Copyright (c) 1999 Association of Mizar Users
environ vocabulary FUNCT_2, MARGREL1, ZF_LANG, PARTIT1, BVFUNC_1; notation XBOOLE_0, SUBSET_1, MARGREL1, VALUAT_1, FRAENKEL, BINARITH, BVFUNC_1; constructors BINARITH, BVFUNC_1; clusters MARGREL1, VALUAT_1, BINARITH, FRAENKEL; definitions BVFUNC_1; theorems MARGREL1, BINARITH, BVFUNC_1, BVFUNC_4, BVFUNC_5, BVFUNC_6, BVFUNC_7, VALUAT_1; begin ::Chap. 1 Propositional Calculus reserve Y for non empty set, a,b,c,d,e,f,g for Element of Funcs(Y,BOOLEAN); Lm1: a '&' b '<' a proof let x be Element of Y; assume Pj(a '&' b,x) = TRUE; then Pj(a,x) '&' Pj(b,x) = TRUE by VALUAT_1:def 6; hence thesis by MARGREL1:45; end; Lm2: a '&' b '&' c '<' a & a '&' b '&' c '<' b proof A1:a '&' b '&' c = c '&' b '&' a by BVFUNC_1:7; c '&' b '&' a 'imp' a = I_el(Y) by BVFUNC_6:39; hence a '&' b '&' c '<' a by A1,BVFUNC_1:19; A2:a '&' b '&' c = a '&' c '&' b by BVFUNC_1:7; a '&' c '&' b 'imp' b = I_el(Y) by BVFUNC_6:39; hence thesis by A2,BVFUNC_1:19; end; Lm3: a '&' b '&' c '&' d '<' a & a '&' b '&' c '&' d '<' b proof thus a '&' b '&' c '&' d '<' a proof A1:a '&' b '&' c '&' d = d '&' c '&' (b '&' a) by BVFUNC_1:7 .=d '&' c '&' b '&' a by BVFUNC_1:7; d '&' c '&' b '&' a 'imp' a = I_el(Y) by BVFUNC_6:39; hence thesis by A1,BVFUNC_1:19; end; A2:a '&' b '&' c '&' d = a '&' c '&' b '&' d by BVFUNC_1:7 .=a '&' c '&' d '&' b by BVFUNC_1:7; a '&' c '&' d '&' b 'imp' b = I_el(Y) by BVFUNC_6:39; hence thesis by A2,BVFUNC_1:19; end; Lm4: a '&' b '&' c '&' d '&' e '<' a & a '&' b '&' c '&' d '&' e '<' b proof thus a '&' b '&' c '&' d '&' e '<' a proof A1:a '&' b '&' c '&' d '&' e =e '&' d '&' (c '&' (b '&' a)) by BVFUNC_1:7 .=e '&' d '&' c '&' (b '&' a) by BVFUNC_1:7 .=e '&' d '&' c '&' b '&' a by BVFUNC_1:7; e '&' d '&' c '&' b '&' a 'imp' a = I_el(Y) by BVFUNC_6:39; hence thesis by A1,BVFUNC_1:19; end; A2:a '&' b '&' c '&' d '&' e =a '&' c '&' b '&' d '&' e by BVFUNC_1:7 .=a '&' c '&' d '&' b '&' e by BVFUNC_1:7 .=a '&' c '&' d '&' e '&' b by BVFUNC_1:7; a '&' c '&' d '&' e '&' b 'imp' b = I_el(Y) by BVFUNC_6:39; hence thesis by A2,BVFUNC_1:19; end; Lm5: a '&' b '&' c '&' d '&' e '&' f '<' a & a '&' b '&' c '&' d '&' e '&' f '<' b proof thus a '&' b '&' c '&' d '&' e '&' f '<' a proof A1:a '&' b '&' c '&' d '&' e '&' f =f '&' e '&' (d '&' (c '&' (b '&' a))) by BVFUNC_1:7 .=f '&' e '&' d '&' (c '&' (b '&' a)) by BVFUNC_1:7 .=f '&' e '&' d '&' c '&' (b '&' a) by BVFUNC_1:7 .=f '&' e '&' d '&' c '&' b '&' a by BVFUNC_1:7; f '&' e '&' d '&' c '&' b '&' a 'imp' a = I_el(Y) by BVFUNC_6:39; hence thesis by A1,BVFUNC_1:19; end; A2:a '&' b '&' c '&' d '&' e '&' f =f '&' e '&' (d '&' (c '&' (b '&' a))) by BVFUNC_1:7 .=f '&' e '&' d '&' (c '&' (b '&' a)) by BVFUNC_1:7 .=f '&' e '&' d '&' c '&' (b '&' a) by BVFUNC_1:7 .=f '&' e '&' d '&' c '&' a '&' b by BVFUNC_1:7; f '&' e '&' d '&' c '&' a '&' b 'imp' b = I_el(Y) by BVFUNC_6:39; hence thesis by A2,BVFUNC_1:19; end; Lm6: a '&' b '&' c '&' d '&' e '&' f '&' g '<' a & a '&' b '&' c '&' d '&' e '&' f '&' g '<' b proof thus a '&' b '&' c '&' d '&' e '&' f '&' g '<' a proof A1:a '&' b '&' c '&' d '&' e '&' f '&' g =g '&' f '&' (e '&' (d '&' (c '&' (b '&' a)))) by BVFUNC_1:7 .=g '&' f '&' e '&' (d '&' (c '&' (b '&' a))) by BVFUNC_1:7 .=g '&' f '&' e '&' d '&' (c '&' (b '&' a)) by BVFUNC_1:7 .=g '&' f '&' e '&' d '&' c '&' (b '&' a) by BVFUNC_1:7 .=g '&' f '&' e '&' d '&' c '&' b '&' a by BVFUNC_1:7; g '&' f '&' e '&' d '&' c '&' b '&' a 'imp' a = I_el(Y) by BVFUNC_6:39; hence thesis by A1,BVFUNC_1:19; end; A2:a '&' b '&' c '&' d '&' e '&' f '&' g =a '&' (c '&' b) '&' d '&' e '&' f '&' g by BVFUNC_1:7 .=a '&' (d '&' (c '&' b)) '&' e '&' f '&' g by BVFUNC_1:7 .=a '&' (e '&' (d '&' (c '&' b))) '&' f '&' g by BVFUNC_1:7 .=a '&' (f '&' (e '&' (d '&' (c '&' b)))) '&' g by BVFUNC_1:7 .=a '&' g '&' (f '&' (e '&' (d '&' (c '&' b)))) by BVFUNC_1:7 .=a '&' g '&' f '&' (e '&' (d '&' (c '&' b))) by BVFUNC_1:7 .=a '&' g '&' f '&' e '&' (d '&' (c '&' b)) by BVFUNC_1:7 .=a '&' g '&' f '&' e '&' d '&' (c '&' b) by BVFUNC_1:7 .=a '&' g '&' f '&' e '&' d '&' c '&' b by BVFUNC_1:7; a '&' g '&' f '&' e '&' d '&' c '&' b 'imp' b = I_el(Y) by BVFUNC_6:39; hence thesis by A2,BVFUNC_1:19; end; Lm7: for a,b,c,d,e,f,g being Element of Funcs(Y,BOOLEAN) holds (a '&' b '&' c '&' d '&' e '&' f '&' g 'imp' a = I_el(Y)) & (a '&' b '&' c '&' d '&' e '&' f '&' g 'imp' b = I_el(Y)) & (a '&' b '&' c '&' d '&' e '&' f '&' g 'imp' c = I_el(Y)) & (a '&' b '&' c '&' d '&' e '&' f '&' g 'imp' d = I_el(Y)) & (a '&' b '&' c '&' d '&' e '&' f '&' g 'imp' e = I_el(Y)) & (a '&' b '&' c '&' d '&' e '&' f '&' g 'imp' f = I_el(Y)) & (a '&' b '&' c '&' d '&' e '&' f '&' g 'imp' g = I_el(Y)) proof let a,b,c,d,e,f,g be Element of Funcs(Y,BOOLEAN); A1:a '&' b '&' c '&' d '&' e '&' f '&' g '<' a by Lm6; A2:a '&' b '&' c '&' d '&' e '&' f '&' g '<' b by Lm6; A3: a '&' b '&' c '&' d '&' e '&' f '&' g '<' c by Lm5; A4: (a '&' b '&' c '&' d '&' e '&' f '&' g '<' d) by Lm4; A5: (a '&' b '&' c '&' d '&' e '&' f '&' g '<' e) by Lm3; A6: (a '&' b '&' c '&' d '&' e '&' f '&' g '<' f) by Lm2; (a '&' b '&' c '&' d '&' e '&' f '&' g '<' g) by Lm1; hence thesis by A1,A2,A3,A4,A5,A6,BVFUNC_1:19; end; theorem Th1: (a 'or' b) '&' (b 'imp' c) '<' a 'or' c proof let z be Element of Y; assume A1:Pj((a 'or' b) '&' (b 'imp' c),z)=TRUE; A2:Pj((a 'or' b) '&' (b 'imp' c),z) =Pj(a 'or' b,z) '&' Pj(b 'imp' c,z) by VALUAT_1:def 6 .=Pj(a 'or' b,z) '&' Pj('not' b 'or' c,z) by BVFUNC_4:8 .