environ vocabulary FUNCT_2, MARGREL1, ZF_LANG, PARTIT1, BVFUNC_1; notation XBOOLE_0, SUBSET_1, MARGREL1, VALUAT_1, FRAENKEL, BINARITH, BVFUNC_1; constructors BINARITH, BVFUNC_1; clusters MARGREL1, VALUAT_1, BINARITH, FRAENKEL; begin ::Chap. 1 Propositional Calculus reserve Y for non empty set, a,b,c,d,e,f,g for Element of Funcs(Y,BOOLEAN); theorem :: BVFUNC_9:1 (a 'or' b) '&' (b 'imp' c) '<' a 'or' c; theorem :: BVFUNC_9:2 a '&' (a 'imp' b) '<' b; theorem :: BVFUNC_9:3 (a 'imp' b) '&' 'not' b '<' 'not' a; theorem :: BVFUNC_9:4 (a 'or' b) '&' 'not' a '<' b; theorem :: BVFUNC_9:5 (a 'imp' b) '&' ('not' a 'imp' b) '<' b; theorem :: BVFUNC_9:6 (a 'imp' b) '&' (a 'imp' 'not' b) '<' 'not' a; theorem :: BVFUNC_9:7 a 'imp' (b '&' c) '<' a 'imp' b; theorem :: BVFUNC_9:8 (a 'or' b) 'imp' c '<' a 'imp' c; theorem :: BVFUNC_9:9 a 'imp' b '<' (a '&' c) 'imp' b; theorem :: BVFUNC_9:10 a 'imp' b '<' (a '&' c) 'imp' (b '&' c); theorem :: BVFUNC_9:11 a 'imp' b '<' a 'imp' (b 'or' c); theorem :: BVFUNC_9:12 a 'imp' b '<' (a 'or' c) 'imp' (b 'or' c); theorem :: BVFUNC_9:13 a '&' b 'or' c '<' a 'or' c; theorem :: BVFUNC_9:14 (a '&' b) 'or' (c '&' d) '<' a 'or' c; theorem :: BVFUNC_9:15 (a 'or' b) '&' (b 'imp' c) '<' a 'or' c; theorem :: BVFUNC_9:16 (a 'imp' b) '&' ('not' a 'imp' c) '<' b 'or' c; theorem :: BVFUNC_9:17 (a 'imp' c) '&' (b 'imp' 'not' c) '<' 'not' a 'or' 'not' b; theorem :: BVFUNC_9:18 (a 'or' b) '&' ('not' a 'or' c) '<' b 'or' c; theorem :: BVFUNC_9:19 (a 'imp' b) '&' (c 'imp' d) '<' (a '&' c) 'imp' (b '&' d); theorem :: BVFUNC_9:20 (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b '&' c); theorem :: BVFUNC_9:21 ((a 'imp' c) '&' (b 'imp' c)) '<' (a 'or' b) 'imp' c; theorem :: BVFUNC_9:22 (a 'imp' b) '&' (c 'imp' d) '<' (a 'or' c) 'imp' (b 'or' d); theorem :: BVFUNC_9:23 (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b 'or' c); theorem :: BVFUNC_9:24 for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' (a2 'imp' a1); theorem :: BVFUNC_9:25 for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) '<' (a2 'imp' a1) '&' (b2 'imp' b1) '&' (c2 'imp' c1); theorem :: BVFUNC_9:26 for a1,b1,a2,b2 being Element of Funcs(Y,BOOLEAN) holds ((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'(a2 '&' b2)) 'imp' 'not' (a1 '&' b1)=I_el(Y); theorem :: BVFUNC_9:27 for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) '<' 'not'( a1 '&' b1) '&' 'not'( a1 '&' c1) '&' 'not'( b1 '&' c1); theorem :: BVFUNC_9:28 a '&' b '<' a; theorem :: BVFUNC_9:29 a '&' b '&' c '<' a & a '&' b '&' c '<' b; theorem :: BVFUNC_9:30 a '&' b '&' c '&' d '<' a & a '&' b '&' c '&' d '<' b; theorem :: BVFUNC_9:31 a '&' b '&' c '&' d '&' e '<' a & a '&' b '&' c '&' d '&' e '<' b; theorem :: BVFUNC_9:32 a '&' b '&' c '&' d '&' e '&' f '<' a & a '&' b '&' c '&' d '&' e '&' f '<' b; theorem :: BVFUNC_9:33 a '&' b '&' c '&' d '&' e '&' f '&' g '<' a & a '&' b '&' c '&' d '&' e '&' f '&' g '<' b; theorem :: BVFUNC_9:34 a '<' b & c '<' d implies a '&' c '<' b '&' d; theorem :: BVFUNC_9:35 a '&' b '<' c implies a '&' 'not' c '<' 'not' b; theorem :: BVFUNC_9:36 (a 'imp' c) '&' (b 'imp' c) '&' (a 'or' b) '<' c; theorem :: BVFUNC_9:37 ((a 'imp' c) 'or' (b 'imp' c)) '&' (a '&' b) '<' c; theorem :: BVFUNC_9:38 a '<' b & c '<' d implies a 'or' c '<' b 'or' d; theorem :: BVFUNC_9:39 a '<' a 'or' b; theorem :: BVFUNC_9:40 a '&' b '<' a 'or' b;