environ vocabulary JORDAN19, JORDAN8, PSCOMP_1, BOOLE, JORDAN1A, JORDAN9, GOBOARD1, GOBOARD5, JORDAN6, SPRECT_2, JORDAN3, FINSEQ_5, JORDAN2C, GROUP_2, NAT_1, SPPOL_2, REALSET1, JORDAN1E, SQUARE_1, FINSEQ_4, TOPREAL2, CONNSP_1, COMPTS_1, TOPREAL1, SPPOL_1, FINSEQ_1, TREES_1, EUCLID, RELAT_1, MCART_1, MATRIX_1, GOBOARD9, PRE_TOPC, RELAT_2, SEQM_3, SUBSET_1, FUNCT_1, ARYTM_1, FINSEQ_6, GOBOARD2, GROUP_1, GRAPH_2, METRIC_1, ARYTM, ORDINAL2, ARYTM_3, INT_1, FUNCT_5, ABSVALUE, CONNSP_2, COMPLEX1, POWER, TOPS_1, KURATO_2, PROB_1; notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, ORDINAL1, XCMPLX_0, XREAL_0, REAL_1, INT_1, NAT_1, SQUARE_1, FUNCT_1, FUNCT_2, LIMFUNC1, ABSVALUE, FINSEQ_1, FINSEQ_4, FINSEQ_5, MATRIX_1, FINSEQ_6, POWER, TOPRNS_1, METRIC_1, CONNSP_2, GRAPH_2, STRUCT_0, REALSET1, PRE_TOPC, TOPS_1, TOPREAL2, CARD_4, BINARITH, PROB_1, CONNSP_1, COMPTS_1, EUCLID, PSCOMP_1, SPRECT_2, SPPOL_2, KURATO_2, GOBOARD1, GOBRD14, TOPREAL1, GOBOARD2, GOBOARD5, GOBOARD9, GOBRD13, SPPOL_1, JORDAN3, JORDAN6, JORDAN8, JORDAN9, JORDAN2C, JORDAN1A, JORDAN1E; constructors JORDAN8, REALSET1, GOBOARD9, JORDAN6, REAL_1, CARD_4, PSCOMP_1, BINARITH, JORDAN2C, CONNSP_1, JORDAN9, JORDAN1A, FINSEQ_4, JORDAN1, JORDAN3, TOPREAL2, JORDAN5C, GRAPH_2, SPRECT_1, GOBOARD2, TOPS_1, FINSOP_1, JORDAN1E, WSIERP_1, JORDAN1H, ABSVALUE, CONNSP_2, LIMFUNC1, TOPRNS_1, SERIES_1, GOBRD14, DOMAIN_1, KURATO_2, INT_1; clusters SPRECT_1, TOPREAL6, JORDAN8, REVROT_1, INT_1, RELSET_1, REAL_1, SUBSET_1, SPRECT_3, GOBOARD2, FINSEQ_5, SPPOL_2, JORDAN1A, JORDAN1B, JORDAN1G, GOBRD11, FUNCT_7, XBOOLE_0, EUCLID, PSCOMP_1, JORDAN1J, METRIC_1, XREAL_0, ORDINAL2; requirements NUMERALS, ARITHM, BOOLE, SUBSET, REAL; begin reserve n for Nat; definition let C be Simple_closed_curve; func Upper_Appr C -> SetSequence of the carrier of TOP-REAL 2 means :: JORDAN19:def 1 for i be Nat holds it.i = Upper_Arc L~Cage (C,i); func Lower_Appr C -> SetSequence of the carrier of TOP-REAL 2 means :: JORDAN19:def 2 for i being Nat holds it.i = Lower_Arc L~Cage (C,i); end; definition let C be Simple_closed_curve; func North_Arc C -> Subset of TOP-REAL 2 equals :: JORDAN19:def 3 Lim_inf Upper_Appr C; func South_Arc C -> Subset of TOP-REAL 2 equals :: JORDAN19:def 4 Lim_inf Lower_Appr C; end; theorem :: JORDAN19:1 for n,m be Nat holds n <= m & n <> 0 implies (n+1)/n >= (m+1)/m; theorem :: JORDAN19:2 for E be compact non vertical non horizontal Subset of TOP-REAL 2 for m,j be Nat st 1 <= m & m <= n & 1 <= j & j <= width Gauge(E,n) holds LSeg(Gauge(E,n)*(Center Gauge(E,n),width Gauge(E,n)), Gauge(E,n)*(Center Gauge(E,n),j)) c= LSeg(Gauge(E,m)*(Center Gauge(E,m),width Gauge(E,m)), Gauge(E,n)*(Center Gauge(E,n),j)); theorem :: JORDAN19:3 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Cage(C,n) holds LSeg(Gauge(C,n)*(i,width Gauge(C,n)),Gauge(C,n)*(i,j)) meets L~Upper_Seq(C,n); theorem :: JORDAN19:4 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for n be Nat st n > 0 for i,j be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Cage(C,n) holds LSeg(Gauge(C,n)*(i,width Gauge(C,n)),Gauge(C,n)*(i,j)) meets Upper_Arc L~Cage(C,n); theorem :: JORDAN19:5 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for j be Nat holds Gauge(C,n+1)*(Center Gauge(C,n+1),j) in Lower_Arc L~Cage(C,n+1) & 1 <= j & j <= width Gauge(C,n+1) implies LSeg(Gauge(C,1)*(Center Gauge(C,1),width Gauge(C,1)), Gauge(C,n+1)*(Center Gauge(C,n+1),j)) meets Upper_Arc L~Cage(C,n+1); theorem :: JORDAN19:6 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for f be FinSequence of TOP-REAL 2 for k be Nat st 1 <= k & k+1 <= len f & f is_sequence_on Gauge(C,n) holds dist(f/.k,f/.(k+1)) = (N-bound C - S-bound C)/2|^n or dist(f/.k,f/.(k+1)) = (E-bound C - W-bound C)/2|^n; theorem :: JORDAN19:7 for M be symmetric triangle MetrStruct for r be real number for p,q,x be Element of M st p in Ball(x,r) & q in Ball(x,r) holds dist(p,q) < 2*r; theorem :: JORDAN19:8 for A be Subset of TOP-REAL n for p be Point of TOP-REAL n for p' be Point of Euclid n st p = p' for s be real number st s > 0 holds p in Cl A iff for r be real number st 0 < r & r < s holds Ball (p',r) meets A; theorem :: JORDAN19:9 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds N-bound C < N-bound L~Cage(C,n); theorem :: JORDAN19:10 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds E-bound C < E-bound L~Cage(C,n); theorem :: JORDAN19:11 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds S-bound L~Cage(C,n) < S-bound C; theorem :: JORDAN19:12 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds W-bound L~Cage(C,n) < W-bound C; theorem :: JORDAN19:13 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= k & k <= j & j <= width Gauge(C,n) & LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i,k)} & LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i,j)} holds LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) meets Upper_Arc C; theorem :: JORDAN19:14 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= k & k <= j & j <= width Gauge(C,n) & LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i,k)} & LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i,j)} holds LSeg(Gauge(C,n)*(i,k),Gauge(C,n)*(i,j)) meets Lower_Arc C; theorem :: JORDAN19:15 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 & LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Lower_Arc L~Cage(C,n) = {Gauge(C,n)*(i,k)} & LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Upper_Arc L~Cage(C,n) = {Gauge(C,n)*(i,j)} holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C; theorem :: JORDAN19:16 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 & LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Lower_Arc L~Cage(C,n) = {Gauge(C,n)*(i,k)} & LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) /\ Upper_Arc L~Cage(C,n) = {Gauge(C,n)*(i,j)} holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C; theorem :: JORDAN19:17 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,k) in L~Lower_Seq(C,n) & Gauge(C,n)*(i,j) in L~Upper_Seq(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C; theorem :: JORDAN19:18 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,k) in L~Lower_Seq(C,n) & Gauge(C,n)*(i,j) in L~Upper_Seq(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C; theorem :: JORDAN19:19 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(i,k) in Lower_Arc L~Cage(C,n) & Gauge(C,n)*(i,j) in Upper_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C; theorem :: JORDAN19:20 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(i,k) in Lower_Arc L~Cage(C,n) & Gauge(C,n)*(i,j) in Upper_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C; theorem :: JORDAN19:21 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i1 & i1 <= i2 & i2 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i1,j)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i2,k)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Upper_Arc C; theorem :: JORDAN19:22 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i1 & i1 <= i2 & i2 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i1,j)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i2,k)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Lower_Arc C; theorem :: JORDAN19:23 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i2 & i2 <= i1 & i1 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i1,j)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i2,k)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Upper_Arc C; theorem :: JORDAN19:24 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i2 & i2 <= i1 & i1 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i1,j)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i2,k)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Lower_Arc C; theorem :: JORDAN19:25 for C be Simple_closed_curve for i1,i2,j,k be Nat holds 1 < i1 & i1 < len Gauge(C,n+1) & 1 < i2 & i2 < len Gauge(C,n+1) & 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(i1,k) in Lower_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(i2,j) in Upper_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(i2,j),Gauge(C,n+1)*(i2,k)) \/ LSeg(Gauge(C,n+1)*(i2,k),Gauge(C,n+1)*(i1,k)) meets Lower_Arc C; theorem :: JORDAN19:26 for C be Simple_closed_curve for i1,i2,j,k be Nat holds 1 < i1 & i1 < len Gauge(C,n+1) & 1 < i2 & i2 < len Gauge(C,n+1) & 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(i1,k) in Lower_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(i2,j) in Upper_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(i2,j),Gauge(C,n+1)*(i2,k)) \/ LSeg(Gauge(C,n+1)*(i2,k),Gauge(C,n+1)*(i1,k)) meets Upper_Arc C; theorem :: JORDAN19:27 for C be Simple_closed_curve for p be Point of TOP-REAL 2 st W-bound C < p`1 & p`1 < E-bound C holds not(p in North_Arc C & p in South_Arc C); theorem :: JORDAN19:28 :: "Nie oba" for C be Simple_closed_curve for p be Point of TOP-REAL 2 st p`1 = (W-bound C + E-bound C)/2 holds not (p in North_Arc C & p in South_Arc C);