=Pj(a 'or' b,z) '&' (Pj('not' b,z) 'or' Pj(c,z)) by BVFUNC_1:def 7 .=(Pj(a,z) 'or' Pj(b,z)) '&' (Pj('not' b,z) 'or' Pj(c,z)) by BVFUNC_1:def 7; now assume Pj(a 'or' c,z)<>TRUE; then Pj(a 'or' c,z)=FALSE by MARGREL1:43; then A3:Pj(a,z) 'or' Pj(c,z)=FALSE by BVFUNC_1:def 7; A4:Pj(a,z)=TRUE or Pj(a,z)=FALSE by MARGREL1:39; Pj(c,z)=TRUE or Pj(c,z)=FALSE by MARGREL1:39; then Pj(a,z)=FALSE & Pj(c,z)=FALSE by A3,A4,BINARITH:19; then (Pj(a,z) 'or' Pj(b,z)) '&' (Pj('not' b,z) 'or' Pj(c,z)) =Pj(b,z) '&' (Pj('not' b,z) 'or' FALSE) by BINARITH:7 .=Pj(b,z) '&' Pj('not' b,z) by BINARITH:7 .=Pj(b,z) '&' 'not' Pj(b,z) by VALUAT_1:def 5 .=FALSE by MARGREL1:46; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem Th2: a '&' (a 'imp' b) '<' b proof let z be Element of Y; assume A1:Pj(a '&' (a 'imp' b),z)=TRUE; A2: Pj(a '&' (a 'imp' b),z) =Pj(a,z) '&' Pj(a 'imp' b,z) by VALUAT_1:def 6 .=Pj(a,z) '&' Pj('not' a 'or' b,z) by BVFUNC_4:8 .=Pj(a,z) '&' (Pj('not' a,z) 'or' Pj(b,z)) by BVFUNC_1:def 7 .=Pj(a,z) '&' Pj('not' a,z) 'or' Pj(a,z) '&' Pj(b,z) by BINARITH:22 .=Pj(a,z) '&' 'not' Pj(a,z) 'or' Pj(a,z) '&' Pj(b,z) by VALUAT_1:def 5 .=FALSE 'or' Pj(a,z) '&' Pj(b,z) by MARGREL1:46 .=Pj(a,z) '&' Pj(b,z) by BINARITH:7; now assume Pj(b,z)<>TRUE; then Pj(a,z) '&' Pj(b,z) =FALSE '&' Pj(a,z) by MARGREL1:43 .=FALSE by MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'imp' b) '&' 'not' b '<' 'not' a proof let z be Element of Y; assume A1:Pj((a 'imp' b) '&' 'not' b,z)=TRUE; A2: Pj((a 'imp' b) '&' 'not' b,z) =Pj(a 'imp' b,z) '&' Pj('not' b,z) by VALUAT_1:def 6 .=Pj('not' a 'or' b,z) '&' Pj('not' b,z) by BVFUNC_4:8 .=Pj('not' b,z) '&' (Pj('not' a,z) 'or' Pj(b,z)) by BVFUNC_1:def 7 .=Pj('not' b,z) '&' Pj('not' a,z) 'or' Pj('not' b,z) '&' Pj(b,z) by BINARITH:22 .=Pj('not' b,z) '&' Pj('not' a,z) 'or' 'not' Pj(b,z) '&' Pj(b,z) by VALUAT_1:def 5 .=Pj('not' b,z) '&' Pj('not' a,z) 'or' FALSE by MARGREL1:46 .=Pj('not' b,z) '&' Pj('not' a,z) by BINARITH:7; now assume Pj('not' a,z)<>TRUE; then Pj('not' b,z) '&' Pj('not' a,z) =FALSE '&' Pj('not' b,z) by MARGREL1:43 .=FALSE by MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'or' b) '&' 'not' a '<' b proof let z be Element of Y; assume A1:Pj((a 'or' b) '&' 'not' a,z)=TRUE; A2: Pj((a 'or' b) '&' 'not' a,z) =Pj(a 'or' b,z) '&' Pj('not' a,z) by VALUAT_1:def 6 .=Pj('not' a,z) '&' (Pj(a,z) 'or' Pj(b,z)) by BVFUNC_1:def 7 .=Pj('not' a,z) '&' Pj(a,z) 'or' Pj('not' a,z) '&' Pj(b,z) by BINARITH:22 .='not' Pj(a,z) '&' Pj(a,z) 'or' Pj('not' a,z) '&' Pj(b,z) by VALUAT_1:def 5 .=FALSE 'or' Pj('not' a,z) '&' Pj(b,z) by MARGREL1:46 .=Pj('not' a,z) '&' Pj(b,z) by BINARITH:7; now assume Pj(b,z)<>TRUE; then Pj('not' a,z) '&' Pj(b,z) =FALSE '&' Pj('not' a,z) by MARGREL1:43 .=FALSE by MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'imp' b) '&' ('not' a 'imp' b) '<' b proof let z be Element of Y; assume A1:Pj((a 'imp' b) '&' ('not' a 'imp' b),z)=TRUE; A2: Pj((a 'imp' b) '&' ('not' a 'imp' b),z) =Pj(a 'imp' b,z) '&' Pj('not' a 'imp' b,z) by VALUAT_1:def 6 .=Pj('not' a 'or' b,z) '&' Pj('not' a 'imp' b,z) by BVFUNC_4:8 .=Pj('not' a 'or' b,z) '&' Pj('not' 'not' a 'or' b,z) by BVFUNC_4:8 .=Pj('not' a 'or' b,z) '&' Pj(a 'or' b,z) by BVFUNC_1:4 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' Pj(a 'or' b,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj(a,z) 'or' Pj(b,z)) by BVFUNC_1:def 7; now assume Pj(b,z)<>TRUE; then Pj(b,z)=FALSE by MARGREL1:43; then (Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj(a,z) 'or' Pj(b,z)) =Pj('not' a,z) '&' (Pj(a,z) 'or' FALSE) by BINARITH:7 .=Pj('not' a,z) '&' Pj(a,z) by BINARITH:7 .='not' Pj(a,z) '&' Pj(a,z) by VALUAT_1:def 5 .=FALSE by MARGREL1:46; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'imp' b) '&' (a 'imp' 'not' b) '<' 'not' a proof let z be Element of Y; assume A1:Pj((a 'imp' b) '&' (a 'imp' 'not' b),z)=TRUE; A2: Pj((a 'imp' b) '&' (a 'imp' 'not' b),z) =Pj(a 'imp' b,z) '&' Pj(a 'imp' 'not' b,z) by VALUAT_1:def 6 .=Pj('not' a 'or' b,z) '&' Pj(a 'imp' 'not' b,z) by BVFUNC_4:8 .=Pj('not' a 'or' b,z) '&' Pj('not' a 'or' 'not' b,z) by BVFUNC_4:8 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' Pj('not' a 'or' 'not' b,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' a,z) 'or' Pj('not' b,z)) by BVFUNC_1:def 7; now assume Pj('not' a,z)<>TRUE; then Pj('not' a,z)=FALSE by MARGREL1:43; then (Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' a,z) 'or' Pj('not' b,z)) =Pj(b,z) '&' (FALSE 'or' Pj('not' b,z)) by BINARITH:7 .=Pj(b,z) '&' Pj('not' b,z) by BINARITH:7 .=Pj(b,z) '&' 'not' Pj(b,z) by VALUAT_1:def 5 .=FALSE by MARGREL1:46; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem a 'imp' (b '&' c) '<' a 'imp' b proof let z be Element of Y; assume A1:Pj(a 'imp' (b '&' c),z)=TRUE; A2: Pj(a 'imp' (b '&' c),z) =Pj('not' a 'or' (b '&' c),z) by BVFUNC_4:8 .=Pj('not' a,z) 'or' Pj(b '&' c,z) by BVFUNC_1:def 7 .=Pj('not' a,z) 'or' (Pj(b,z) '&' Pj(c,z)) by VALUAT_1:def 6; now assume Pj(a 'imp' b,z)<>TRUE; then Pj(a 'imp' b,z)=FALSE by MARGREL1:43; then Pj('not' a 'or' b,z)=FALSE by BVFUNC_4:8; then A3:Pj('not' a,z) 'or' Pj(b,z)=FALSE by BVFUNC_1:def 7; Pj('not' a,z) 'or' (Pj(b,z) '&' Pj(c,z)) =(Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' a,z) 'or' Pj(c,z)) by BINARITH:23 .=FALSE by A3,MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'or' b) 'imp' c '<' a 'imp' c proof let z be Element of Y; assume A1:Pj((a 'or' b) 'imp' c,z)=TRUE; A2: Pj((a 'or' b) 'imp' c,z) =Pj('not'( a 'or' b) 'or' c,z) by BVFUNC_4:8 .