Journal of Formalized Mathematics
Volume 12, 2000
University of Bialystok
Copyright (c) 2000
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Hiroshi Yamazaki,
- Yoshinori Fujisawa,
and
- Yatsuka Nakamura
- Received August 28, 2000
- MML identifier: FINSEQ_7
- [
Mizar article,
MML identifier index
]
environ
vocabulary FINSEQ_1, ARYTM_1, RELAT_1, FUNCT_1, RFINSEQ, FINSEQ_4, FUNCT_4,
BOOLE, FINSEQ_7;
notation TARSKI, XBOOLE_0, SUBSET_1, XCMPLX_0, XREAL_0, NAT_1, BINARITH,
FUNCT_1, FINSEQ_1, FINSEQ_4, RFINSEQ, TOPREAL1, FUNCT_7;
constructors REAL_1, BINARITH, REALSET1, RFINSEQ, TOPREAL1, FINSEQ_4, INT_1,
FUNCT_7, CQC_LANG, MEMBERED;
clusters FINSEQ_1, FINSEQ_5, RELSET_1, INT_1, TOPREAL1;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin :: Some Basic Theorems
reserve D for non empty set,
f, g, h for FinSequence of D,
p, p1, p2, p3, q for Element of D,
i, j, k, l, n for Nat;
theorem :: FINSEQ_7:1
1 <= i & j <= len f & i < j implies
f = (f|(i-'1))^<*f.i*>^((f/^i)|(j-'i-'1))^<*f.j*>^(f/^j);
theorem :: FINSEQ_7:2
len g = len h & len g < i & i <= len (g^f) implies (g^f).i = (h^f).i;
theorem :: FINSEQ_7:3
1 <= i & i <= len f implies f.i = (g^f).(len g + i);
theorem :: FINSEQ_7:4
i in dom(f/^n) implies (f/^n).i = f.(n+i);
begin :: Definition of Replace Function and its properties
definition
let D be non empty set;
let f be FinSequence of D;
let i be Nat;
let p be Element of D;
redefine func f +* (i, p) -> FinSequence of D equals
:: FINSEQ_7:def 1
(f|(i-'1))^<*p*>^(f/^i) if 1 <= i & i <= len f
otherwise f;
synonym Replace(f, i, p);
end;
canceled 2;
theorem :: FINSEQ_7:7
len Replace(f, i, p) = len f;
theorem :: FINSEQ_7:8
rng Replace(f, i, p) c= rng f \/ {p};
theorem :: FINSEQ_7:9
1 <= i & i <= len f implies p in rng Replace(f, i, p);
theorem :: FINSEQ_7:10
1 <= i & i <= len f implies Replace(f, i, p)/.i = p;
theorem :: FINSEQ_7:11
1 <= i & i <= len f implies
for k st (0 < k & k <= len f - i)
holds Replace(f, i, p).(i + k) = (f/^i).k;
theorem :: FINSEQ_7:12
1 <= k & k <= len f & k <> i implies Replace(f, i, p)/.k = f/.k;
theorem :: FINSEQ_7:13
1 <= i & i < j & j <= len f implies
Replace(Replace(f, j, q), i, p)
= (f|(i-'1))^<*p*>^(f/^i)|(j-'i-'1)^<*q*>^(f/^j);
theorem :: FINSEQ_7:14
Replace(<*p*>, 1, q) = <*q*>;
theorem :: FINSEQ_7:15
Replace(<*p1, p2*>, 1, q) = <*q, p2*>;
theorem :: FINSEQ_7:16
Replace(<*p1, p2*>, 2, q) = <*p1, q*>;
theorem :: FINSEQ_7:17
Replace(<*p1, p2, p3*>, 1, q) = <*q, p2, p3*>;
theorem :: FINSEQ_7:18
Replace(<*p1, p2, p3*>, 2, q) = <*p1, q, p3*>;
theorem :: FINSEQ_7:19
Replace(<*p1, p2, p3*>, 3, q) = <*p1, p2, q*>;
begin :: Definition of Swap Function and its properties
definition
let D be non empty set;
let f be FinSequence of D;
let i, j be Nat;
func Swap(f, i, j) -> FinSequence of D equals
:: FINSEQ_7:def 2
Replace(Replace(f, i, f/.j), j, f/.i)
if 1 <= i & i <= len f & 1 <= j & j <= len f
otherwise f;
end;
theorem :: FINSEQ_7:20
len Swap(f, i, j) = len f;
theorem :: FINSEQ_7:21
Swap(f, i, i) = f;
theorem :: FINSEQ_7:22
Swap(Swap(f,i,j),j,i) = f;
theorem :: FINSEQ_7:23
Swap(f, i, j) = Swap(f, j, i);
theorem :: FINSEQ_7:24
rng Swap(f,i,j) = rng f;
theorem :: FINSEQ_7:25
Swap(<*p1, p2*>, 1, 2) = <*p2, p1*>;
theorem :: FINSEQ_7:26
Swap(<*p1, p2, p3*>, 1, 2) = <*p2, p1, p3*>;
theorem :: FINSEQ_7:27
Swap(<*p1, p2, p3*>, 1, 3) = <*p3, p2, p1*>;
theorem :: FINSEQ_7:28
Swap(<*p1, p2, p3*>, 2, 3) = <*p1, p3, p2*>;
theorem :: FINSEQ_7:29
1 <= i & i < j & j <= len f implies
Swap(f, i, j) = (f|(i-'1))^<*f/.j*>^(f/^i)|(j-'i-'1)^<*f/.i*>^(f/^j);
theorem :: FINSEQ_7:30
1 < i & i <= len f implies
Swap(f, 1, i) = <*f/.i*>^((f/^1)|(i-'2))^<*f/.1*>^(f/^i);
theorem :: FINSEQ_7:31
1 <= i & i < len f implies
Swap(f, i, len f)
= (f|(i-'1))^<*f/.len f*>^((f/^i)|(len f-'i-'1))^<*f/.i*>;
theorem :: FINSEQ_7:32
i <> k & j <> k & 1 <= k & k <= len f implies
Swap(f, i, j)/.k = f/.k;
theorem :: FINSEQ_7:33
1 <= i & i <= len f & 1 <= j & j <= len f
implies Swap(f, i, j)/.i = f/.j & Swap(f, i, j)/.j = f/.i;
begin :: Properties of composed function of Replace Function and Swap Function
theorem :: FINSEQ_7:34
1 <= i & i <= len f & 1 <= j & j <= len f
implies Replace(Swap(f, i, j), i, p) = Swap(Replace(f, j, p), i, j);
theorem :: FINSEQ_7:35
i <> k & j <> k & 1 <= i & i <= len f & 1 <= j
& j <= len f & 1 <= k & k <= len f implies
Swap(Replace(f, k, p), i, j) = Replace(Swap(f, i, j), k, p);
theorem :: FINSEQ_7:36
i <> k & j <> k & 1 <= i & i <= len f &
1 <= j & j <= len f & 1 <= k & k <= len f implies
Swap(Swap(f, i, j), j, k) = Swap(Swap(f, i, k), i, j);
theorem :: FINSEQ_7:37
i <> k & j <> k & l <> i & l <> j &
1 <= i & i <= len f & 1 <= j & j <= len f &
1 <= k & k <= len f & 1 <= l & l <= len f implies
Swap(Swap(f, i, j), k, l) = Swap(Swap(f, k, l), i, j);
Back to top