environ vocabulary ARYTM, SEQ_1, PARTFUN1, RELAT_1, SEQ_2, ORDINAL2, FUNCT_1, SEQM_3, ABSVALUE, ARYTM_1, ARYTM_3, RCOMP_1, BOOLE, FINSEQ_1, COMPTS_1, SEQ_4, RFUNCT_1, PARTFUN2, SQUARE_1, RFUNCT_2, FCONT_1; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, ABSVALUE, SEQ_1, SEQ_2, SEQM_3, SEQ_4, SQUARE_1, PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1; constructors REAL_1, NAT_1, ABSVALUE, SEQ_2, SEQM_3, SEQ_4, SQUARE_1, PARTFUN1, PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1, MEMBERED, XBOOLE_0; clusters RCOMP_1, RELSET_1, RFUNCT_2, PARTFUN2, XREAL_0, SEQ_1, SEQM_3, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve n,m,k for Nat; reserve x, X,X1,Z,Z1 for set; reserve s,g,r,p,x0,x1,x2 for real number; reserve s1,s2,q1 for Real_Sequence; reserve Y for Subset of REAL; reserve f,f1,f2 for PartFunc of REAL,REAL; definition let f,x0; pred f is_continuous_in x0 means :: FCONT_1:def 1 x0 in dom f & for s1 st rng s1 c= dom f & s1 is convergent & lim s1 = x0 holds f*s1 is convergent & f.x0 = lim (f*s1); end; canceled; theorem :: FCONT_1:2 f is_continuous_in x0 iff x0 in dom f & for s1 st rng s1 c= dom f & s1 is convergent & lim s1=x0 & (for n holds s1.n<>x0) holds f*s1 is convergent & f.x0=lim(f*s1); theorem :: FCONT_1:3 f is_continuous_in x0 iff x0 in dom f & for r st 0<r ex s st 0<s & for x1 st x1 in dom f & abs(x1-x0)<s holds abs(f.x1-f.x0)<r; theorem :: FCONT_1:4 for f,x0 holds f is_continuous_in x0 iff x0 in dom f & for N1 being Neighbourhood of f.x0 ex N being Neighbourhood of x0 st for x1 st x1 in dom f & x1 in N holds f.x1 in N1; theorem :: FCONT_1:5 for f,x0 holds f is_continuous_in x0 iff x0 in dom f & for N1 being Neighbourhood of f.x0 ex N being Neighbourhood of x0 st f.:N c= N1; theorem :: FCONT_1:6 x0 in dom f & (ex N be Neighbourhood of x0 st dom f /\ N = {x0}) implies f is_continuous_in x0; theorem :: FCONT_1:7 f1 is_continuous_in x0 & f2 is_continuous_in x0 implies f1+f2 is_continuous_in x0 & f1-f2 is_continuous_in x0 & f1(#)f2 is_continuous_in x0; theorem :: FCONT_1:8 f is_continuous_in x0 implies r(#)f is_continuous_in x0; theorem :: FCONT_1:9 f is_continuous_in x0 implies abs(f) is_continuous_in x0 & -f is_continuous_in x0; theorem :: FCONT_1:10 f is_continuous_in x0 & f.x0<>0 implies f^ is_continuous_in x0; theorem :: FCONT_1:11 f1 is_continuous_in x0 & f1.x0<>0 & f2 is_continuous_in x0 implies f2/f1 is_continuous_in x0; theorem :: FCONT_1:12 f1 is_continuous_in x0 & f2 is_continuous_in f1.x0 implies f2*f1 is_continuous_in x0; definition let f,X; pred f is_continuous_on X means :: FCONT_1:def 2 X c= dom f & for x0 st x0 in X holds f|X is_continuous_in x0; end; canceled; theorem :: FCONT_1:14 for X,f holds f is_continuous_on X iff X c= dom f & for s1 st rng s1 c= X & s1 is convergent & lim s1 in X holds f*s1 is convergent & f.(lim s1) = lim (f*s1); theorem :: FCONT_1:15 f is_continuous_on X iff X c= dom f & for x0,r st x0 in X & 0<r ex s st 0<s & for x1 st x1 in X & abs(x1-x0) < s holds abs(f.x1 - f.x0) < r; theorem :: FCONT_1:16 f is_continuous_on X iff f|X is_continuous_on X; theorem :: FCONT_1:17 f is_continuous_on X & X1 c= X implies f is_continuous_on X1; theorem :: FCONT_1:18 x0 in dom f implies f is_continuous_on {x0}; theorem :: FCONT_1:19 for X,f1,f2 st f1 is_continuous_on X & f2 is_continuous_on X holds f1+f2 is_continuous_on X & f1-f2 is_continuous_on X & f1(#) f2 is_continuous_on X; theorem :: FCONT_1:20 for X,X1,f1,f2 st f1 is_continuous_on X & f2 is_continuous_on X1 holds f1+f2 is_continuous_on X /\ X1 & f1-f2 is_continuous_on X /\ X1 & f1(#)f2 is_continuous_on X /\ X1; theorem :: FCONT_1:21 for r,X,f st f is_continuous_on X holds r(#)f is_continuous_on