Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990 Association of Mizar Users

The abstract of the Mizar article:

Analytical Ordered Affine Spaces

by
Henryk Oryszczyszyn, and
Krzysztof Prazmowski

Received April 11, 1990

MML identifier: ANALOAF
[ Mizar article, MML identifier index ]


environ

 vocabulary RLVECT_1, ARYTM_1, RELAT_1, REALSET1, ANALOAF;
 notation TARSKI, XBOOLE_0, ZFMISC_1, DOMAIN_1, REAL_1, RELSET_1, STRUCT_0,
      RLVECT_1, REALSET1;
 constructors DOMAIN_1, REAL_1, REALSET1, XREAL_0, MEMBERED, XBOOLE_0;
 clusters SUBSET_1, RELSET_1, STRUCT_0, XREAL_0, MEMBERED, ZFMISC_1, XBOOLE_0;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;


begin

reserve V for RealLinearSpace;
reserve p,q,u,v,w,y for VECTOR of V;
reserve a,b,c,d for Real;

definition let V; let u,v,w,y;
 pred u,v // w,y means
:: ANALOAF:def 1
  u=v or w=y or ex a,b st 0<a & 0<b & a*(v-u)=b*(y-w);
end;

canceled;

theorem :: ANALOAF:2
 0<a & 0<b implies 0<a+b;

theorem :: ANALOAF:3
 a<>b implies 0<a-b or 0<b-a;

theorem :: ANALOAF:4
 (w-v)+(v-u) = w-u;

canceled;

theorem :: ANALOAF:6
 w-(u-v) = w+(v-u);

canceled 2;

theorem :: ANALOAF:9
 y+u = v+w implies y-w = v-u;

theorem :: ANALOAF:10
 a*(u-v) = -(a*(v-u));

theorem :: ANALOAF:11
 (a-b)*(u-v) = (b-a)*(v-u);

theorem :: ANALOAF:12
 a<>0 & a*u=v implies u=a"*v;

theorem :: ANALOAF:13
 (a<>0 & a*u=v implies u=a"*v) &
      (a<>0 & u=a"*v implies a*u=v);

canceled 2;

theorem :: ANALOAF:16
  u,v // w,y & u<>v & w<>y implies ex a,b st
                                   a*(v-u)=b*(y-w) & 0<a & 0<b;

theorem :: ANALOAF:17
  u,v // u,v;

theorem :: ANALOAF:18
   u,v // w,w & u,u // v,w;

theorem :: ANALOAF:19
  u,v // v,u implies u=v;

theorem :: ANALOAF:20
  p<>q & p,q // u,v & p,q // w,y implies u,v // w,y;

theorem :: ANALOAF:21
  u,v // w,y implies v,u // y,w & w,y // u,v;

theorem :: ANALOAF:22
  u,v // v,w implies u,v // u,w;

theorem :: ANALOAF:23
  u,v // u,w implies u,v // v,w or u,w // w,v;

theorem :: ANALOAF:24
  v-u=y-w implies u,v // w,y;

theorem :: ANALOAF:25
  y=(v+w)-u implies u,v // w,y & u,w // v,y;

theorem :: ANALOAF:26
 (ex p,q st p<>q) implies
  (for u,v,w ex y st u,v // w,y & u,w // v,y & v<>y);

theorem :: ANALOAF:27
  p<>v & v,p // p,w implies ex y st u,p // p,y & u,v // w,y;

theorem :: ANALOAF:28
 (for a,b st a*u + b*v=0.V holds a=0 & b=0) implies u<>v & u<>0.V & v<>0.V;

theorem :: ANALOAF:29
  (ex u,v st (for a,b st a*u + b*v=0.V holds a=0 & b=0)) implies
    (ex u,v,w,y st not u,v // w,y & not u,v // y,w);

canceled;

 theorem :: ANALOAF:31
  (ex p,q st (for w ex a,b st a*p + b*q=w)) implies
  (for u,v,w,y st not u,v // w,y & not u,v // y,w
    ex z being VECTOR of V st
      (u,v // u,z or u,v // z,u) & (w,y // w,z or w,y // z,w));

definition
  struct(1-sorted) AffinStruct (#carrier -> set,
                   CONGR -> Relation of [:the carrier,the carrier:]#);
end;

definition
 cluster non empty strict AffinStruct;
end;

reserve AS for non empty AffinStruct;
reserve a,b,c,d for Element of AS;
reserve x,z for set;

definition let AS,a,b,c,d;
  pred a,b // c,d means
:: ANALOAF:def 2
 [[a,b],[c,d]] in the CONGR of AS;
end;

definition let V;
 func DirPar(V) -> Relation of [:the carrier of V,the carrier of V:]
means
:: ANALOAF:def 3
 [x,z] in it iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y;
end;

canceled;

theorem :: ANALOAF:33
   [[u,v],[w,y]] in DirPar(V) iff u,v // w,y;

definition let V; func OASpace(V) -> strict AffinStruct equals
:: ANALOAF:def 4
   AffinStruct (#the carrier of V, DirPar(V)#);
end;

definition let V;
 cluster OASpace V -> non empty;
end;

canceled;