=Pj(('not' a '&' 'not' b) 'or' c,z) by BVFUNC_1:16 .=Pj('not' a '&' 'not' b,z) 'or' Pj(c,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) '&' Pj('not' b,z)) 'or' Pj(c,z) by VALUAT_1:def 6; now assume Pj(a 'imp' c,z)<>TRUE; then Pj(a 'imp' c,z)=FALSE by MARGREL1:43; then Pj('not' a 'or' c,z)=FALSE by BVFUNC_4:8; then A3:Pj('not' a,z) 'or' Pj(c,z)=FALSE by BVFUNC_1:def 7; (Pj('not' a,z) '&' Pj('not' b,z)) 'or' Pj(c,z) =(Pj(c,z) 'or' Pj('not' a,z)) '&' (Pj(c,z) 'or' Pj('not' b,z)) by BINARITH:23 .=FALSE by A3,MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem a 'imp' b '<' (a '&' c) 'imp' b proof let z be Element of Y; assume A1:Pj(a 'imp' b,z)=TRUE; A2: Pj(a 'imp' b,z) =Pj('not' a 'or' b,z) by BVFUNC_4:8 .=Pj('not' a,z) 'or' Pj(b,z) by BVFUNC_1:def 7; now assume Pj((a '&' c) 'imp' b,z)<>TRUE; then Pj((a '&' c) 'imp' b,z)=FALSE by MARGREL1:43; then Pj('not'( a '&' c) 'or' b,z)=FALSE by BVFUNC_4:8; then Pj('not'( a '&' c),z) 'or' Pj(b,z)=FALSE by BVFUNC_1:def 7; then Pj(('not' a 'or' 'not' c),z) 'or' Pj(b,z)=FALSE by BVFUNC_1:17; then (Pj('not' c,z) 'or' Pj('not' a,z)) 'or' Pj(b,z)=FALSE by BVFUNC_1: def 7 ; then A3:Pj('not' c,z) 'or' (Pj('not' a,z) 'or' Pj(b,z))=FALSE by BINARITH :20; Pj('not' c,z) 'or' (Pj('not' a,z) 'or' Pj(b,z)) =TRUE by A1,A2,BINARITH :19; hence contradiction by A3,MARGREL1:43; end; hence thesis; end; theorem a 'imp' b '<' (a '&' c) 'imp' (b '&' c) proof let z be Element of Y; assume A1:Pj(a 'imp' b,z)=TRUE; A2: Pj(a 'imp' b,z) =Pj('not' a 'or' b,z) by BVFUNC_4:8 .=Pj('not' a,z) 'or' Pj(b,z) by BVFUNC_1:def 7; now assume Pj((a '&' c) 'imp' (b '&' c),z)<>TRUE; then Pj((a '&' c) 'imp' (b '&' c),z)=FALSE by MARGREL1:43; then Pj('not'( a '&' c) 'or' (b '&' c),z)=FALSE by BVFUNC_4:8; then Pj('not'( a '&' c),z) 'or' Pj(b '&' c,z)=FALSE by BVFUNC_1:def 7; then Pj(('not' a 'or' 'not' c),z) 'or' Pj(b '&' c,z)=FALSE by BVFUNC_1:17; then (Pj('not' c,z) 'or' Pj('not' a,z)) 'or' Pj(b '&' c,z)=FALSE by BVFUNC_1:def 7; then Pj('not' c,z) 'or' (Pj('not' a,z) 'or' Pj(b '&' c,z))=FALSE by BINARITH:20; then Pj('not' c,z) 'or' (Pj('not' a,z) 'or' (Pj(b,z) '&' Pj(c,z)))=FALSE by VALUAT_1:def 6; then A3: Pj('not' c,z) 'or' ((Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' a,z) 'or' Pj(c,z)))=FALSE by BINARITH:23; Pj('not' c,z) 'or' ((Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' a,z) 'or' Pj(c,z))) =Pj('not' c,z) 'or' (Pj(c,z) 'or' Pj('not' a,z)) by A1,A2,MARGREL1:50 .=Pj('not' c,z) 'or' Pj(c,z) 'or' Pj('not' a,z) by BINARITH:20 .='not' Pj(c,z) 'or' Pj(c,z) 'or' Pj('not' a,z) by VALUAT_1:def 5 .=TRUE 'or' Pj('not' a,z) by BINARITH:18 .=TRUE by BINARITH:19; hence contradiction by A3,MARGREL1:43; end; hence thesis; end; theorem a 'imp' b '<' a 'imp' (b 'or' c) proof let z be Element of Y; assume A1:Pj(a 'imp' b,z)=TRUE; A2: Pj(a 'imp' b,z) =Pj('not' a 'or' b,z) by BVFUNC_4:8 .=Pj('not' a,z) 'or' Pj(b,z) by BVFUNC_1:def 7; now assume A3: Pj(a 'imp' (b 'or' c),z)<>TRUE; Pj(a 'imp' (b 'or' c),z) =Pj('not' a 'or' (b 'or' c),z) by BVFUNC_4:8 .=Pj('not' a,z) 'or' Pj(b 'or' c,z) by BVFUNC_1:def 7 .=Pj('not' a,z) 'or' (Pj(b,z) 'or' Pj(c,z)) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj(b,z)) 'or' Pj(c,z) by BINARITH:20 .=TRUE by A1,A2,BINARITH:19; hence contradiction by A3; end; hence thesis; end; theorem a 'imp' b '<' (a 'or' c) 'imp' (b 'or' c) proof let z be Element of Y; assume A1:Pj(a 'imp' b,z)=TRUE; A2: Pj(a 'imp' b,z) =Pj('not' a 'or' b,z) by BVFUNC_4:8 .=Pj('not' a,z) 'or' Pj(b,z) by BVFUNC_1:def 7; now assume A3: Pj((a 'or' c) 'imp' (b 'or' c),z)<>TRUE; Pj((a 'or' c) 'imp' (b 'or' c),z) =Pj('not'( a 'or' c) 'or' (b 'or' c),z) by BVFUNC_4:8 .=Pj('not'( a 'or' c),z) 'or' Pj(b 'or' c,z) by BVFUNC_1:def 7 .=Pj('not'( a 'or' c),z) 'or' (Pj(b,z) 'or' Pj(c,z)) by BVFUNC_1:def 7 .=(Pj('not'( a 'or' c),z) 'or' Pj(b,z)) 'or' Pj(c,z) by BINARITH:20 .=(Pj(('not' a '&' 'not' c),z) 'or' Pj(b,z)) 'or' Pj(c,z) by BVFUNC_1:16 .=(Pj(b,z) 'or' (Pj('not' a,z) '&' Pj('not' c,z))) 'or' Pj(c,z) by VALUAT_1:def 6 .=((Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj(b,z) 'or' Pj('not' c,z))) 'or' Pj(c,z) by BINARITH:23 .=(Pj(b,z) 'or' Pj('not' c,z)) 'or' Pj(c,z) by A1,A2,MARGREL1:50 .=Pj(b,z) 'or' (Pj('not' c,z) 'or' Pj(c,z)) by BINARITH:20 .=Pj(b,z) 'or' ('not' Pj(c,z) 'or' Pj(c,z)) by VALUAT_1:def 5 .=Pj(b,z) 'or' TRUE by BINARITH:18 .=TRUE by BINARITH:19; hence contradiction by A3; end; hence thesis; end; theorem a '&' b 'or' c '<' a 'or' c proof let z be Element of Y; assume A1:Pj(a '&' b 'or' c,z)=TRUE; A2: Pj(a '&' b 'or' c,z) =Pj(a '&' b,z) 'or' Pj(c,z) by BVFUNC_1:def 7 .=(Pj(a,z) '&' Pj(b,z)) 'or' Pj(c,z) by VALUAT_1:def 6; now assume Pj(a 'or' c,z)<>TRUE; then Pj(a 'or' c,z)=FALSE by MARGREL1:43; then A3:Pj(a,z) 'or' Pj(c,z)=FALSE by BVFUNC_1:def 7; (Pj(a,z) '&' Pj(b,z)) 'or' Pj(c,z) =(Pj(c,z) 'or' Pj(a,z)) '&' (Pj(c,z) 'or' Pj(b,z)) by BINARITH:23 .=FALSE by A3,MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a '&' b) 'or' (c '&' d) '<' a 'or' c proof let z be Element of Y; assume A1:Pj((a '&' b) 'or' (c '&' d),z)=TRUE; A2: Pj((a '&' b) 'or' (c '&' d),z) =Pj(a '&' b,z) 'or' Pj(c '&' d,z) by BVFUNC_1:def 7 .=(Pj(a,z) '&' Pj(b,z)) 'or' Pj(c '&' d,z) by VALUAT_1:def 6 .