Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Henryk Oryszczyszyn,
and
- Krzysztof Prazmowski
- Received September 21, 1990
- MML identifier: HOMOTHET
- [
Mizar article,
MML identifier index
]
environ
vocabulary DIRAF, FUNCT_2, AFF_2, ANALOAF, INCSP_1, AFF_1, TRANSGEO, FUNCT_1,
RELAT_1, HOMOTHET;
notation TARSKI, PARTFUN1, FUNCT_2, STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2,
TRANSGEO;
constructors AFF_1, AFF_2, TRANSGEO, PARTFUN1, XBOOLE_0;
clusters STRUCT_0, ZFMISC_1, PARTFUN1, FUNCT_2, FUNCT_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin
reserve AFP for AffinPlane;
reserve a,a',b,b',c,c',d,d',o,p,p',q,q',r,s,t,x,y,z
for Element of AFP;
reserve A,A',C,D,P,B',M,N,K for Subset of AFP;
reserve f for Permutation of the carrier of AFP;
theorem :: HOMOTHET:1
not LIN o,a,p & LIN o,a,b & LIN o,a,x & LIN o,a,y & LIN o,p,p' &
LIN o,p,q & LIN o,p,q' & p<>q & a<>x & o<>q & o<>x &
a,p // b,p' & a,q // b,q' & x,p // y,p' & AFP satisfies_DES
implies x,q // y,q';
theorem :: HOMOTHET:2
(for o,a,b st o<>a & o<>b & LIN o,a,b
ex f st f is_Dil & f.o=o & f.a=b) implies
AFP satisfies_DES;
theorem :: HOMOTHET:3
AFP satisfies_DES implies (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st
f is_Dil & f.o=o & f.a=b);
theorem :: HOMOTHET:4
AFP satisfies_DES iff (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st
f is_Dil & f.o=o & f.a=b);
definition let AFP,f,K;
pred f is_Sc K means
:: HOMOTHET:def 1
f is_Col & K is_line & (for x st x in K holds f.x = x) &
(for x holds x,f.x // K);
end;
theorem :: HOMOTHET:5
f is_Sc K & f.p=p & not p in K implies f=id the carrier of AFP;
theorem :: HOMOTHET:6
(for a,b,K st a,b // K & not a in K ex f st
f is_Sc K & f.a=b) implies AFP satisfies_TDES;
theorem :: HOMOTHET:7
K // M & p in K & q in K & p' in K & q' in K & AFP satisfies_TDES &
a in M & b in M & x in M & y in M & a<>b & q<>p &
p,a // p',x & p,b // p',y & q,a // q',x
implies q,b // q',y;
theorem :: HOMOTHET:8
a,b // K & not a in K & AFP satisfies_TDES implies ex f st f is_Sc K &
f.a=b;
theorem :: HOMOTHET:9
AFP satisfies_TDES iff (for a,b,K st a,b // K & not a in K ex f
st f is_Sc K & f.a=b);
Back to top