X; theorem :: FCONT_1:22 f is_continuous_on X implies abs(f) is_continuous_on X & -f is_continuous_on X; theorem :: FCONT_1:23 f is_continuous_on X & f"{0} = {} implies f^ is_continuous_on X; theorem :: FCONT_1:24 f is_continuous_on X & (f|X)"{0} = {} implies f^ is_continuous_on X; theorem :: FCONT_1:25 f1 is_continuous_on X & f1"{0} = {} & f2 is_continuous_on X implies f2/f1 is_continuous_on X; theorem :: FCONT_1:26 f1 is_continuous_on X & f2 is_continuous_on (f1.:X) implies f2*f1 is_continuous_on X; theorem :: FCONT_1:27 f1 is_continuous_on X & f2 is_continuous_on X1 implies f2*f1 is_continuous_on X /\ (f1"X1); theorem :: FCONT_1:28 f is total & (for x1,x2 holds f.(x1+x2) = f.x1 + f.x2) & (ex x0 st f is_continuous_in x0) implies f is_continuous_on REAL; theorem :: FCONT_1:29 for f st dom f is compact & f is_continuous_on (dom f) holds (rng f) is compact ; theorem :: FCONT_1:30 Y c= dom f & Y is compact & f is_continuous_on Y implies (f.:Y) is compact; theorem :: FCONT_1:31 for f st dom f<>{} & (dom f) is compact & f is_continuous_on (dom f) ex x1,x2 st x1 in dom f & x2 in dom f & f.x1 = upper_bound (rng f) & f.x2 = lower_bound (rng f); theorem :: FCONT_1:32 for f,Y st Y<>{} & Y c= dom f & Y is compact & f is_continuous_on Y ex x1,x2 st x1 in Y & x2 in Y & f.x1 = upper_bound (f.:Y) & f.x2 = lower_bound (f.:Y); definition let f,X; pred f is_Lipschitzian_on X means :: FCONT_1:def 3 X c= dom f & ex r st 0<r & for x1,x2 st x1 in X & x2 in X holds abs(f.x1-f.x2)<=r*abs(x1-x2); end; canceled; theorem :: FCONT_1:34 f is_Lipschitzian_on X & X1 c= X implies f is_Lipschitzian_on X1; theorem :: FCONT_1:35 f1 is_Lipschitzian_on X & f2 is_Lipschitzian_on X1 implies f1+f2 is_Lipschitzian_on X /\ X1; theorem :: FCONT_1:36 f1 is_Lipschitzian_on X & f2 is_Lipschitzian_on X1 implies f1-f2 is_Lipschitzian_on X /\ X1; theorem :: FCONT_1:37 f1 is_Lipschitzian_on X & f2 is_Lipschitzian_on X1 & f1 is_bounded_on Z & f2 is_bounded_on Z1 implies f1(#)f2 is_Lipschitzian_on (X /\ Z /\ X1 /\ Z1); theorem :: FCONT_1:38 f is_Lipschitzian_on X implies p(#)f is_Lipschitzian_on X; theorem :: FCONT_1:39 f is_Lipschitzian_on X implies -f is_Lipschitzian_on X & abs(f) is_Lipschitzian_on X; theorem :: FCONT_1:40 X c= dom f & f is_constant_on X implies f is_Lipschitzian_on X; theorem :: FCONT_1:41 id Y is_Lipschitzian_on Y; theorem :: FCONT_1:42 f is_Lipschitzian_on X implies f is_continuous_on X; theorem :: FCONT_1:43 for f st (ex r st rng f = {r}) holds f is_continuous_on (dom f); theorem :: FCONT_1:44 X c= dom f & f is_constant_on X implies f is_continuous_on X; theorem :: FCONT_1:45 for f st (for x0 st x0 in dom f holds f.x0 = x0) holds f is_continuous_on dom f ; theorem :: FCONT_1:46 f = id dom f implies f is_continuous_on dom f; theorem :: FCONT_1:47 Y c= dom f & f|Y = id Y implies f is_continuous_on Y; theorem :: FCONT_1:48 X c= dom f & (for x0 st x0 in X holds f.x0 = r*x0+p) implies f is_continuous_on X; theorem :: FCONT_1:49 (for x0 st x0 in dom f holds f.x0 = x0^2) implies f is_continuous_on (dom f); theorem :: FCONT_1:50 X c= dom f & (for x0 st x0 in X holds f.x0 = x0^2) implies f is_continuous_on X; theorem :: FCONT_1:51 (for x0 st x0 in dom f holds f.x0 = abs(x0)) implies f is_continuous_on (dom f); theorem :: FCONT_1:52 X c= dom f & (for x0 st x0 in X holds f.x0 = abs(x0)) implies f is_continuous_on X; theorem :: FCONT_1:53 X c= dom f & f is_monotone_on X & (ex p,g st p<=g & f.:X=[.p,g.]) implies f is_continuous_on X; theorem :: FCONT_1:54 for f being one-to-one PartFunc of REAL,REAL st p<=g & [.p,g.] c= dom f & (f is_increasing_on [.p,g.] or f is_decreasing_on [.p,g.]) holds (f|[.p,g.])" is_continuous_on f.:[.p,g.];