Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990 Association of Mizar Users

The abstract of the Mizar article:

Real Function Continuity

by
Konrad Raczkowski, and
Pawel Sadowski

Received June 18, 1990

MML identifier: FCONT_1
[ Mizar article, MML identifier index ]


environ

 vocabulary ARYTM, SEQ_1, PARTFUN1, RELAT_1, SEQ_2, ORDINAL2, FUNCT_1, SEQM_3,
      ABSVALUE, ARYTM_1, ARYTM_3, RCOMP_1, BOOLE, FINSEQ_1, COMPTS_1, SEQ_4,
      RFUNCT_1, PARTFUN2, SQUARE_1, RFUNCT_2, FCONT_1;
 notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
      REAL_1, NAT_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, ABSVALUE, SEQ_1,
      SEQ_2, SEQM_3, SEQ_4, SQUARE_1, PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1;
 constructors REAL_1, NAT_1, ABSVALUE, SEQ_2, SEQM_3, SEQ_4, SQUARE_1,
      PARTFUN1, PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1, MEMBERED, XBOOLE_0;
 clusters RCOMP_1, RELSET_1, RFUNCT_2, PARTFUN2, XREAL_0, SEQ_1, SEQM_3, NAT_1,
      MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;


begin

 reserve n,m,k for Nat;
 reserve x, X,X1,Z,Z1 for set;
 reserve s,g,r,p,x0,x1,x2 for real number;
 reserve s1,s2,q1 for Real_Sequence;
 reserve Y for Subset of REAL;
 reserve f,f1,f2 for PartFunc of REAL,REAL;

definition let f,x0;
 pred f is_continuous_in x0 means
:: FCONT_1:def 1
 x0 in dom f & for s1 st rng s1 c= dom f & s1 is convergent & lim s1 = x0 holds
 f*s1 is convergent & f.x0 = lim (f*s1);
end;

canceled;

theorem :: FCONT_1:2
  f is_continuous_in x0 iff x0 in dom f & for s1 st rng s1 c= dom f &
s1 is convergent & lim s1=x0 & (for n holds s1.n<>x0) holds
f*s1 is convergent & f.x0=lim(f*s1);

theorem :: FCONT_1:3
f is_continuous_in x0 iff x0 in dom f &
for r st 0<r ex s st 0<s & for x1 st x1 in dom f & abs(x1-x0)<s holds
abs(f.x1-f.x0)<r;

theorem :: FCONT_1:4
for f,x0 holds f is_continuous_in x0 iff x0 in dom f &
for N1 being Neighbourhood of f.x0
ex N being Neighbourhood of x0 st
for x1 st x1 in dom f & x1 in N holds f.x1 in N1;

theorem :: FCONT_1:5
for f,x0 holds f is_continuous_in x0 iff x0 in dom f &
for N1 being Neighbourhood of f.x0
ex N being Neighbourhood of x0 st f.:N c= N1;

theorem :: FCONT_1:6
  x0 in dom f & (ex N be Neighbourhood of x0 st dom f /\ N = {x0}) implies
f is_continuous_in x0;

theorem :: FCONT_1:7
f1 is_continuous_in x0 & f2 is_continuous_in x0 implies
f1+f2 is_continuous_in x0 &
f1-f2 is_continuous_in x0 &
f1(#)f2 is_continuous_in x0;

theorem :: FCONT_1:8
f is_continuous_in x0 implies r(#)f is_continuous_in x0;

theorem :: FCONT_1:9
  f is_continuous_in x0 implies abs(f) is_continuous_in x0 &
-f is_continuous_in x0;

theorem :: FCONT_1:10
f is_continuous_in x0 & f.x0<>0 implies f^ is_continuous_in x0;

theorem :: FCONT_1:11
  f1 is_continuous_in x0 & f1.x0<>0 & f2 is_continuous_in x0 implies
f2/f1 is_continuous_in x0;

theorem :: FCONT_1:12
f1 is_continuous_in x0 & f2 is_continuous_in f1.x0 implies
f2*f1 is_continuous_in x0;

definition let f,X;
 pred f is_continuous_on X means
:: FCONT_1:def 2
 X c= dom f & for x0 st x0 in X holds f|X is_continuous_in x0;
end;

canceled;

theorem :: FCONT_1:14
for X,f holds f is_continuous_on X iff X c= dom f &
for s1 st rng s1 c= X & s1 is convergent & lim s1 in X holds
f*s1 is convergent & f.(lim s1) = lim (f*s1);

theorem :: FCONT_1:15
f is_continuous_on X iff X c= dom f &
for x0,r st x0 in X & 0<r ex s st 0<s & for x1 st x1 in X &
abs(x1-x0) < s holds abs(f.x1 - f.x0) < r;

theorem :: FCONT_1:16
f is_continuous_on X iff f|X is_continuous_on X;

theorem :: FCONT_1:17
f is_continuous_on X & X1 c= X implies f is_continuous_on X1;

theorem :: FCONT_1:18
  x0 in dom f implies f is_continuous_on {x0};

theorem :: FCONT_1:19
for X,f1,f2 st f1 is_continuous_on X & f2 is_continuous_on X holds
f1+f2 is_continuous_on X & f1-f2 is_continuous_on X & f1(#)
f2 is_continuous_on X;

theorem :: FCONT_1:20
  for X,X1,f1,f2 st f1 is_continuous_on X & f2 is_continuous_on X1 holds
f1+f2 is_continuous_on X /\ X1 & f1-f2 is_continuous_on X /\ X1 &
f1(#)f2 is_continuous_on X /\ X1;