theorem :: ANALOAF:35
    (ex u,v st
     for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0)
 implies
  ((ex a,b being Element of OASpace(V) st a<>b) &
   (for a,b,c,d,p,q,r,s being Element of OASpace(V) holds
     a,b // c,c &
     (a,b // b,a implies a=b) &
     (a<>b & a,b // p,q & a,b // r,s implies p,q // r,s) &
     (a,b // c,d implies b,a // d,c) &
     (a,b // b,c implies a,b // a,c) &
     (a,b // a,c implies a,b // b,c or a,c // c,b)) &
    (ex a,b,c,d  being Element of OASpace(V)
         st not a,b // c,d & not a,b // d,c) &
    (for a,b,c  being Element of OASpace(V)
      ex d  being Element of OASpace(V)
         st a,b // c,d & a,c // b,d & b<>d) &
    (for p,a,b,c  being Element of OASpace(V)
      st p<>b & b,p // p,c
       ex d being Element of OASpace(V)
                         st a,p // p,d & a,b // c,d));

theorem :: ANALOAF:36
 (ex p,q being VECTOR of V st
  (for w being VECTOR of V ex a,b being Real st a*p + b*q=w))
  implies
  (for a,b,c,d being Element of OASpace(V) st
                               not a,b // c,d & not a,b // d,c
    ex t being Element of OASpace(V) st
      (a,b // a,t or a,b // t,a) & (c,d // c,t or c,d // t,c));

definition let IT be non empty AffinStruct;
 attr IT is OAffinSpace-like means
:: ANALOAF:def 5
   (for a,b,c,d,p,q,r,s being Element of IT holds
     a,b // c,c &
     (a,b // b,a implies a=b) &
     (a<>b & a,b // p,q & a,b // r,s implies p,q // r,s) &
     (a,b // c,d implies b,a // d,c) &
     (a,b // b,c implies a,b // a,c) &
     (a,b // a,c implies a,b // b,c or a,c // c,b)) &
    (ex a,b,c,d  being Element of IT
         st not a,b // c,d & not a,b // d,c) &
    (for a,b,c  being Element of IT
      ex d  being Element of IT
         st a,b // c,d & a,c // b,d & b<>d) &
    for p,a,b,c  being Element of IT
      st p<>b & b,p // p,c
       ex d being Element of IT st a,p // p,d & a,b // c,d;
end;

definition
 cluster strict non trivial OAffinSpace-like (non empty AffinStruct);
end;

definition
 mode OAffinSpace is non trivial OAffinSpace-like (non empty AffinStruct);
end;

theorem :: ANALOAF:37
    ((ex a,b being Element of AS st a<>b) &
   (for a,b,c,d,p,q,r,s being Element of AS holds
     a,b // c,c &
     (a,b // b,a implies a=b) &
     (a<>b & a,b // p,q & a,b // r,s implies p,q // r,s) &
     (a,b // c,d implies b,a // d,c) &
     (a,b // b,c implies a,b // a,c) &
     (a,b // a,c implies a,b // b,c or a,c // c,b)) &
    (ex a,b,c,d  being Element of AS
         st not a,b // c,d & not a,b // d,c) &
    (for a,b,c  being Element of AS
      ex d  being Element of AS
         st a,b // c,d & a,c // b,d & b<>d) &
    (for p,a,b,c  being Element of AS
      st p<>b & b,p // p,c ex d being
             Element of AS st a,p // p,d & a,b // c,d))
      iff AS is OAffinSpace;

theorem :: ANALOAF:38
 (ex u,v st
   for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0)
    implies OASpace(V) is OAffinSpace;




definition let IT be OAffinSpace;
 attr IT is 2-dimensional means
:: ANALOAF:def 6
   for a,b,c,d being Element of IT st
     not a,b // c,d & not a,b // d,c holds
      ex p being Element of IT st
      (a,b // a,p or a,b // p,a) & (c,d // c,p or c,d // p,c);
 end;

definition
 cluster strict 2-dimensional OAffinSpace;
end;

definition
 mode OAffinPlane is 2-dimensional OAffinSpace;
end;

canceled 11;

theorem :: ANALOAF:50
    ((ex a,b being Element of AS st a<>b) &
   (for a,b,c,d,p,q,r,s being Element of AS holds
     a,b // c,c &
     (a,b // b,a implies a=b) &
     (a<>b & a,b // p,q & a,b // r,s implies p,q // r,s) &
     (a,b // c,d implies b,a // d,c) &
     (a,b // b,c implies a,b // a,c) &
     (a,b // a,c implies a,b // b,c or a,c // c,b)) &
    (ex a,b,c,d  being Element of AS
         st not a,b // c,d & not a,b // d,c) &
    (for a,b,c  being Element of AS
      ex d  being Element of AS
         st a,b // c,d & a,c // b,d & b<>d) &
    (for p,a,b,c  being Element of AS
      st p<>b & b,p // p,c
       ex d being Element of AS st a,p // p,d & a,b // c,d) &
    (for a,b,c,d being Element of AS st
     not a,b // c,d & not a,b // d,c holds
      ex p being Element of AS st
      (a,b // a,p or a,b // p,a) & (c,d // c,p or c,d // p,c)) )
   iff AS is OAffinPlane;

theorem :: ANALOAF:51
   (ex u,v st
     (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0) &
     (for w ex a,b being Real st w = a*u + b*v))
     implies OASpace(V) is OAffinPlane;

Back to top