=(Pj(a,z) '&' Pj(b,z)) 'or' (Pj(c,z) '&' Pj(d,z)) by VALUAT_1:def 6; now assume Pj(a 'or' c,z)<>TRUE; then Pj(a 'or' c,z)=FALSE by MARGREL1:43; then A3:Pj(a,z) 'or' Pj(c,z)=FALSE by BVFUNC_1:def 7; (Pj(a,z) '&' Pj(b,z)) 'or' (Pj(c,z) '&' Pj(d,z)) =(Pj(c,z) 'or' (Pj(a,z) '&' Pj(b,z))) '&' ((Pj(a,z) '&' Pj(b,z)) 'or' Pj(d,z)) by BINARITH:23 .=((Pj(a,z) 'or' Pj(c,z)) '&' (Pj(c,z) 'or' Pj(b,z))) '&' ((Pj(a,z) '&' Pj(b,z)) 'or' Pj(d,z)) by BINARITH:23 .=FALSE '&' ((Pj(a,z) '&' Pj(b,z)) 'or' Pj(d,z)) by A3,MARGREL1:49 .=FALSE by MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'or' b) '&' (b 'imp' c) '<' a 'or' c proof let z be Element of Y; assume A1:Pj((a 'or' b) '&' (b 'imp' c),z)=TRUE; A2: Pj((a 'or' b) '&' (b 'imp' c),z) =Pj((a 'or' b) '&' ('not' b 'or' c),z) by BVFUNC_4:8 .=Pj(a 'or' b,z) '&' Pj('not' b 'or' c,z) by VALUAT_1:def 6 .=(Pj(a,z) 'or' Pj(b,z)) '&' Pj('not' b 'or' c,z) by BVFUNC_1:def 7 .=(Pj(a,z) 'or' Pj(b,z)) '&' (Pj('not' b,z) 'or' Pj(c,z)) by BVFUNC_1:def 7; now assume Pj(a 'or' c,z)<>TRUE; then Pj(a 'or' c,z)=FALSE by MARGREL1:43; then A3:Pj(a,z) 'or' Pj(c,z)=FALSE by BVFUNC_1:def 7; A4:Pj(a,z)=TRUE or Pj(a,z)=FALSE by MARGREL1:39; Pj(c,z)=TRUE or Pj(c,z)=FALSE by MARGREL1:39; then A5:Pj(a,z)=FALSE & Pj(c,z)=FALSE by A3,A4,BINARITH:19; (Pj(a,z) 'or' Pj(b,z)) '&' (Pj('not' b,z) 'or' Pj(c,z)) =(Pj(a,z) 'or' Pj(b,z)) '&' Pj('not' b,z) 'or' Pj(c,z) '&' (Pj(a,z) 'or' Pj(b,z)) by BINARITH:22 .=(Pj(a,z) 'or' Pj(b,z)) '&' Pj('not' b,z) 'or' ((Pj(a,z) '&' Pj(c,z)) 'or' (Pj(c,z) '&' Pj(b,z))) by BINARITH:22 .=(Pj('not' b,z) '&' Pj(a,z) 'or' Pj('not' b,z) '&' Pj(b,z)) 'or' ((Pj(a,z) '&' Pj(c,z)) 'or' (Pj(c,z) '&' Pj(b,z))) by BINARITH:22 .=(Pj('not' b,z) '&' Pj(a,z) 'or' 'not' Pj(b,z) '&' Pj(b,z)) 'or' ((Pj(a,z) '&' Pj(c,z)) 'or' (Pj(c,z) '&' Pj(b,z))) by VALUAT_1:def 5 .=(Pj('not' b,z) '&' Pj(a,z) 'or' FALSE) 'or' ((Pj(a,z) '&' Pj(c,z)) 'or' (Pj(c,z) '&' Pj(b,z))) by MARGREL1:46 .=(FALSE '&' Pj('not' b,z)) 'or' ((FALSE '&' FALSE) 'or' (FALSE '&' Pj(b,z))) by A5,BINARITH:7 .=FALSE 'or' ((FALSE '&' FALSE) 'or' (FALSE '&' Pj(b,z))) by MARGREL1:49 .=(FALSE '&' FALSE) 'or' (FALSE '&' Pj(b,z)) by BINARITH:7 .=FALSE 'or' (FALSE '&' Pj(b,z)) by MARGREL1:49 .=FALSE '&' Pj(b,z) by BINARITH:7 .=FALSE by MARGREL1:49; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'imp' b) '&' ('not' a 'imp' c) '<' b 'or' c proof let z be Element of Y; assume A1:Pj((a 'imp' b) '&' ('not' a 'imp' c),z)=TRUE; A2: Pj((a 'imp' b) '&' ('not' a 'imp' c),z) =Pj(('not' a 'or' b) '&' ('not' a 'imp' c),z) by BVFUNC_4:8 .=Pj(('not' a 'or' b) '&' ('not' 'not' a 'or' c),z) by BVFUNC_4:8 .=Pj(('not' a 'or' b) '&' (a 'or' c),z) by BVFUNC_1:4 .=Pj('not' a 'or' b,z) '&' Pj(a 'or' c,z) by VALUAT_1:def 6 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' Pj(a 'or' c,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj(a,z) 'or' Pj(c,z)) by BVFUNC_1:def 7; now assume Pj(b 'or' c,z)<>TRUE; then Pj(b 'or' c,z)=FALSE by MARGREL1:43; then A3:Pj(b,z) 'or' Pj(c,z)=FALSE by BVFUNC_1:def 7; A4:Pj(b,z)=TRUE or Pj(b,z)=FALSE by MARGREL1:39; Pj(c,z)=TRUE or Pj(c,z)=FALSE by MARGREL1:39; then Pj(b,z)=FALSE & Pj(c,z)=FALSE by A3,A4,BINARITH:19; then (Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj(a,z) 'or' Pj(c,z)) =Pj('not' a,z) '&' (Pj(a,z) 'or' FALSE) by BINARITH:7 .=Pj('not' a,z) '&' Pj(a,z) by BINARITH:7 .='not' Pj(a,z) '&' Pj(a,z) by VALUAT_1:def 5 .=FALSE by MARGREL1:46; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'imp' c) '&' (b 'imp' 'not' c) '<' 'not' a 'or' 'not' b proof let z be Element of Y; assume A1:Pj((a 'imp' c) '&' (b 'imp' 'not' c),z)=TRUE; A2: Pj((a 'imp' c) '&' (b 'imp' 'not' c),z) =Pj(a 'imp' c,z) '&' Pj(b 'imp' 'not' c,z) by VALUAT_1:def 6 .=Pj('not' a 'or' c,z) '&' Pj(b 'imp' 'not' c,z) by BVFUNC_4:8 .=Pj('not' a 'or' c,z) '&' Pj('not' b 'or' 'not' c,z) by BVFUNC_4:8 .=(Pj('not' a,z) 'or' Pj(c,z)) '&' Pj('not' b 'or' 'not' c,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj(c,z)) '&' (Pj('not' b,z) 'or' Pj('not' c,z)) by BVFUNC_1:def 7; now assume Pj('not' a 'or' 'not' b,z)<>TRUE; then Pj('not' a 'or' 'not' b,z)=FALSE by MARGREL1:43; then A3:Pj('not' a,z) 'or' Pj('not' b,z)=FALSE by BVFUNC_1:def 7; A4:Pj('not' a,z)=TRUE or Pj('not' a,z)=FALSE by MARGREL1:39; Pj('not' b,z)=TRUE or Pj('not' b,z)=FALSE by MARGREL1:39; then Pj('not' a,z)=FALSE & Pj('not' b,z)=FALSE by A3,A4,BINARITH:19; then (Pj('not' a,z) 'or' Pj(c,z)) '&' (Pj('not' b,z) 'or' Pj('not' c,z)) =Pj(c,z) '&' (FALSE 'or' Pj('not' c,z)) by BINARITH:7 .=Pj(c,z) '&' Pj('not' c,z) by BINARITH:7 .=Pj(c,z) '&' 'not' Pj(c,z) by VALUAT_1:def 5 .=FALSE by MARGREL1:46; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem (a 'or' b) '&' ('not' a 'or' c) '<' b 'or' c proof let z be Element of Y; assume A1:Pj((a 'or' b) '&' ('not' a 'or' c),z)=TRUE; A2: Pj((a 'or' b) '&' ('not' a 'or' c),z) =Pj(a 'or' b,z) '&' Pj('not' a 'or' c,z) by VALUAT_1:def 6 .=(Pj(a,z) 'or' Pj(b,z)) '&' Pj('not' a 'or' c,z) by BVFUNC_1:def 7 .=(Pj(a,z) 'or' Pj(b,z)) '&' (Pj('not' a,z) 'or' Pj(c,z)) by BVFUNC_1:def 7; now assume Pj(b 'or' c,z)<>TRUE; then Pj(b 'or' c,z)=FALSE by MARGREL1:43; then A3:Pj(b,z) 'or' Pj(c,z)=FALSE by BVFUNC_1:def 7; A4:Pj(b,z)=TRUE or Pj(b,z)=FALSE by MARGREL1:39; Pj(c,z)=TRUE or Pj(c,z)=FALSE by MARGREL1:39; then Pj(b,z)=FALSE & Pj(c,z)=FALSE by A3,A4,BINARITH:19; then (Pj(a,z) 'or' Pj(b,z)) '&' (Pj('not' a,z) 'or' Pj(c,z)) =Pj(a,z) '&' (Pj('not' a,z) 'or' FALSE) by BINARITH:7 .=Pj(a,z) '&' Pj('not' a,z) by BINARITH:7 .=Pj(a,z) '&' 'not' Pj(a,z) by VALUAT_1:def 5 .