theorem :: FCONT_1:21
for r,X,f st f is_continuous_on X holds r(#)f is_continuous_on X;

theorem :: FCONT_1:22
  f is_continuous_on X implies abs(f) is_continuous_on X & -f is_continuous_on
X;

theorem :: FCONT_1:23
f is_continuous_on X & f"{0} = {} implies f^ is_continuous_on X;

theorem :: FCONT_1:24
  f is_continuous_on X & (f|X)"{0} = {} implies f^ is_continuous_on X;

theorem :: FCONT_1:25
  f1 is_continuous_on X & f1"{0} = {} & f2 is_continuous_on X implies
f2/f1 is_continuous_on X;

theorem :: FCONT_1:26
  f1 is_continuous_on X & f2 is_continuous_on (f1.:X) implies
f2*f1 is_continuous_on X;

theorem :: FCONT_1:27
  f1 is_continuous_on X & f2 is_continuous_on X1 implies
f2*f1 is_continuous_on X /\ (f1"X1);

theorem :: FCONT_1:28
  f is total & (for x1,x2 holds f.(x1+x2) = f.x1 + f.x2) &
(ex x0 st f is_continuous_in x0) implies f is_continuous_on REAL;

theorem :: FCONT_1:29
for f st dom f is compact & f is_continuous_on (dom f) holds (rng f) is compact
;

theorem :: FCONT_1:30
  Y c= dom f & Y is compact & f is_continuous_on Y implies
(f.:Y) is compact;

theorem :: FCONT_1:31
for f st dom f<>{} & (dom f) is compact & f is_continuous_on (dom f)
ex x1,x2 st x1 in dom f & x2 in dom f & f.x1 = upper_bound (rng f) &
  f.x2 = lower_bound (rng f);

theorem :: FCONT_1:32
  for f,Y st Y<>{} & Y c= dom f & Y is compact & f is_continuous_on Y
ex x1,x2 st x1 in Y & x2 in Y &
f.x1 = upper_bound (f.:Y) & f.x2 = lower_bound (f.:Y);

definition let f,X;
pred f is_Lipschitzian_on X means
:: FCONT_1:def 3
X c= dom f & ex r st 0<r & for x1,x2 st x1 in X & x2 in X holds
abs(f.x1-f.x2)<=r*abs(x1-x2);
end;

canceled;

theorem :: FCONT_1:34
f is_Lipschitzian_on X & X1 c= X implies f is_Lipschitzian_on X1;

theorem :: FCONT_1:35
  f1 is_Lipschitzian_on X & f2 is_Lipschitzian_on X1 implies
f1+f2 is_Lipschitzian_on X /\ X1;

theorem :: FCONT_1:36
  f1 is_Lipschitzian_on X & f2 is_Lipschitzian_on X1 implies
f1-f2 is_Lipschitzian_on X /\ X1;

theorem :: FCONT_1:37
  f1 is_Lipschitzian_on X & f2 is_Lipschitzian_on X1 &
f1 is_bounded_on Z & f2 is_bounded_on Z1 implies
f1(#)f2 is_Lipschitzian_on (X /\ Z /\ X1 /\ Z1);

theorem :: FCONT_1:38
f is_Lipschitzian_on X implies p(#)f is_Lipschitzian_on X;

theorem :: FCONT_1:39
  f is_Lipschitzian_on X implies -f is_Lipschitzian_on X &
abs(f) is_Lipschitzian_on X;

theorem :: FCONT_1:40
X c= dom f & f is_constant_on X implies f is_Lipschitzian_on X;

theorem :: FCONT_1:41
  id Y is_Lipschitzian_on Y;

theorem :: FCONT_1:42
f is_Lipschitzian_on X implies f is_continuous_on X;

theorem :: FCONT_1:43
  for f st (ex r st rng f = {r}) holds f is_continuous_on (dom f);

theorem :: FCONT_1:44
X c= dom f & f is_constant_on X implies f is_continuous_on X;

theorem :: FCONT_1:45
for f st (for x0 st x0 in dom f holds f.x0 = x0) holds f is_continuous_on dom f
;

theorem :: FCONT_1:46
  f = id dom f implies f is_continuous_on dom f;

theorem :: FCONT_1:47
  Y c= dom f & f|Y = id Y implies f is_continuous_on Y;

theorem :: FCONT_1:48
  X c= dom f & (for x0 st x0 in X holds f.x0 = r*x0+p) implies
f is_continuous_on X;

theorem :: FCONT_1:49
(for x0 st x0 in dom f holds f.x0 = x0^2) implies f is_continuous_on (dom f);

theorem :: FCONT_1:50
  X c= dom f & (for x0 st x0 in X holds f.x0 = x0^2) implies
f is_continuous_on X;

theorem :: FCONT_1:51
(for x0 st x0 in dom f holds f.x0 = abs(x0)) implies
f is_continuous_on (dom f);

theorem :: FCONT_1:52
  X c= dom f & (for x0 st x0 in X holds f.x0 = abs(x0)) implies
f is_continuous_on X;

theorem :: FCONT_1:53
X c= dom f & f is_monotone_on X & (ex p,g st p<=g & f.:X=[.p,g.]) implies
f is_continuous_on X;

theorem :: FCONT_1:54
  for f being one-to-one PartFunc of REAL,REAL st
p<=g & [.p,g.] c= dom f & (f is_increasing_on [.p,g.] or
f is_decreasing_on [.p,g.]) holds (f|[.p,g.])" is_continuous_on f.:[.p,g.];

Back to top