Journal of Formalized Mathematics
Volume 13, 2001
University of Bialystok
Copyright (c) 2001
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Robert Milewski
- Received September 28, 2001
- MML identifier: JORDAN1G
- [
Mizar article,
MML identifier index
]
environ
vocabulary REALSET1, FINSEQ_1, BOOLE, RELAT_1, FINSEQ_5, MATRIX_1, GOBOARD1,
FINSEQ_4, RFINSEQ, COMPTS_1, RELAT_2, SPPOL_1, EUCLID, JORDAN1E, JORDAN8,
JORDAN9, FINSEQ_6, PSCOMP_1, TOPREAL1, GOBOARD5, MCART_1, TREES_1,
FUNCT_1, ARYTM_1, CARD_1, PRE_TOPC, ARYTM_3, GROUP_1, JORDAN1A, SPPOL_2,
JORDAN3, SPRECT_2, GROUP_2, JORDAN5C, JORDAN6;
notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, XREAL_0, REAL_1, NAT_1,
FUNCT_1, PARTFUN1, FINSEQ_1, FINSEQ_4, FINSEQ_5, RFINSEQ, MATRIX_1,
REALSET1, FINSEQ_6, STRUCT_0, PRE_TOPC, CARD_1, CARD_4, BINARITH,
CONNSP_1, COMPTS_1, EUCLID, PSCOMP_1, SPRECT_2, GOBOARD1, TOPREAL1,
GOBOARD5, SPPOL_1, SPPOL_2, JORDAN3, JORDAN8, JORDAN5C, JORDAN6, JORDAN9,
JORDAN1A, JORDAN1E;
constructors JORDAN8, REALSET1, JORDAN6, REAL_1, CARD_4, PSCOMP_1, BINARITH,
CONNSP_1, JORDAN9, JORDAN1A, WSIERP_1, FINSEQ_4, GOBRD13, JORDAN3,
RFINSEQ, TOPS_2, TOPMETR, TOPREAL2, JORDAN5C, SPRECT_1, FINSEQ_5,
ENUMSET1, FINSOP_1, JORDAN1E, INT_1;
clusters XREAL_0, SPRECT_1, TOPREAL6, JORDAN8, REVROT_1, RELSET_1, ARYTM_3,
SUBSET_1, FINSEQ_6, SPRECT_3, AMISTD_1, GOBOARD1, FINSEQ_1, FINSEQ_5,
SPPOL_2, JORDAN1A, GOBOARD4, JORDAN1E, BINARITH, REALSET1, MEMBERED,
ORDINAL2;
requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM;
begin
reserve n for Nat;
definition
cluster trivial FinSequence;
end;
theorem :: JORDAN1G:1
for f be trivial FinSequence holds
f is empty or ex x be set st f = <*x*>;
definition
let p be non trivial FinSequence;
cluster Rev p -> non trivial;
end;
theorem :: JORDAN1G:2
for D be non empty set
for f be FinSequence of D
for G be Matrix of D
for p be set holds
f is_sequence_on G implies f-:p is_sequence_on G;
theorem :: JORDAN1G:3
for D be non empty set
for f be FinSequence of D
for G be Matrix of D
for p be Element of D st p in rng f holds
f is_sequence_on G implies f:-p is_sequence_on G;
theorem :: JORDAN1G:4
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
Upper_Seq(C,n) is_sequence_on Gauge(C,n);
theorem :: JORDAN1G:5
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
Lower_Seq(C,n) is_sequence_on Gauge(C,n);
definition
let C be compact connected non vertical non horizontal Subset of TOP-REAL 2;
let n be Nat;
cluster Upper_Seq(C,n) -> standard;
cluster Lower_Seq(C,n) -> standard;
end;
theorem :: JORDAN1G:6
for G be Y_equal-in-column Y_increasing-in-line Matrix of TOP-REAL 2
for i1,i2,j1,j2 be Nat st [i1,j1] in Indices G & [i2,j2] in Indices G holds
G*(i1,j1)`2 = G*(i2,j2)`2 implies j1 = j2;
theorem :: JORDAN1G:7
for G be X_equal-in-line X_increasing-in-column Matrix of TOP-REAL 2
for i1,i2,j1,j2 be Nat st [i1,j1] in Indices G & [i2,j2] in Indices G holds
G*(i1,j1)`1 = G*(i2,j2)`1 implies i1 = i2;
canceled 8;
theorem :: JORDAN1G:16
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> N-min L~f & f/.len f <> N-min L~f) or
(f/.1 <> N-max L~f & f/.len f <> N-max L~f) holds