=FALSE by MARGREL1:46; hence contradiction by A1,A2,MARGREL1:43; end; hence thesis; end; theorem Th19: (a 'imp' b) '&' (c 'imp' d) '<' (a '&' c) 'imp' (b '&' d) proof let z be Element of Y; assume A1:Pj((a 'imp' b) '&' (c 'imp' d),z)=TRUE; A2: Pj((a 'imp' b) '&' (c 'imp' d),z) =Pj(a 'imp' b,z) '&' Pj(c 'imp' d,z) by VALUAT_1:def 6 .=Pj('not' a 'or' b,z) '&' Pj(c 'imp' d,z) by BVFUNC_4:8 .=Pj('not' a 'or' b,z) '&' Pj('not' c 'or' d,z) by BVFUNC_4:8 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' Pj('not' c 'or' d,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' c,z) 'or' Pj(d,z)) by BVFUNC_1:def 7; now assume A3: Pj((a '&' c) 'imp' (b '&' d),z)<>TRUE; A4: Pj((a '&' c) 'imp' (b '&' d),z) =Pj('not'( a '&' c) 'or' (b '&' d),z) by BVFUNC_4:8 .=Pj('not'( a '&' c),z) 'or' Pj(b '&' d,z) by BVFUNC_1:def 7 .=Pj('not' a 'or' 'not' c,z) 'or' Pj(b '&' d,z) by BVFUNC_1:17 .=(Pj('not' a,z) 'or' Pj('not' c,z)) 'or' Pj(b '&' d,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj('not' c,z)) 'or' (Pj(b,z) '&' Pj(d,z)) by VALUAT_1:def 6; A5:(Pj('not' a,z) 'or' Pj('not' c,z))=TRUE or (Pj('not' a,z) 'or' Pj('not' c,z))=FALSE by MARGREL1:39; A6: (Pj(b,z) '&' Pj(d,z))=TRUE or (Pj(b,z) '&' Pj(d,z))=FALSE by MARGREL1:39; A7:Pj('not' a,z)=TRUE or Pj('not' a,z)=FALSE by MARGREL1:39; Pj('not' c,z)=TRUE or Pj('not' c,z)=FALSE by MARGREL1:39; then A8: Pj('not' a,z)=FALSE & Pj('not' c,z)=FALSE by A3,A4,A5,A7,BINARITH:19; now per cases by A3,A4,A6,BINARITH:19,MARGREL1:45; case Pj(b,z)=FALSE; then (Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' c,z) 'or' Pj(d,z)) =FALSE '&' (FALSE 'or' Pj(d,z)) by A8,BINARITH:7 .=FALSE by MARGREL1:49; hence thesis by A1,A2,MARGREL1:43; case Pj(d,z)=FALSE; then (Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' c,z) 'or' Pj(d,z)) =Pj(b,z) '&' (FALSE 'or' FALSE) by A8,BINARITH:7 .=FALSE '&' Pj(b,z) by BINARITH:7 .=FALSE by MARGREL1:49; hence thesis by A1,A2,MARGREL1:43; end; hence thesis; end; hence thesis; end; theorem (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b '&' c) proof (a 'imp' b) '&' (a 'imp' c) '<' (a '&' a) 'imp' (b '&' c) by Th19; hence thesis by BVFUNC_1:6; end; theorem Th21: ((a 'imp' c) '&' (b 'imp' c)) '<' (a 'or' b) 'imp' c proof ((a 'imp' c) '&' (b 'imp' c)) 'imp' ((a 'or' b) 'imp' c) = I_el Y by BVFUNC_6:9; hence thesis by BVFUNC_1:19; end; theorem Th22: (a 'imp' b) '&' (c 'imp' d) '<' (a 'or' c) 'imp' (b 'or' d) proof let z be Element of Y; assume A1:Pj((a 'imp' b) '&' (c 'imp' d),z)=TRUE; A2: Pj((a 'imp' b) '&' (c 'imp' d),z) =Pj(('not' a 'or' b) '&' (c 'imp' d),z) by BVFUNC_4:8 .=Pj(('not' a 'or' b) '&' ('not' c 'or' d),z) by BVFUNC_4:8 .=Pj('not' a 'or' b,z) '&' Pj('not' c 'or' d,z) by VALUAT_1:def 6 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' Pj('not' c 'or' d,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' c,z) 'or' Pj(d,z)) by BVFUNC_1:def 7; now assume A3: Pj((a 'or' c) 'imp' (b 'or' d),z)<>TRUE; A4: Pj((a 'or' c) 'imp' (b 'or' d),z) =Pj('not'( a 'or' c) 'or' (b 'or' d),z) by BVFUNC_4:8 .=Pj(('not' a '&' 'not' c) 'or' (b 'or' d),z) by BVFUNC_1:16 .=Pj('not' a '&' 'not' c,z) 'or' Pj(b 'or' d,z) by BVFUNC_1:def 7 .=(Pj('not' a,z) '&' Pj('not' c,z)) 'or' Pj(b 'or' d,z) by VALUAT_1:def 6 .=(Pj('not' a,z) '&' Pj('not' c,z)) 'or' (Pj(b,z) 'or' Pj(d,z)) by BVFUNC_1:def 7; A5:(Pj('not' a,z) '&' Pj('not' c,z))=TRUE or (Pj('not' a,z) '&' Pj('not' c,z))=FALSE by MARGREL1:39; A6: (Pj(b,z) 'or' Pj(d,z))=TRUE or (Pj(b,z) 'or' Pj(d,z))=FALSE by MARGREL1:39; A7:Pj(b,z)=TRUE or Pj(b,z)=FALSE by MARGREL1:39; Pj(d,z)=TRUE or Pj(d,z)=FALSE by MARGREL1:39; then A8: Pj(b,z)=FALSE & Pj(d,z)=FALSE by A3,A4,A6,A7,BINARITH:19; now per cases by A3,A4,A5,BINARITH:19,MARGREL1:45; case Pj('not' a,z)=FALSE; then (Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' c,z) 'or' Pj(d,z)) =FALSE '&' (Pj('not' c,z) 'or' FALSE) by A8,BINARITH:7 .=FALSE by MARGREL1:45; hence thesis by A1,A2,MARGREL1:43; case Pj('not' c,z)=FALSE; then (Pj('not' a,z) 'or' Pj(b,z)) '&' (Pj('not' c,z) 'or' Pj(d,z)) =FALSE '&' (Pj('not' a,z) 'or' FALSE) by A8,BINARITH:7 .=FALSE by MARGREL1:49; hence thesis by A1,A2,MARGREL1:43; end; hence thesis; end; hence thesis; end; theorem (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b 'or' c) proof (a 'imp' b) '&' (a 'imp' c) '<' (a 'or' a) 'imp' (b 'or' c) by Th22; hence thesis by BVFUNC_1:10; end; theorem Th24: for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' (a2 'imp' a1) proof let a1,b1,c1,a2,b2,c2 be Element of Funcs(Y,BOOLEAN); (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' (b1 'imp' b2) by Lm4; then A1:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (b1 'imp' b2) = I_el(Y) by BVFUNC_1:19; (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' (c1 'imp' c2) by Lm4; then (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (c1 'imp' c2) = I_el(Y) by BVFUNC_1:19; then A2:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (b1 'imp' b2) '&' (c1 'imp' c2) = I_el(Y) by A1,BVFUNC_6:18; (b1 'imp' b2) '&' (c1 'imp' c2) '<' (b1 'or' c1) 'imp' (b2 'or' c2) by Th22; then ((b1 'imp' b2) '&' (c1 'imp' c2)) 'imp' ((b1 'or' c1) 'imp' (b2 'or' c2 )) = I_el(Y) by BVFUNC_1:19; then A3:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' ((b1 'or' c1) 'imp' (b2 'or' c2)) = I_el(Y) by A2,BVFUNC_5:10; (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' 'not'( a2 '&' b2) by Lm2; then A4:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' 'not'( a2 '&' b2) = I_el(Y) by BVFUNC_1:19; (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' 'not'( a2 '&' c2) by Lm1; then (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' 'not'( a2 '&' c2) = I_el(Y) by BVFUNC_1:19; then (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' ('not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) = I_el(Y) by A4,BVFUNC_6:18; then A5:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' ((b1 'or' c1) 'imp' (b2 'or' c2)) '&' ('not'( a2 '&' b2) '&' 'not' (a2 '&' c2)) = I_el(Y) by A3,BVFUNC_6:18; 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) =('not' a2 'or' 'not' b2) '&' 'not'( a2 '&' c2) by BVFUNC_1:17 .