environ vocabulary ARYTM, ARYTM_1, ARYTM_3, RELAT_1, BOOLE; notation XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1; constructors REAL_1, XREAL_0, MEMBERED, XBOOLE_0; clusters XREAL_0, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve a,b,d,e for real number; canceled 62; theorem :: REAL_2:63 for a,b ex e st a=b-e; theorem :: REAL_2:64 for a,b st a<>0 & b<>0 ex e st a=b/e; canceled 40; theorem :: REAL_2:105 (a+-b<=0 or b-a>=0 or b+-a>=0 or a-e<=b+-e or a+-e<=b-e or e-a>=e-b) implies a<=b; theorem :: REAL_2:106 (a+-b<0 or b-a>0 or -a+b>0 or a-e<b+-e or a+-e<b-e or e-a>e-b) implies a<b; canceled 2; theorem :: REAL_2:109 a<=-b implies a+b<=0 & -a>=b; theorem :: REAL_2:110 a<-b implies a+b<0 & -a>b; theorem :: REAL_2:111 -a<=b implies a+b>=0; theorem :: REAL_2:112 -b<a implies a+b>0; canceled 4; theorem :: REAL_2:117 b>0 implies (a/b>1 implies a>b) & (a/b<1 implies a<b) & (a/b>-1 implies a>-b & b>-a) & (a/b<-1 implies a<-b & b<-a); theorem :: REAL_2:118 b>0 implies (a/b>=1 implies a>=b) & (a/b<=1 implies a<=b) & (a/b>=-1 implies a>=-b & b>=-a) & (a/b<=-1 implies a<=-b & b<=-a); theorem :: REAL_2:119 b<0 implies (a/b>1 implies a<b) & (a/b<1 implies a>b) & (a/b>-1 implies a<-b & b<-a) & (a/b<-1 implies a>-b & b>-a); theorem :: REAL_2:120 b<0 implies (a/b>=1 implies a<=b) & (a/b<=1 implies a>=b) & (a/b>=-1 implies a<=-b & b<=-a) & (a/b<=-1 implies a>=-b & b>=-a); theorem :: REAL_2:121 a>=0 & b>=0 or a<=0 & b<=0 implies a*b>=0; theorem :: REAL_2:122 a<0 & b<0 or a>0 & b>0 implies a*b>0; theorem :: REAL_2:123 a>=0 & b<=0 or a<=0 & b>=0 implies a*b<=0; canceled; theorem :: REAL_2:125 a<=0 & b<=0 or a>=0 & b>=0 implies a/b>=0; theorem :: REAL_2:126 a>=0 & b<0 or a<=0 & b>0 implies a/b<=0; theorem :: REAL_2:127 a>0 & b>0 or a<0 & b<0 implies a/b>0; theorem :: REAL_2:128 a<0 & b>0 implies a/b<0 & b/a<0; theorem :: REAL_2:129 a*b<=0 implies a>=0 & b<=0 or a<=0 & b>=0; canceled 2; theorem :: REAL_2:132 a*b<0 implies a>0 & b<0 or a<0 & b>0; theorem :: REAL_2:133 b<>0 & a/b<=0 implies b>0 & a<=0 or b<0 & a>=0; theorem :: REAL_2:134 b<>0 & a/b>=0 implies b>0 & a>=0 or b<0 & a<=0; theorem :: REAL_2:135 b<>0 & a/b<0 implies b<0 & a>0 or b>0 & a<0; theorem :: REAL_2:136 b<>0 & a/b>0 implies b>0 & a>0 or b<0 & a<0; theorem :: REAL_2:137 a>1 & (b>1 or b>=1) or a<-1 & (b<-1 or b<=-1) implies a*b>1; theorem :: REAL_2:138 a>=1 & b>=1 or a<=-1 & b<=-1 implies a*b>=1; theorem :: REAL_2:139 0<=a & a<1 & 0<=b & b<=1 or 0>=a & a>-1 & 0>=b & b>=-1 implies a*b<1; theorem :: REAL_2:140 0<=a & a<=1 & 0<=b & b<=1 or 0>=a & a>=-1 & 0>=b & b>=-1 implies a*b<=1; canceled; theorem :: REAL_2:142 0<a & a<b or b<a & a<0 implies a/b<1 & b/a>1; theorem :: REAL_2:143 0<a & a<=b or b<=a & a<0 implies a/b<=1 & b/a>=1; theorem :: REAL_2:144 a>0 & b>1 or a<0 & b<1 implies a*b>a; theorem :: REAL_2:145 a>0 & b<1 or a<0 & b>1 implies a*b<a; theorem :: REAL_2:146 a>=0 & b>=1 or a<=0 & b<=1 implies a*b>=a; theorem :: REAL_2:147 a>=0 & b<=1 or a<=0 & b>=1 implies a*b<=a; canceled; theorem :: REAL_2:149 a<0 implies 1/a<0 & a"<0; theorem :: REAL_2:150 (1/a<0 implies