Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Artur Kornilowicz
- Received February 21, 1999
- MML identifier: TOPREAL7
- [
Mizar article,
MML identifier index
]
environ
vocabulary FINSEQ_1, METRIC_1, SQUARE_1, RELAT_1, ARYTM_1, FUNCT_1, FINSEQ_2,
RVSUM_1, ABSVALUE, EUCLID, PRE_TOPC, MCART_1, RELAT_2, PCOMPS_1, TARSKI,
SETFAM_1, BORSUK_1, T_0TOPSP, SUBSET_1, ARYTM_3, COMPLEX1, RLVECT_1,
ORDINAL2, TOPREAL7;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, FUNCT_2,
BINOP_1, MCART_1, DOMAIN_1, NUMBERS, XREAL_0, REAL_1, ABSVALUE, SQUARE_1,
NAT_1, FINSEQ_1, RVSUM_1, FINSEQOP, STRUCT_0, PRE_TOPC, TOPS_2, PCOMPS_1,
BORSUK_1, METRIC_1, EUCLID, FINSEQ_2, T_0TOPSP, GOBOARD1;
constructors ABSVALUE, DOMAIN_1, FINSEQOP, GOBOARD1, INT_1, NAT_1, REAL_1,
SEQ_1, SQUARE_1, T_0TOPSP, TOPS_2, BORSUK_1, MEMBERED;
clusters SUBSET_1, INT_1, METRIC_1, PCOMPS_1, RELSET_1, STRUCT_0, EUCLID,
MEMBERED;
requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;
begin
reserve i, j, n for Nat,
f, g, h, k for FinSequence of REAL,
M, N for non empty MetrSpace;
theorem :: TOPREAL7:1
for a, b being Real st max(a,b) <= a holds max(a,b) = a;
theorem :: TOPREAL7:2
for a, b, c, d being Real holds max(a+c,b+d) <= max(a,b) + max(c,d);
theorem :: TOPREAL7:3
for a, b, c, d, e, f being Real st a <= b+c & d <= e+f holds
max(a,d) <= max(b,e) + max(c,f);
theorem :: TOPREAL7:4
for f, g being FinSequence holds dom g c= dom (f^g);
theorem :: TOPREAL7:5
for f, g being FinSequence st len f < i & i <= len f + len g holds
i - len f in dom g;
theorem :: TOPREAL7:6
for f, g, h, k being FinSequence st f^g = h^k & len f = len h & len g = len k
holds f = h & g = k;
theorem :: TOPREAL7:7
len f = len g or dom f = dom g implies len (f+g) = len f & dom (f+g) = dom f;
theorem :: TOPREAL7:8
len f = len g or dom f = dom g implies len (f-g) = len f & dom (f-g) = dom f;
theorem :: TOPREAL7:9
len f = len sqr f & dom f = dom sqr f;
theorem :: TOPREAL7:10
len f = len abs f & dom f = dom abs f;
theorem :: TOPREAL7:11
sqr (f^g) = sqr f ^ sqr g;
theorem :: TOPREAL7:12
abs (f^g) = abs f ^ abs g;
theorem :: TOPREAL7:13
len f = len h & len g = len k implies sqr (f^g + h^k) = sqr (f+h) ^ sqr (g+k
);
theorem :: TOPREAL7:14
len f = len h & len g = len k implies abs (f^g + h^k) = abs (f+h) ^ abs (g+k
);
theorem :: TOPREAL7:15
len f = len h & len g = len k implies sqr (f^g - h^k) = sqr (f-h) ^ sqr (g-k
);
theorem :: TOPREAL7:16
len f = len h & len g = len k implies abs (f^g - h^k) = abs (f-h) ^ abs (g-k);
theorem :: TOPREAL7:17
len f = n implies f in the carrier of Euclid n;
theorem :: TOPREAL7:18
len f = n implies f in the carrier of TOP-REAL n;
theorem :: TOPREAL7:19
for f being FinSequence st f in the carrier of Euclid n holds len f = n;
definition let M, N be non empty MetrStruct;
func max-Prod2(M,N) -> strict MetrStruct means
:: TOPREAL7:def 1
the carrier of it = [:the carrier of M,the carrier of N:] &
for x, y being Point of it
ex x1, y1 being Point of M,
x2, y2 being Point of N st x = [x1,x2] & y = [y1,y2] &
(the distance of it).(x,y) =
max ((the distance of M).(x1,y1),(the distance of N).(x2,y2));
end;
definition let M, N be non empty MetrStruct;
cluster max-Prod2(M,N) -> non empty;
end;
definition let M, N be non empty MetrStruct,
x be Point of M,
y be Point of N;
redefine func [x,y] -> Element of max-Prod2(M,N);
end;
definition let M, N be non empty MetrStruct,
x be Point of max-Prod2(M,N);
redefine func x`1 -> Element of M;
redefine func x`2 -> Element of N;
end;
theorem :: TOPREAL7:20
for M, N being non empty MetrStruct,
m1, m2 being Point of M, n1, n2 being Point of N holds
dist([m1,n1],[m2,n2]) = max (dist(m1,m2),dist(n1,n2));
theorem :: TOPREAL7:21
for M, N being non empty MetrStruct,
m, n being Point of max-Prod2(M,N) holds
dist(m,n) = max (dist(m`1,n`1),dist(m`2,n`2));
theorem :: TOPREAL7:22
for M, N being Reflexive (non empty MetrStruct) holds
max-Prod2(M,N) is Reflexive;
definition let M, N be Reflexive (non empty MetrStruct);
cluster max-Prod2(M,N) -> Reflexive;
end;
theorem :: TOPREAL7:23
for M, N being symmetric (non empty MetrStruct) holds
max-Prod2(M,N) is symmetric;
definition let M, N be symmetric (non empty MetrStruct);
cluster max-Prod2(M,N) -> symmetric;
end;
theorem :: TOPREAL7:24
for M, N being triangle (non empty MetrStruct) holds
max-Prod2(M,N) is triangle;
definition let M, N be triangle (non empty MetrStruct);
cluster max-Prod2(M,N) -> triangle;
end;
definition let M, N be non empty MetrSpace;
cluster max-Prod2(M,N) -> discerning;
end;
theorem :: TOPREAL7:25
[:TopSpaceMetr M,TopSpaceMetr N:] = TopSpaceMetr max-Prod2(M,N);
theorem :: TOPREAL7:26
the carrier of M = the carrier of N &
(for m being Point of M, n being Point of N, r being Real st r > 0 & m = n
ex r1 being Real st r1 > 0 & Ball(n,r1) c= Ball(m,r)) &
(for m being Point of M, n being Point of N, r being Real st r > 0 & m = n
ex r1 being Real st r1 > 0 & Ball(m,r1) c= Ball(n,r)) implies
TopSpaceMetr M = TopSpaceMetr N;
theorem :: TOPREAL7:27
[:TOP-REAL i,TOP-REAL j:], TOP-REAL (i+j) are_homeomorphic;
Back to top