environ vocabulary DIRAF, FUNCT_2, AFF_2, ANALOAF, INCSP_1, AFF_1, TRANSGEO, FUNCT_1, RELAT_1, HOMOTHET; notation TARSKI, PARTFUN1, FUNCT_2, STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2, TRANSGEO; constructors AFF_1, AFF_2, TRANSGEO, PARTFUN1, XBOOLE_0; clusters STRUCT_0, ZFMISC_1, PARTFUN1, FUNCT_2, FUNCT_1, XBOOLE_0; requirements SUBSET, BOOLE; begin reserve AFP for AffinPlane; reserve a,a',b,b',c,c',d,d',o,p,p',q,q',r,s,t,x,y,z for Element of AFP; reserve A,A',C,D,P,B',M,N,K for Subset of AFP; reserve f for Permutation of the carrier of AFP; theorem :: HOMOTHET:1 not LIN o,a,p & LIN o,a,b & LIN o,a,x & LIN o,a,y & LIN o,p,p' & LIN o,p,q & LIN o,p,q' & p<>q & a<>x & o<>q & o<>x & a,p // b,p' & a,q // b,q' & x,p // y,p' & AFP satisfies_DES implies x,q // y,q'; theorem :: HOMOTHET:2 (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is_Dil & f.o=o & f.a=b) implies AFP satisfies_DES; theorem :: HOMOTHET:3 AFP satisfies_DES implies (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is_Dil & f.o=o & f.a=b); theorem :: HOMOTHET:4 AFP satisfies_DES iff (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is_Dil & f.o=o & f.a=b); definition let AFP,f,K; pred f is_Sc K means :: HOMOTHET:def 1 f is_Col & K is_line & (for x st x in K holds f.x = x) & (for x holds x,f.x // K); end; theorem :: HOMOTHET:5 f is_Sc K & f.p=p & not p in K implies f=id the carrier of AFP; theorem :: HOMOTHET:6 (for a,b,K st a,b // K & not a in K ex f st f is_Sc K & f.a=b) implies AFP satisfies_TDES; theorem :: HOMOTHET:7 K // M & p in K & q in K & p' in K & q' in K & AFP satisfies_TDES & a in M & b in M & x in M & y in M & a<>b & q<>p & p,a // p',x & p,b // p',y & q,a // q',x implies q,b // q',y; theorem :: HOMOTHET:8 a,b // K & not a in K & AFP satisfies_TDES implies ex f st f is_Sc K & f.a=b; theorem :: HOMOTHET:9 AFP satisfies_TDES iff (for a,b,K st a,b // K & not a in K ex f st f is_Sc K & f.a=b);