(N-min L~f)`1 < (N-max L~f)`1;
theorem :: JORDAN1G:17
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> N-min L~f & f/.len f <> N-min L~f) or
(f/.1 <> N-max L~f & f/.len f <> N-max L~f) holds
N-min L~f <> N-max L~f;
theorem :: JORDAN1G:18
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> S-min L~f & f/.len f <> S-min L~f) or
(f/.1 <> S-max L~f & f/.len f <> S-max L~f) holds
(S-min L~f)`1 < (S-max L~f)`1;
theorem :: JORDAN1G:19
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> S-min L~f & f/.len f <> S-min L~f) or
(f/.1 <> S-max L~f & f/.len f <> S-max L~f) holds
S-min L~f <> S-max L~f;
theorem :: JORDAN1G:20
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> W-min L~f & f/.len f <> W-min L~f) or
(f/.1 <> W-max L~f & f/.len f <> W-max L~f) holds
(W-min L~f)`2 < (W-max L~f)`2;
theorem :: JORDAN1G:21
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> W-min L~f & f/.len f <> W-min L~f) or
(f/.1 <> W-max L~f & f/.len f <> W-max L~f) holds
W-min L~f <> W-max L~f;
theorem :: JORDAN1G:22
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> E-min L~f & f/.len f <> E-min L~f) or
(f/.1 <> E-max L~f & f/.len f <> E-max L~f) holds
(E-min L~f)`2 < (E-max L~f)`2;
theorem :: JORDAN1G:23
for f be standard special unfolded (non trivial FinSequence of TOP-REAL 2)
st (f/.1 <> E-min L~f & f/.len f <> E-min L~f) or
(f/.1 <> E-max L~f & f/.len f <> E-max L~f) holds
E-min L~f <> E-max L~f;
theorem :: JORDAN1G:24
for D be non empty set
for f be FinSequence of D
for p,q be Element of D st p in rng f & q in rng f & q..f <= p..f holds
(f-:p):-q = (f:-q)-:p;
theorem :: JORDAN1G:25
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds
L~(Cage(C,n)-:W-min L~Cage(C,n)) /\ L~(Cage(C,n):-W-min L~Cage(C,n)) =
{N-min L~Cage(C,n),W-min L~Cage(C,n)};
theorem :: JORDAN1G:26
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
Lower_Seq(C,n) = Rotate(Cage(C,n),E-max L~Cage(C,n))-:W-min L~Cage(C,n);
theorem :: JORDAN1G:27
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
(W-min L~Cage(C,n))..Upper_Seq(C,n) = 1;
theorem :: JORDAN1G:28
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
(W-min L~Cage(C,n))..Upper_Seq(C,n) < (W-max L~Cage(C,n))..Upper_Seq(C,n);
theorem :: JORDAN1G:29
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
(W-max L~Cage(C,n))..Upper_Seq(C,n) <= (N-min L~Cage(C,n))..Upper_Seq(C,n);
theorem :: JORDAN1G:30
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
(N-min L~Cage(C,n))..Upper_Seq(C,n) < (N-max L~Cage(C,n))..Upper_Seq(C,n);
theorem :: JORDAN1G:31
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
(N-max L~Cage(C,n))..Upper_Seq(C,n) <= (E-max L~Cage(C,n))..Upper_Seq(C,n);
theorem :: JORDAN1G:32
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
(E-max L~Cage(C,n))..Upper_Seq(C,n) = len Upper_Seq(C,n);
theorem :: JORDAN1G:33
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
(E-max L~Cage(C,n))..Lower_Seq(C,n) = 1;
theorem :: JORDAN1G:34
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
(E-max L~Cage(C,n))..Lower_Seq(C,n) < (E-min L~Cage(C,n))..Lower_Seq(C,n);
theorem :: JORDAN1G:35
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
