environ vocabulary FINSEQ_1, EUCLID, GOBOARD1, TOPREAL1, BOOLE, MATRIX_1, MCART_1, ORDINAL2, FUNCT_5, RELAT_1, REALSET1, SUBSET_1, PSCOMP_1, COMPTS_1, PRE_TOPC, TARSKI, FINSEQ_4, TREES_1, ARYTM_1, ABSVALUE, SPPOL_1, JORDAN1E, JORDAN9, FINSEQ_6, FINSEQ_5, JORDAN6, TOPREAL2, RELAT_2, JORDAN8, FUNCT_1, RFINSEQ, ARYTM_3, JORDAN1A; notation TARSKI, XBOOLE_0, XCMPLX_0, XREAL_0, NAT_1, ABSVALUE, RELAT_1, FUNCT_1, BINARITH, FUNCT_2, FINSEQ_1, FINSEQ_4, FINSEQ_5, FINSEQ_6, MATRIX_1, STRUCT_0, PRE_TOPC, COMPTS_1, CONNSP_1, RFINSEQ, EUCLID, TOPREAL1, TOPREAL2, GOBOARD1, SPPOL_1, PSCOMP_1, JORDAN6, JORDAN8, JORDAN9, JORDAN1A, JORDAN1E; constructors TOPREAL2, FINSEQ_4, REALSET1, GOBOARD9, GOBRD13, PSCOMP_1, CONNSP_1, GROUP_1, REAL_1, JORDAN6, JORDAN9, JORDAN5C, JORDAN1E, JORDAN1A, JORDAN8, CARD_4, BINARITH, RFINSEQ; clusters RELSET_1, SPRECT_1, SPRECT_3, TOPREAL6, XREAL_0, PSCOMP_1, REVROT_1, JORDAN1A, JORDAN1E, JORDAN8, NAT_1, MEMBERED; requirements NUMERALS, SUBSET, BOOLE, REAL, ARITHM; begin reserve i,j,k,m,n,l for Nat, f for FinSequence of the carrier of TOP-REAL 2, G for Go-board; theorem :: JORDAN1F:1 f is_sequence_on G & LSeg(G*(i,j),G*(i,k)) meets L~f & [i,j] in Indices G & [i,k] in Indices G & j <= k implies ex n st j <= n & n <= k & G*(i,n)`2 = inf(proj2.:(LSeg(G*(i,j),G*(i,k)) /\ L~f)); theorem :: JORDAN1F:2 f is_sequence_on G & LSeg(G*(i,j),G*(i,k)) meets L~f & [i,j] in Indices G & [i,k] in Indices G & j <= k implies ex n st j <= n & n <= k & G*(i,n)`2 = sup(proj2.:(LSeg(G*(i,j),G*(i,k)) /\ L~f)); theorem :: JORDAN1F:3 f is_sequence_on G & LSeg(G*(j,i),G*(k,i)) meets L~f & [j,i] in Indices G & [k,i] in Indices G & j <= k implies ex n st j <= n & n <= k & G*(n,i)`1 = inf(proj1.:(LSeg(G*(j,i),G*(k,i)) /\ L~f)); theorem :: JORDAN1F:4 f is_sequence_on G & LSeg(G*(j,i),G*(k,i)) meets L~f & [j,i] in Indices G & [k,i] in Indices G & j <= k implies ex n st j <= n & n <= k & G*(n,i)`1 = sup(proj1.:(LSeg(G*(j,i),G*(k,i)) /\ L~f)); theorem :: JORDAN1F:5 for C being compact non vertical non horizontal Subset of TOP-REAL 2 for n being Nat holds Upper_Seq(C,n)/.1 = W-min(L~Cage(C,n)); theorem :: JORDAN1F:6 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds Lower_Seq(C,n)/.1 = E-max L~Cage(C,n); theorem :: JORDAN1F:7 for C being compact non vertical non horizontal Subset of TOP-REAL 2 for n being Nat holds Upper_Seq(C,n)/. len Upper_Seq(C,n) = E-max(L~Cage(C,n)); theorem :: JORDAN1F:8 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds Lower_Seq(C,n)/.(len Lower_Seq(C,n)) = W-min L~Cage(C,n); theorem :: JORDAN1F:9 for C being compact non vertical non horizontal Subset of TOP-REAL 2 for n being Nat holds L~Upper_Seq(C,n) = Upper_Arc L~Cage(C,n) & L~Lower_Seq(C,n) = Lower_Arc L~Cage(C,n) or L~Upper_Seq(C,n) = Lower_Arc L~Cage(C,n) & L~Lower_Seq(C,n) = Upper_Arc L~Cage(C,n); reserve C for compact non vertical non horizontal non empty being_simple_closed_curve Subset of TOP-REAL 2, p for Point of TOP-REAL 2, i1,j1,i2,j2 for Nat; theorem :: JORDAN1F:10 for C being connected compact non vertical non horizontal Subset of TOP-REAL 2 for n being Nat holds Upper_Seq(C,n) is_sequence_on Gauge(C,n); theorem :: JORDAN1F:11 :: symmetric to JORDAN8:9 for f being FinSequence of TOP-REAL 2 st f is_sequence_on G & (ex i,j st [i,j] in Indices G & p = G*(i,j)) & (for i1,j1,i2,j2 st [i1,j1] in Indices G & [i2,j2] in Indices G & p = G*(i1,j1) & f/.1 = G*(i2,j2) holds abs(i2-i1)+abs(j2-j1) = 1) holds <*p*>^f is_sequence_on G; theorem :: JORDAN1F:12 for C being connected compact non vertical non horizontal Subset of TOP-REAL 2 for n being Nat holds Lower_Seq(C,n) is_sequence_on Gauge(C,n); theorem :: JORDAN1F:13 p`1 = (W-bound C + E-bound C)/2 & p`2 = inf(proj2.:(LSeg(Gauge(C,1)*(Center Gauge(C,1),1), Gauge(C,1)*(Center Gauge(C,1),width Gauge(C,1))) /\ Upper_Arc L~Cage(C,i+1))) implies ex j st 1 <= j & j <= width Gauge(C,i+1) & p = Gauge(C,i+1)*(Center Gauge(C,i+1),j);