Journal of Formalized Mathematics
Volume 15, 2003
University of Bialystok
Copyright (c) 2003 Association of Mizar Users

The abstract of the Mizar article:

On the Upper and Lower Approximations of the Curve

by
Robert Milewski

Received September 27, 2003

MML identifier: JORDAN19
[ Mizar article, MML identifier index ]


environ

 vocabulary JORDAN19, JORDAN8, PSCOMP_1, BOOLE, JORDAN1A, JORDAN9, GOBOARD1,
      GOBOARD5, JORDAN6, SPRECT_2, JORDAN3, FINSEQ_5, JORDAN2C, GROUP_2, NAT_1,
      SPPOL_2, REALSET1, JORDAN1E, SQUARE_1, FINSEQ_4, TOPREAL2, CONNSP_1,
      COMPTS_1, TOPREAL1, SPPOL_1, FINSEQ_1, TREES_1, EUCLID, RELAT_1, MCART_1,
      MATRIX_1, GOBOARD9, PRE_TOPC, RELAT_2, SEQM_3, SUBSET_1, FUNCT_1,
      ARYTM_1, FINSEQ_6, GOBOARD2, GROUP_1, GRAPH_2, METRIC_1, ARYTM, ORDINAL2,
      ARYTM_3, INT_1, FUNCT_5, ABSVALUE, CONNSP_2, COMPLEX1, POWER, TOPS_1,
      KURATO_2, PROB_1;
 notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, ORDINAL1, XCMPLX_0, XREAL_0,
      REAL_1, INT_1, NAT_1, SQUARE_1, FUNCT_1, FUNCT_2, LIMFUNC1, ABSVALUE,
      FINSEQ_1, FINSEQ_4, FINSEQ_5, MATRIX_1, FINSEQ_6, POWER, TOPRNS_1,
      METRIC_1, CONNSP_2, GRAPH_2, STRUCT_0, REALSET1, PRE_TOPC, TOPS_1,
      TOPREAL2, CARD_4, BINARITH, PROB_1, CONNSP_1, COMPTS_1, EUCLID, PSCOMP_1,
      SPRECT_2, SPPOL_2, KURATO_2, GOBOARD1, GOBRD14, TOPREAL1, GOBOARD2,
      GOBOARD5, GOBOARD9, GOBRD13, SPPOL_1, JORDAN3, JORDAN6, JORDAN8, JORDAN9,
      JORDAN2C, JORDAN1A, JORDAN1E;
 constructors JORDAN8, REALSET1, GOBOARD9, JORDAN6, REAL_1, CARD_4, PSCOMP_1,
      BINARITH, JORDAN2C, CONNSP_1, JORDAN9, JORDAN1A, FINSEQ_4, JORDAN1,
      JORDAN3, TOPREAL2, JORDAN5C, GRAPH_2, SPRECT_1, GOBOARD2, TOPS_1,
      FINSOP_1, JORDAN1E, WSIERP_1, JORDAN1H, ABSVALUE, CONNSP_2, LIMFUNC1,
      TOPRNS_1, SERIES_1, GOBRD14, DOMAIN_1, KURATO_2, INT_1;
 clusters SPRECT_1, TOPREAL6, JORDAN8, REVROT_1, INT_1, RELSET_1, REAL_1,
      SUBSET_1, SPRECT_3, GOBOARD2, FINSEQ_5, SPPOL_2, JORDAN1A, JORDAN1B,
      JORDAN1G, GOBRD11, FUNCT_7, XBOOLE_0, EUCLID, PSCOMP_1, JORDAN1J,
      METRIC_1, XREAL_0, ORDINAL2;
 requirements NUMERALS, ARITHM, BOOLE, SUBSET, REAL;


begin

  reserve n for Nat;

  definition
   let C be Simple_closed_curve;
   func Upper_Appr C -> SetSequence of the carrier of TOP-REAL 2 means
:: JORDAN19:def 1
    for i be Nat holds it.i = Upper_Arc L~Cage (C,i);
   func Lower_Appr C -> SetSequence of the carrier of TOP-REAL 2 means
:: JORDAN19:def 2
    for i being Nat holds it.i = Lower_Arc L~Cage (C,i);
  end;

  definition
   let C be Simple_closed_curve;
   func North_Arc C -> Subset of TOP-REAL 2 equals
:: JORDAN19:def 3
    Lim_inf Upper_Appr C;
   func South_Arc C -> Subset of TOP-REAL 2 equals
:: JORDAN19:def 4
    Lim_inf Lower_Appr C;
  end;

  theorem :: JORDAN19:1
   for n,m be Nat holds n <= m & n <> 0 implies (n+1)/n >= (m+1)/m;