(E-min L~Cage(C,n))..Lower_Seq(C,n) <= (S-max L~Cage(C,n))..Lower_Seq(C,n);
theorem :: JORDAN1G:36
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
(S-max L~Cage(C,n))..Lower_Seq(C,n) < (S-min L~Cage(C,n))..Lower_Seq(C,n);
theorem :: JORDAN1G:37
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
(S-min L~Cage(C,n))..Lower_Seq(C,n) <= (W-min L~Cage(C,n))..Lower_Seq(C,n);
theorem :: JORDAN1G:38
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
(W-min L~Cage(C,n))..Lower_Seq(C,n) = len Lower_Seq(C,n);
theorem :: JORDAN1G:39
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
(Upper_Seq(C,n)/.2)`1 = W-bound L~Cage(C,n);
theorem :: JORDAN1G:40
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
(Lower_Seq(C,n)/.2)`1 = E-bound L~Cage(C,n);
theorem :: JORDAN1G:41
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
W-bound L~Cage(C,n) + E-bound L~Cage(C,n) = W-bound C + E-bound C;
theorem :: JORDAN1G:42
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2 holds
S-bound L~Cage(C,n) + N-bound L~Cage(C,n) = S-bound C + N-bound C;
theorem :: JORDAN1G:43
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for n,i be Nat st 1 <= i & i <= width Gauge(C,n) & n > 0 holds
Gauge(C,n)*(Center Gauge(C,n),i)`1 = (W-bound C + E-bound C) / 2;
theorem :: JORDAN1G:44
for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
for n,i be Nat st 1 <= i & i <= len Gauge(C,n) & n > 0 holds
Gauge(C,n)*(i,Center Gauge(C,n))`2 = (S-bound C + N-bound C) / 2;
theorem :: JORDAN1G:45
for f be S-Sequence_in_R2
for k1,k2 be Nat st 1 <= k1 & k1 <= len f & 1 <= k2 & k2 <= len f &
f/.1 in L~mid(f,k1,k2) holds k1 = 1 or k2 = 1;
theorem :: JORDAN1G:46
for f be S-Sequence_in_R2
for k1,k2 be Nat st 1 <= k1 & k1 <= len f & 1 <= k2 & k2 <= len f &
f/.(len f) in L~mid(f,k1,k2) holds k1 = len f or k2 = len f;
theorem :: JORDAN1G:47
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds
rng Upper_Seq(C,n) c= rng Cage(C,n) &
rng Lower_Seq(C,n) c= rng Cage(C,n);
theorem :: JORDAN1G:48
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
Upper_Seq(C,n) is_a_h.c._for Cage(C,n);
theorem :: JORDAN1G:49
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
Rev Lower_Seq(C,n) is_a_h.c._for Cage(C,n);
theorem :: JORDAN1G:50
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for i be Nat st 1 < i & i <= len Gauge(C,n) holds
not Gauge(C,n)*(i,1) in rng Upper_Seq(C,n);
theorem :: JORDAN1G:51
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for i be Nat st 1 <= i & i < len Gauge(C,n) holds
not Gauge(C,n)*(i,width Gauge(C,n)) in rng Lower_Seq(C,n);
theorem :: JORDAN1G:52
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for i be Nat st 1 < i & i <= len Gauge(C,n) holds
not Gauge(C,n)*(i,1) in L~Upper_Seq(C,n);
theorem :: JORDAN1G:53
for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
for i be Nat st 1 <= i & i < len Gauge(C,n) holds
not Gauge(C,n)*(i,width Gauge(C,n)) in L~Lower_Seq(C,n);
theorem :: JORDAN1G:54
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for i,j be Nat st 1 <= i & i <= len Gauge(C,n) &
1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Cage(C,n) holds
LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,j)) meets L~Lower_Seq(C,n);
theorem :: JORDAN1G:55
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for n be Nat st n > 0 holds
First_Point(L~Upper_Seq(C,n),W-min L~Cage(C,n),E-max L~Cage(C,n),
Vertical_Line ((W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2))
in rng Upper_Seq(C,n);
theorem :: JORDAN1G:56
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for n be Nat st n > 0 holds
Last_Point(L~Lower_Seq(C,n),E-max L~Cage(C,n),W-min L~Cage(C,n),
Vertical_Line ((W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2))
in rng Lower_Seq(C,n);
theorem :: JORDAN1G:57
for f be S-Sequence_in_R2
for p be Point of TOP-REAL 2 st p in rng f holds
R_Cut(f,p) = mid(f,1,p..f);
theorem :: JORDAN1G:58
for f be S-Sequence_in_R2
for Q be closed Subset of TOP-REAL 2 st L~f meets Q & not f/.1 in Q &
First_Point(L~f,f/.1,f/.len f,Q) in rng f holds
L~mid(f,1,First_Point(L~f,f/.1,f/.len f,Q)..f) /\ Q =
{First_Point(L~f,f/.1,f/.len f,Q)};
theorem :: JORDAN1G:59
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for n be Nat st n > 0
for k be Nat st
1 <= k &
k < First_Point(L~Upper_Seq(C,n),W-min L~Cage(C,n),E-max L~Cage(C,n),
Vertical_Line ((W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2))..
Upper_Seq(C,n) holds
(Upper_Seq(C,n)/.k)`1 < (W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2;
theorem :: JORDAN1G:60
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for n be Nat st n > 0
for k be Nat st
1 <= k &
k < First_Point(L~Rev Lower_Seq(C,n),W-min L~Cage(C,n),E-max L~Cage(C,n),
Vertical_Line ((W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2))..
Rev Lower_Seq(C,n) holds
(Rev Lower_Seq(C,n)/.k)`1 < (W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2;
theorem :: JORDAN1G:61
for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
for n be Nat st n > 0
for q be Point of TOP-REAL 2 holds
q in rng mid(Upper_Seq(C,n),2,First_Point(L~Upper_Seq(C,n),
W-min L~Cage(C,n),E-max L~Cage(C,n),Vertical_Line
((W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2))..Upper_Seq(C,n)) implies
q`1 <= (W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2;
theorem :: JORDAN1G:62
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2
for n be Nat st n > 0 holds
First_Point(L~Upper_Seq(C,n),W-min L~Cage(C,n),E-max L~Cage(C,n),
Vertical_Line((W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2))`2 >
Last_Point(L~Lower_Seq(C,n),E-max L~Cage(C,n),W-min L~Cage(C,n),
Vertical_Line((W-bound L~Cage(C,n)+E-bound L~Cage(C,n))/2))`2;
theorem :: JORDAN1G:63
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2
for n be Nat st n > 0 holds
L~Upper_Seq(C,n) = Upper_Arc L~Cage(C,n);
theorem :: JORDAN1G:64
for C be compact connected non vertical non horizontal
Subset of TOP-REAL 2
for n be Nat st n > 0 holds
L~Lower_Seq(C,n) = Lower_Arc L~Cage(C,n);
theorem :: JORDAN1G:65
for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
for n be Nat st n > 0
for i,j be Nat st 1 <= i & i <= len Gauge(C,n) &
1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Cage(C,n) holds
LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,j)) meets Lower_Arc L~Cage(C,n);
Back to top