=('not' b2 'or' 'not' a2) '&' ('not' c2 'or' 'not' a2) by BVFUNC_1:17 .=(b2 'imp' 'not' a2) '&' ('not' c2 'or' 'not' a2) by BVFUNC_4:8 .=(b2 'imp' 'not' a2) '&' (c2 'imp' 'not' a2) by BVFUNC_4:8 .=(b2 'or' c2) 'imp' 'not' a2 by BVFUNC_7:5; then A6:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' ((b1 'or' c1) 'imp' (b2 'or' c2)) '&' ((b2 'or' c2) 'imp' 'not' a2) '&' ((b1 'or' c1) 'imp' 'not' a2) = I_el(Y) by A5,BVFUNC_7:12; ((b1 'or' c1) 'imp' (b2 'or' c2)) '&' ((b2 'or' c2) 'imp' 'not' a2) '&' ((b1 'or' c1) 'imp' 'not' a2) 'imp' ((b1 'or' c1) 'imp' 'not' a2) = I_el(Y) by BVFUNC_6:39; then A7:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' ((b1 'or' c1) 'imp' 'not' a2) = I_el(Y) by A6,BVFUNC_5:10; (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' (a1 'or' b1 'or' c1) by Lm3; then (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (a1 'or' b1 'or' c1) = I_el(Y) by BVFUNC_1:19; then A8:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (a1 'or' b1 'or' c1) '&' ((b1 'or' c1) 'imp' 'not' a2) = I_el(Y) by A7,BVFUNC_6:18; A9:(a1 'or' b1 'or' c1) '&' ((b1 'or' c1) 'imp' 'not' a2) =(a1 'or' (b1 'or' c1)) '&' ((b1 'or' c1) 'imp' 'not' a2) by BVFUNC_1:11; (a1 'or' (b1 'or' c1)) '&' ((b1 'or' c1) 'imp' 'not' a2) '<' (a1 'or' 'not' a2) by Th1; then (a1 'or' b1 'or' c1) '&' ((b1 'or' c1) 'imp' 'not' a2) 'imp' (a1 'or' 'not' a2) =I_el(Y) by A9,BVFUNC_1:19; then (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (a1 'or' 'not' a2) = I_el(Y) by A8,BVFUNC_5:10; then (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (a2 'imp' a1) = I_el(Y) by BVFUNC_4:8; hence thesis by BVFUNC_1:19; end; Lm8: for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) =I_el(Y) proof let a1,b1,c1,a2,b2,c2 be Element of Funcs(Y,BOOLEAN); A1:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) = I_el(Y) by Lm7; A2:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (b1 'imp' b2) = I_el(Y) by Lm7; A3:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'or' b1 'or' c1) = I_el(Y) by Lm7; A4:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a2 '&' c2) = I_el(Y) by Lm7; A5:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( b2 '&' c2) = I_el(Y) by Lm7; ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) '&' (b1 'imp' b2) = I_el(Y) by A1,A2,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) = I_el(Y) by A3,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' c2) = I_el(Y) by A4,BVFUNC_6:18; hence thesis by A5,BVFUNC_6:18; end; Lm9: for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( b2 '&' a2) '&' 'not'( b2 '&' c2)) = I_el(Y) proof let a1,b1,c1,a2,b2,c2 be Element of Funcs(Y,BOOLEAN); A1:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) = I_el(Y) by Lm7; A2:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (c1 'imp' c2) = I_el(Y) by Lm7; A3:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'or' b1 'or' c1) = I_el(Y) by Lm7; A4:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a2 '&' b2) = I_el(Y) by Lm7; A5:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( b2 '&' c2) = I_el(Y) by Lm7; ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) '&' (c1 'imp' c2) = I_el(Y) by A1,A2,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) = I_el(Y) by A3,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) = I_el(Y) by A4,BVFUNC_6:18; hence thesis by A5,BVFUNC_6:18; end; Lm10: for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) =I_el(Y) proof let a1,b1,c1,a2,b2,c2 be Element of Funcs(Y,BOOLEAN); A1:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (b1 'imp' b2) = I_el(Y) by Lm7; A2:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (c1 'imp' c2) = I_el(Y) by Lm7; A3:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a1 'or' b1 'or' c1) = I_el(Y) by Lm7; A4:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a2 '&' b2) = I_el(Y) by Lm7; A5:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a2 '&' c2) = I_el(Y) by Lm7; ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (b1 'imp' b2) '&' (c1 'imp' c2) = I_el(Y) by A1,A2,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) = I_el(Y) by A3,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) = I_el(Y) by A4,BVFUNC_6:18; hence thesis by A5,BVFUNC_6:18; end; theorem for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) '<' (a2 'imp' a1) '&' (b2 'imp' b1) '&' (c2 'imp' c1) proof let a1,b1,c1,a2,b2,c2 be Element of Funcs(Y,BOOLEAN); A1:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) =I_el(Y) by Lm8; A2:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( b2 '&' a2) '&' 'not'( b2 '&' c2)) =I_el(Y) by Lm9; A3:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) =I_el(Y) by Lm10; ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( b2 '&' a2) '&' 'not'( b2 '&' c2)) =I_el(Y) by A1,A2,BVFUNC_6:18; then A4:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) =I_el(Y) by