  theorem :: JORDAN19:2
   for E be compact non vertical non horizontal Subset of TOP-REAL 2
   for m,j be Nat st 1 <= m & m <= n & 1 <= j & j <= width Gauge(E,n) holds
    LSeg(Gauge(E,n)*(Center Gauge(E,n),width Gauge(E,n)),
         Gauge(E,n)*(Center Gauge(E,n),j)) c=
    LSeg(Gauge(E,m)*(Center Gauge(E,m),width Gauge(E,m)),
         Gauge(E,n)*(Center Gauge(E,n),j));

  theorem :: JORDAN19:3
   for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
   for i,j be Nat st 1 <= i & i <= len Gauge(C,n) &
    1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Cage(C,n) holds
     LSeg(Gauge(C,n)*(i,width Gauge(C,n)),Gauge(C,n)*(i,j)) meets
      L~Upper_Seq(C,n);

  theorem :: JORDAN19:4
   for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
   for n be Nat st n > 0
   for i,j be Nat st 1 <= i & i <= len Gauge(C,n) &
    1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Cage(C,n) holds
     LSeg(Gauge(C,n)*(i,width Gauge(C,n)),Gauge(C,n)*(i,j)) meets
      Upper_Arc L~Cage(C,n);

  theorem :: JORDAN19:5
   for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
   for j be Nat holds
    Gauge(C,n+1)*(Center Gauge(C,n+1),j) in Lower_Arc L~Cage(C,n+1) &
    1 <= j & j <= width Gauge(C,n+1) implies
    LSeg(Gauge(C,1)*(Center Gauge(C,1),width Gauge(C,1)),
         Gauge(C,n+1)*(Center Gauge(C,n+1),j)) meets Upper_Arc L~Cage(C,n+1);

  theorem :: JORDAN19:6
   for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
   for f be FinSequence of TOP-REAL 2
   for k be Nat st 1 <= k & k+1 <= len f & f is_sequence_on Gauge(C,n) holds
    dist(f/.k,f/.(k+1)) = (N-bound C - S-bound C)/2|^n or
    dist(f/.k,f/.(k+1)) = (E-bound C - W-bound C)/2|^n;

  theorem :: JORDAN19:7
   for M be symmetric triangle MetrStruct
   for r be real number
   for p,q,x be Element of M st
    p in Ball(x,r) & q in Ball(x,r) holds
    dist(p,q) < 2*r;

  theorem :: JORDAN19:8
   for A be Subset of TOP-REAL n
   for p be Point of TOP-REAL n
   for p' be Point of Euclid n st p = p'
   for s be real number st s > 0 holds
    p in Cl A iff
    for r be real number st 0 < r & r < s holds Ball (p',r) meets A;

  theorem :: JORDAN19:9
   for C be compact connected non vertical non horizontal
    Subset of TOP-REAL 2 holds
    N-bound C < N-bound L~Cage(C,n);

  theorem :: JORDAN19:10
   for C be compact connected non vertical non horizontal
    Subset of TOP-REAL 2 holds
    E-bound C < E-bound L~Cage(C,n);

  theorem :: JORDAN19:11
   for C be compact connected non vertical non horizontal
    Subset of TOP-REAL 2 holds
    S-bound L~Cage(C,n) < S-bound C;

  theorem :: JORDAN19:12
   for C be compact connected non vertical non horizontal
    Subset of TOP-REAL 2 holds
    W-bound L~Cage(C,n) < W-bound C;

  theorem :: JORDAN19:13
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= k & k <= j & j <= width Gauge(C,n) &
    LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Upper_Seq(C,n) =
     {Gauge(C,n)*(i,k)} &
    LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Lower_Seq(C,n) =
     {Gauge(C,n)*(i,j)} holds
      LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) meets Upper_Arc C;

  theorem :: JORDAN19:14
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= k & k <= j & j <= width Gauge(C,n) &
    LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Upper_Seq(C,n) =
     {Gauge(C,n)*(i,k)} &
    LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Lower_Seq(C,n) =
     {Gauge(C,n)*(i,j)} holds
      LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) meets Lower_Arc C;

  theorem :: JORDAN19:15
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 &
    LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Lower_Arc L~Cage(C,n) =
     {Gauge(C,n)*(i,k)} &
    LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Upper_Arc L~Cage(C,n) =
     {Gauge(C,n)*(i,j)} holds
     LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C;

  theorem :: JORDAN19:16
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 &
    LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Lower_Arc L~Cage(C,n) =
     {Gauge(C,n)*(i,k)} &
    LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Upper_Arc L~Cage(C,n) =
     {Gauge(C,n)*(i,j)} holds
      LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C;

