environ vocabulary DIRAF, AFF_1, ANALOAF, INCSP_1, AFF_2, AFF_3; notation STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2; constructors AFF_1, AFF_2, XBOOLE_0; clusters ZFMISC_1, XBOOLE_0; begin reserve AP for AffinPlane; reserve a,a',b,b',c,c',d,x,y,o,p,q for Element of AP; reserve A,C,D',M,N,P for Subset of AP; definition let AP; attr AP is satisfying_DES1 means :: AFF_3:def 1 for A,P,C,o,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & P<>A & P<>C & A<>C & o in A & a in A & a' in A & o in P & b in P & b' in P & o in C & c in C & c' in C & o<>a & o<>b & o<>c & p<>q & not LIN b,a,c & not LIN b',a',c' & a<>a' & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // a',c' holds a,c // p,q; synonym AP satisfies_DES1; end; definition let AP; attr AP is satisfying_DES1_1 means :: AFF_3:def 2 for A,P,C,o,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & P<>A & P<>C & A<>C & o in A & a in A & a' in A & o in P & b in P & b' in P & o in C & c in C & c' in C & o<>a & o<>b & o<>c & p<>q & c <>q & not LIN b,a,c & not LIN b',a',c' & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // p,q holds a,c // a',c'; synonym AP satisfies_DES1_1; end; definition let AP; attr AP is satisfying_DES1_2 means :: AFF_3:def 3 for A,P,C,o,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & P<>A & P<>C & A<>C & o in A & a in A & a' in A & o in P & b in P & b' in P & c in C & c' in C & o<>a & o<>b & o<>c & p<>q & not LIN b,a,c & not LIN b',a',c' & c <>c' & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // a',c' & a,c // p,q holds o in C; synonym AP satisfies_DES1_2; end; definition let AP; attr AP is satisfying_DES1_3 means :: AFF_3:def 4 for A,P,C,o,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & P<>A & P<>C & A<>C & o in A & a in A & a' in A & b in P & b' in P & o in C & c in C & c' in C & o<>a & o<>b & o<>c & p<>q & not LIN b,a,c & not LIN b',a',c' & b<>b' & a<>a' & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // a',c' & a,c // p,q holds o in P; synonym AP satisfies_DES1_3; end; definition let AP; attr AP is satisfying_DES2 means :: AFF_3:def 5 for A,P,C,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & A<>P & A<>C & P<>C & a in A & a' in A & b in P & b' in P & c in C & c' in C & A // P & A // C & not LIN b,a,c & not LIN b',a',c' & p<>q & a<>a' & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // a',c' holds a,c // p,q; synonym AP satisfies_DES2; end; definition let AP; attr AP is satisfying_DES2_1 means :: AFF_3:def 6 for A,P,C,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & A<>P & A<>C & P<>C & a in A & a' in A & b in P & b' in P & c in C & c' in C & A // P & A // C & not LIN b,a,c & not LIN b',a',c' & p<>q & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // p,q holds a,c // a',c'; synonym AP satisfies_DES2_1; end; definition let AP; attr AP is satisfying_DES2_2 means :: AFF_3:def 7 for A,P,C,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & A<>P & A<>C & P<>C & a in A & a' in A & b in P & b' in P & c in C & c' in C & A // C & not LIN b,a,c & not LIN b',a',c' & p<>q & a<>a' & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // a',c' & a,c // p,q holds A // P; synonym AP satisfies_DES2_2; end; definition let AP; attr AP is satisfying_DES2_3 means :: AFF_3:def 8 for A,P,C,a,a',b,b',c,c',p,q st A is_line & P is_line & C is_line & A<>P & A<>C & P<>C & a in A & a' in A & b in P & b' in P & c in C & c' in C & A // P & not LIN b,a,c & not LIN b',a',c' & p<>q & c <>c' & LIN b,a,p & LIN b',a',p & LIN b,c,q & LIN b',c',q & a,c // a',c' & a,c // p,q holds A // C; synonym AP satisfies_DES2_3; end; canceled 8; theorem :: AFF_3:9 AP satisfies_DES1 implies AP satisfies_DES1_1; theorem :: AFF_3:10 AP satisfies_DES1_1 implies AP satisfies_DES1; theorem :: AFF_3:11 AP satisfies_DES implies AP satisfies_DES1; theorem :: AFF_3:12 AP satisfies_DES implies AP satisfies_DES1_2; theorem :: AFF_3:13 AP satisfies_DES1_2 implies AP satisfies_DES1_3; theorem :: AFF_3:14 AP satisfies_DES1_2 implies AP satisfies_DES; theorem :: AFF_3:15 AP satisfies_DES2_1 implies AP satisfies_DES2; theorem :: AFF_3:16 AP satisfies_DES2_1 iff AP satisfies_DES2_3; theorem :: AFF_3:17 AP satisfies_DES2 iff AP satisfies_DES2_2; theorem :: AFF_3:18 AP satisfies_DES1_3 implies AP satisfies_DES2_1;