A3,BVFUNC_6:18; ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) '<' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) by Lm2; then A5:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) =I_el(Y) by BVFUNC_1:19; ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) '<' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) by Lm2; then A6:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) =I_el(Y) by BVFUNC_1:19; A7:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2)) =I_el(Y) by A4,A5,BVFUNC_5:10; A8:((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2)) =I_el(Y) by A4,A6,BVFUNC_5:10; (a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' c1 'or' b1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2) '<' (c2 'imp' c1) by Th24; then A9:(a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2) '<' (c2 'imp' c1) by BVFUNC_1:11; A10:(a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2) '<' (b2 'imp' b1) by Th24; A11:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '<' (a2 'imp' a1) by Th24; A12:(a1 'imp' a2) '&' (b1 'imp' b2) '&' (a1 'or' b1 'or' c1) '&' 'not'( c2 '&' a2) '&' 'not'( c2 '&' b2) 'imp' (c2 'imp' c1) = I_el(Y) by A9,BVFUNC_1:19; A13:(a1 'imp' a2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2) 'imp' (b2 'imp' b1) = I_el(Y) by A10,BVFUNC_1:19; A14:(b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) 'imp' (a2 'imp' a1) = I_el(Y) by A11,BVFUNC_1:19; A15:(a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) 'imp' (c2 'imp' c1) = I_el(Y) by A7,A12,BVFUNC_5:10; A16:(a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) 'imp' (b2 'imp' b1) = I_el(Y) by A8,A13,BVFUNC_5:10; (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not' (b2 '&' c2) 'imp' (a2 'imp' a1) = I_el(Y) by A3,A14,BVFUNC_5:10; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a2 'imp' a1) '&' (b2 'imp' b1) = I_el(Y) by A16,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2)) 'imp' (a2 'imp' a1) '&' (b2 'imp' b1) '&' (c2 'imp' c1) = I_el(Y) by A15,BVFUNC_6:18; hence thesis by BVFUNC_1:19; end; theorem Th26: for a1,b1,a2,b2 being Element of Funcs(Y,BOOLEAN) holds ((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'(a2 '&' b2)) 'imp' 'not' (a1 '&' b1)=I_el(Y) proof let a1,b1,a2,b2 be Element of Funcs(Y,BOOLEAN); for z being Element of Y st Pj((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2),z)=TRUE holds Pj('not'( a1 '&' b1),z)=TRUE proof let z be Element of Y; assume A1: Pj((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2),z)=TRUE; A2:Pj((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2),z) =Pj((a1 'imp' a2) '&' (b1 'imp' b2),z) '&' Pj('not'( a2 '&' b2),z) by VALUAT_1:def 6 .=(Pj(a1 'imp' a2,z) '&' Pj(b1 'imp' b2,z)) '&' Pj('not'( a2 '&' b2),z) by VALUAT_1:def 6 .=(Pj('not' a1 'or' a2,z) '&' Pj(b1 'imp' b2,z)) '&' Pj('not'( a2 '&' b2),z) by BVFUNC_4:8 .=(Pj('not' a1 'or' a2,z) '&' Pj('not' b1 'or' b2,z)) '&' Pj('not' (a2 '&' b2),z) by BVFUNC_4:8 .=((Pj('not' a1,z) 'or' Pj(a2,z)) '&' Pj('not' b1 'or' b2,z)) '&' Pj('not'( a2 '&' b2),z) by BVFUNC_1:def 7 .=((Pj('not' a1,z) 'or' Pj(a2,z)) '&' (Pj('not' b1,z) 'or' Pj(b2,z))) '&' Pj('not'( a2 '&' b2),z) by BVFUNC_1:def 7 .=((Pj('not' a1,z) 'or' Pj(a2,z)) '&' (Pj('not' b1,z) 'or' Pj(b2,z))) '&' (Pj('not' a2 'or' 'not' b2,z)) by BVFUNC_1:17 .=((Pj('not' a1,z) 'or' Pj(a2,z)) '&' (Pj('not' b1,z) 'or' Pj(b2,z))) '&' (Pj('not' a2,z) 'or' Pj('not' b2,z)) by BVFUNC_1:def 7; now assume A3: Pj('not'( a1 '&' b1),z)<>TRUE; A4: Pj('not'( a1 '&' b1),z) =Pj('not' a1 'or' 'not' b1,z) by BVFUNC_1:17 .=Pj('not' a1,z) 'or' Pj('not' b1,z) by BVFUNC_1:def 7; A5:Pj('not' a1,z)=TRUE or Pj('not' a1,z)=FALSE by MARGREL1:39; Pj('not' b1,z)=TRUE or Pj('not' b1,z)=FALSE by MARGREL1:39; then Pj((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2),z) =(Pj(a2,z) '&' (FALSE 'or' Pj(b2,z))) '&' (Pj('not' a2,z) 'or' Pj('not' b2,z)) by A2,A3,A4,A5,BINARITH:7,19 .=(Pj(a2,z) '&' Pj(b2,z)) '&' (Pj('not' a2,z) 'or' Pj('not' b2,z)) by BINARITH:7 .=(Pj(b2,z) '&' Pj(a2,z)) '&' Pj('not' a2,z) 'or' (Pj(a2,z) '&' Pj(b2,z)) '&' Pj('not' b2,z) by BINARITH:22 .=Pj(b2,z) '&' (Pj(a2,z) '&' Pj('not' a2,z)) 'or' (Pj(a2,z) '&' Pj(b2,z)) '&' Pj('not' b2,z) by MARGREL1:52 .=Pj(b2,z) '&' (Pj(a2,z) '&' Pj('not' a2,z)) 'or' Pj(a2,z) '&' (Pj(b2,z) '&' Pj('not' b2,z)) by MARGREL1:52 .=Pj(b2,z) '&' (Pj(a2,z) '&' 'not' Pj(a2,z)) 'or' Pj(a2,z) '&' (Pj(b2,z) '&' Pj('not' b2,z)) by VALUAT_1:def 5 .=Pj(b2,z) '&' (Pj(a2,z) '&' 'not' Pj(a2,z)) 'or' Pj(a2,z) '&' (Pj(b2,z) '&' 'not' Pj(b2,z)) by VALUAT_1:def 5 .=Pj(b2,z) '&' FALSE 'or' Pj(a2,z) '&' (Pj(b2,z) '&' 'not' Pj(b2,z)) by MARGREL1:46 .=FALSE '&' Pj(b2,z) 'or' Pj(a2,z) '&' FALSE by MARGREL1:46 .=FALSE 'or' FALSE '&' Pj(a2,z) by MARGREL1:49 .=FALSE 'or' FALSE by MARGREL1:49 .=FALSE by BINARITH:7; hence contradiction by A1,MARGREL1:43; end; hence thesis; end; then (a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2) '<' 'not'( a1 '&' b1) by BVFUNC_1:def 15; hence thesis by BVFUNC_1:19; end; theorem for a1,b1,c1,a2,b2,c2 being Element of Funcs(Y,BOOLEAN) holds (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) '<' 'not'( a1 '&' b1) '&' 'not'( a1 '&' c1) '&' 'not'( b1 '&' c1) proof let a1,b1,c1,a2,b2,c2 be Element of Funcs(Y,BOOLEAN); A1:(a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) =(a1 'imp' a2) '&' (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:6 .=(a1 'imp' a2) '&' (a1 'imp' a2) '&' ((b1 'imp' b2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:6 .