  theorem :: JORDAN19:17
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) &
    Gauge(C,n)*(i,k) in L~Lower_Seq(C,n) &
    Gauge(C,n)*(i,j) in L~Upper_Seq(C,n) holds
     LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C;

  theorem :: JORDAN19:18
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) &
    Gauge(C,n)*(i,k) in L~Lower_Seq(C,n) &
    Gauge(C,n)*(i,j) in L~Upper_Seq(C,n) holds
     LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C;

  theorem :: JORDAN19:19
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 &
    Gauge(C,n)*(i,k) in Lower_Arc L~Cage(C,n) &
    Gauge(C,n)*(i,j) in Upper_Arc L~Cage(C,n) holds
     LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C;

  theorem :: JORDAN19:20
   for C be Simple_closed_curve
   for i,j,k be Nat st
    1 < i & i < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 &
    Gauge(C,n)*(i,k) in Lower_Arc L~Cage(C,n) &
    Gauge(C,n)*(i,j) in Upper_Arc L~Cage(C,n) holds
     LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C;

  theorem :: JORDAN19:21
   for C be Simple_closed_curve
   for i1,i2,j,k be Nat st
    1 < i1 & i1 <= i2 & i2 < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) =
     {Gauge(C,n)*(i1,j)} &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) =
     {Gauge(C,n)*(i2,k)} holds
      (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
       LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Upper_Arc C;

  theorem :: JORDAN19:22
   for C be Simple_closed_curve
   for i1,i2,j,k be Nat st
    1 < i1 & i1 <= i2 & i2 < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) =
     {Gauge(C,n)*(i1,j)} &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) =
     {Gauge(C,n)*(i2,k)} holds
      (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
       LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Lower_Arc C;

  theorem :: JORDAN19:23
   for C be Simple_closed_curve
   for i1,i2,j,k be Nat st
    1 < i2 & i2 <= i1 & i1 < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) =
     {Gauge(C,n)*(i1,j)} &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) =
     {Gauge(C,n)*(i2,k)} holds
      (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
       LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Upper_Arc C;

  theorem :: JORDAN19:24
   for C be Simple_closed_curve
   for i1,i2,j,k be Nat st
    1 < i2 & i2 <= i1 & i1 < len Gauge(C,n) &
    1 <= j & j <= k & k <= width Gauge(C,n) &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) =
     {Gauge(C,n)*(i1,j)} &
    (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
     LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) =
     {Gauge(C,n)*(i2,k)} holds
      (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/
       LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Lower_Arc C;

  theorem :: JORDAN19:25
   for C be Simple_closed_curve
   for i1,i2,j,k be Nat holds
    1 < i1 & i1 < len Gauge(C,n+1) & 1 < i2 & i2 < len Gauge(C,n+1) &
    1 <= j & j <= k & k <= width Gauge(C,n+1) &
    Gauge(C,n+1)*(i1,k) in Lower_Arc L~Cage(C,n+1) &
    Gauge(C,n+1)*(i2,j) in Upper_Arc L~Cage(C,n+1) implies
     LSeg(Gauge(C,n+1)*(i2,j),Gauge(C,n+1)*(i2,k)) \/
     LSeg(Gauge(C,n+1)*(i2,k),Gauge(C,n+1)*(i1,k)) meets Lower_Arc C;

  theorem :: JORDAN19:26
   for C be Simple_closed_curve
   for i1,i2,j,k be Nat holds
    1 < i1 & i1 < len Gauge(C,n+1) & 1 < i2 & i2 < len Gauge(C,n+1) &
    1 <= j & j <= k & k <= width Gauge(C,n+1) &
    Gauge(C,n+1)*(i1,k) in Lower_Arc L~Cage(C,n+1) &
    Gauge(C,n+1)*(i2,j) in Upper_Arc L~Cage(C,n+1) implies
     LSeg(Gauge(C,n+1)*(i2,j),Gauge(C,n+1)*(i2,k)) \/
     LSeg(Gauge(C,n+1)*(i2,k),Gauge(C,n+1)*(i1,k)) meets Upper_Arc C;

  theorem :: JORDAN19:27
   for C be Simple_closed_curve
   for p be Point of TOP-REAL 2 st W-bound C < p`1 & p`1 < E-bound C holds
    not(p in North_Arc C & p in South_Arc C);

  theorem :: JORDAN19:28 :: "Nie oba"
   for C be Simple_closed_curve
   for p be Point of TOP-REAL 2 st p`1 = (W-bound C + E-bound C)/2 holds
    not (p in North_Arc C & p in South_Arc C);


Back to top