD equals
:: RADIX_1:def 13
SD_Add_Data(DigA(x,i)+DigA(y,i),k)
+ SD_Add_Carry(DigA(x,i -'1)+DigA(y,i -'1));
end;
definition let n,k be Nat,x,y be Tuple of n,(k-SD);
func x '+' y -> Tuple of n,(k-SD) means
:: RADIX_1:def 14
for i st i in Seg n holds DigA(it,i) = Add(x,y,i,k);
end;
theorem :: RADIX_1:28
k >= 2 & m is_represented_by 1,k & n is_represented_by 1,k implies
SDDec(DecSD(m,1,k)'+'DecSD(n,1,k)) = SD_Add_Data(m+n,k);
theorem :: RADIX_1:29
for n st n >= 1 holds
for k,x,y st
k >= 2 & x is_represented_by n,k & y is_represented_by n,k holds
x + y = (SDDec(DecSD(x,n,k) '+' DecSD(y,n,k)))
+ (Radix(k) |^ n)*
SD_Add_Carry(DigA(DecSD(x,n,k),n)+DigA(DecSD(y,n,k),n));
Back to top