a<0) & (1/a>0 implies a>0); theorem :: REAL_2:151 (0<a or b<0) & a<b implies 1/a>1/b; theorem :: REAL_2:152 (0<a or b<0) & a<=b implies 1/a>=1/b; theorem :: REAL_2:153 a<0 & b>0 implies 1/a<1/b; theorem :: REAL_2:154 (1/b>0 or 1/a<0) & 1/a>1/b implies a<b; theorem :: REAL_2:155 (1/b>0 or 1/a<0) & 1/a>=1/b implies a<=b; theorem :: REAL_2:156 1/a<0 & 1/b>0 implies a<b; theorem :: REAL_2:157 a<-1 implies 1/a>-1; theorem :: REAL_2:158 a<=-1 implies 1/a>=-1; canceled 5; theorem :: REAL_2:164 1<=a implies 1/a<=1; theorem :: REAL_2:165 (b<=e-a implies a<=e-b) & (b>=e-a implies a>=e-b); canceled; theorem :: REAL_2:167 a+b<=e+d implies a-e<=d-b; theorem :: REAL_2:168 a+b<e+d implies a-e<d-b; theorem :: REAL_2:169 a-b<=e-d implies a+d<=e+b & a-e<=b-d & e-a>=d-b & b-a>=d-e; theorem :: REAL_2:170 a-b<e-d implies a+d<e+b & a-e<b-d & e-a>d-b & b-a>d-e; theorem :: REAL_2:171 (a+b<=e-d implies a+d<=e-b) & (a+b>=e-d implies a+d>=e-b); canceled; theorem :: REAL_2:173 (a<0 implies a+b<b & b-a>b) & (a+b<b or b-a>b implies a<0); theorem :: REAL_2:174 (a<=0 implies a+b<=b & b-a>=b) & (a+b<=b or b-a>=b implies a<=0); canceled 2; theorem :: REAL_2:177 (b>0 & a*b<=e implies a<=e/b) & (b<0 & a*b<=e implies a>=e/b) & (b>0 & a*b>=e implies a>=e/b) & (b<0 & a*b>=e implies a<=e/b); theorem :: REAL_2:178 (b>0 & a*b<e implies a<e/b) & (b<0 & a*b<e implies a>e/b) & (b>0 & a*b>e implies a>e/b) & (b<0 & a*b>e implies a<e/b); canceled 2; theorem :: REAL_2:181 (for a st a>0 holds b+a>=e) or (for a st a<0 holds b-a>=e) implies b>=e; theorem :: REAL_2:182 (for a st a>0 holds b-a<=e) or (for a st a<0 holds b+a<=e) implies b<=e; theorem :: REAL_2:183 (for a st a>1 holds b*a>=e) or (for a st 0<a & a<1 holds b/a>=e) implies b>=e; theorem :: REAL_2:184 (for a st 0<a & a<1 holds b*a<=e) or (for a st a>1 holds b/a<=e) implies b<=e; theorem :: REAL_2:185 (b>0 & d>0 or b<0 & d<0) & a*d<e*b implies a/b<e/d; theorem :: REAL_2:186 (b>0 & d<0 or b<0 & d>0) & a*d<e*b implies a/b>e/d; theorem :: REAL_2:187 (b>0 & d>0 or b<0 & d<0) & a*d<=e*b implies a/b<=e/d; theorem :: REAL_2:188 (b>0 & d<0 or b<0 & d>0) & a*d<=e*b implies a/b>=e/d; canceled 4; theorem :: REAL_2:193 b<0 & d<0 or b>0 & d>0 implies (a*b<e/d implies a*d<e/b) & (a*b>e/d implies a*d>e/b); theorem :: REAL_2:194 b<0 & d>0 or b>0 & d<0 implies (a*b<e/d implies a*d>e/b) & (a*b>e/d implies a*d<e/b); canceled 2; theorem :: REAL_2:197 (0<a or 0<=a) & (a<b or a<=b) & (0<e or 0<=e) & e<=d implies a*e<=b*d; theorem :: REAL_2:198 0>=a & a>=b & 0>=e & e>=d implies a*e<=b*d; theorem :: REAL_2:199 0<a & a<=b & 0<e & e<d or 0>a & a>=b & 0>e & e>d implies a*e<b*d; theorem :: REAL_2:200 (e>0 & a>0 & a<b implies e/a>e/b) & (e>0 & b<0 & a<b implies e/a>e/b); theorem :: REAL_2:201 e>=0 & (a>0 or b<0) & a<=b implies e/a>=e/b; theorem :: REAL_2:202 e<0 & (a>0 or b<0) & a<b implies e/a<e/b; theorem :: REAL_2:203 e<=0 & (a>0 or b<0) & a<=b implies e/a<=e/b; theorem :: REAL_2:204 for X,Y being Subset of REAL st X<>{} & Y<>{} & for a,b st a in X & b in Y holds a<=b holds ex d st (for a st a in X holds a<=d) & for b st b in Y holds d<=b;