=((a1 'imp' a2) '&' (a1 'imp' a2) '&' ((b1 'imp' b2) '&' (b1 'imp' b2)) '&' ((c1 'imp' c2) '&' (c1 'imp' c2))) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:6 .=(((a1 'imp' a2) '&' (a1 'imp' a2) '&' (b1 'imp' b2)) '&' (b1 'imp' b2) '&' ((c1 'imp' c2) '&' (c1 'imp' c2))) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (a1 'imp' a2)) '&' (b1 'imp' b2) '&' ((c1 'imp' c2) '&' (c1 'imp' c2))) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=(((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (c1 'imp' c2)) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=(((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (a1 'imp' a2) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' (c1 'imp' c2)) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=(((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' (a1 'imp' a2) '&' (c1 'imp' c2)) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2)) '&' 'not'( a2 '&' b2) '&' 'not'( a2 '&' c2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2)) '&' 'not'( a2 '&' c2) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' 'not'( a2 '&' b2) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' 'not'( a2 '&' b2) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not' (a2 '&' c2)) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=((a1 'imp' a2) '&' (b1 'imp' b2)) '&' 'not'( a2 '&' b2) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' 'not'( b2 '&' c2) by BVFUNC_1:7 .=((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2)) '&' 'not'( b2 '&' c2) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not' (a2 '&' c2)) by BVFUNC_1:7 .=((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) by BVFUNC_1:7 .=(((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2))) by BVFUNC_1:7; A2:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) =I_el(Y) by BVFUNC_6:39; A3:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) =I_el(Y) by BVFUNC_6:39; A4:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) =I_el(Y) by BVFUNC_6:39; A5:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) =I_el(Y) by A2,A3,BVFUNC_5:10; A6:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) =I_el(Y) by A2,A4,BVFUNC_5:10; A7:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) =I_el(Y) by BVFUNC_6:39; A8:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) 'imp' 'not'( a1 '&' b1)=I_el(Y) by Th26; A9:((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) 'imp' 'not'( a1 '&' c1)=I_el(Y) by Th26; A10:((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( b1 '&' c1)=I_el(Y) by Th26; A11:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a1 '&' b1)=I_el(Y) by A5,A8,BVFUNC_5:10; A12:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a1 '&' c1)=I_el(Y) by A6,A9,BVFUNC_5:10; A13:((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( b1 '&' c1)=I_el(Y) by A7,A10,BVFUNC_5:10; ((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a1 '&' b1) '&' 'not'( a1 '&' c1) =I_el(Y) by A11,A12,BVFUNC_6:18; then ((a1 'imp' a2) '&' (b1 'imp' b2) '&' 'not'( a2 '&' b2)) '&' ((a1 'imp' a2) '&' (c1 'imp' c2) '&' 'not'( a2 '&' c2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2) '&' 'not'( b2 '&' c2)) 'imp' 'not'( a1 '&' b1) '&' 'not'( a1 '&' c1) '&' 'not'( b1 '&' c1) =I_el(Y) by A13,BVFUNC_6:18; hence thesis by A1,BVFUNC_1:19; end; theorem a '&' b '<' a by Lm1; theorem a '&' b '&' c '<' a & a '&' b '&' c '<' b by Lm2; theorem a '&' b '&' c '&' d '<' a & a '&' b '&' c '&' d '<' b by Lm3; theorem a '&' b '&' c '&' d '&' e '<' a & a '&' b '&' c '&' d '&' e '<' b by Lm4; theorem a '&' b '&' c '&' d '&' e '&' f '<' a & a '&' b '&' c '&' d '&' e '&' f '<' b by Lm5; theorem a '&' b '&' c '&' d '&' e '&' f '&' g '<' a & a '&' b '&' c '&' d '&' e '&' f '&' g '<' b by Lm6; theorem Th34: a '<' b & c '<' d implies a '&' c '<' b '&' d proof assume a '<' b & c '<' d; then a 'imp' b = I_el Y & c 'imp' d = I_el Y by BVFUNC_1:19; then (a '&' c) 'imp' (b '&' d) = I_el Y by BVFUNC_6:21; hence thesis by BVFUNC_1:19; end; theorem a '&' b '<' c implies a '&' 'not' c '<' 'not' b proof assume a '&' b '<' c; then I_el Y = a '&' b 'imp' c by BVFUNC_1:19 .= 'not' (a '&' b) 'or' c by BVFUNC_4:8 .= 'not' a 'or' 'not' b 'or' c by BVFUNC_1:17 .= 'not' a 'or' c 'or' 'not' b by BVFUNC_1:11 .= 'not' a 'or' 'not' 'not' c 'or' 'not' b by BVFUNC_1:4 .= 'not' (a '&' 'not' c) 'or' 'not' b by BVFUNC_1:17 .= a '&' 'not' c 'imp' 'not' b by BVFUNC_4:8; hence thesis by BVFUNC_1:19; end; theorem (a 'imp' c) '&' (b 'imp' c) '&' (a 'or' b) '<' c proof set K1 = (a 'imp' c) '&' (b 'imp' c); K1 '<' (a 'or' b) 'imp' c by Th21; then A1:K1 '&' (a 'or' b) '<' ((a 'or' b) 'imp' c) '&' (a 'or' b) by Th34; ((a 'or' b) 'imp' c) '&' (a 'or' b) '<' c by Th2; hence thesis by A1,BVFUNC_1:18; end; theorem ((a 'imp' c) 'or' (b 'imp' c)) '&' (a '&' b) '<' c proof (a 'imp' c) 'or' (b 'imp' c) = (a '&' b) 'imp' c by BVFUNC_7:6; hence thesis by Th2; end; theorem a '<' b & c '<' d implies a 'or' c '<' b 'or' d proof assume a '<' b & c '<' d; then a 'imp' b = I_el(Y) & c 'imp' d = I_el(Y) by BVFUNC_1:19; then (a 'or' c) 'imp' (b 'or' d) = I_el(Y) by BVFUNC_6:22; hence thesis by BVFUNC_1:19; end; theorem Th39: a '<' a 'or' b proof a 'imp' (a 'or' b) = I_el Y by BVFUNC_6:27; hence thesis by BVFUNC_1:19; end; theorem a '&' b '<' a 'or' b proof A1:a '&' b '<' a by Lm1; a '<' a 'or' b by Th39; hence thesis by A1,BVFUNC_1:18; end;