environ vocabulary FUNCT_2, FUNCT_1, BOOLE, RELAT_1, RELAT_2, ANALOAF, DIRAF, PARSP_1, INCSP_1, AFF_1, TRANSGEO; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_2, FUNCT_1, RELSET_1, STRUCT_0, ANALOAF, DIRAF, PARTFUN1, FUNCT_2, AFF_1; constructors DOMAIN_1, RELAT_2, AFF_1, MEMBERED, PARTFUN1, XBOOLE_0; clusters ANALOAF, DIRAF, RELSET_1, STRUCT_0, FUNCT_2, MEMBERED, ZFMISC_1, PARTFUN1, FUNCT_1, XBOOLE_0; requirements SUBSET, BOOLE; begin reserve A for non empty set, a,b,x,y,z,t for Element of A, f,g,h for Permutation of A; definition let A be set, f,g be Permutation of A; redefine func g*f -> Permutation of A; end; canceled; theorem :: TRANSGEO:2 ex x st f.x=y; canceled; theorem :: TRANSGEO:4 f.x=y iff (f").y=x; definition let A,f,g; func f\g -> Permutation of A equals :: TRANSGEO:def 1 (g*f)*g"; end; scheme EXPermutation{A() -> non empty set,P[set,set]}: ex f being Permutation of A() st for x,y being Element of A() holds f.x=y iff P[x,y] provided for x being Element of A() ex y being Element of A() st P[x,y] and for y being Element of A() ex x being Element of A() st P[x,y] and for x,y,x' being Element of A() st P[x,y] & P[x',y] holds x=x' and for x,y,y' being Element of A() st P[x,y] & P[x,y'] holds y=y'; canceled 4; theorem :: TRANSGEO:9 f.(f".x) = x & f".(f.x) = x; canceled; theorem :: TRANSGEO:11 f*(id A) = (id A)*f; canceled; theorem :: TRANSGEO:13 g*f=h*f or f*g=f*h implies g=h; canceled 2; theorem :: TRANSGEO:16 (f*g)\h = (f\h)*(g\h); theorem :: TRANSGEO:17 (f")\g = (f\g)"; theorem :: TRANSGEO:18 f\(g*h) = (f\h)\g; theorem :: TRANSGEO:19 (id A)\f = id A; theorem :: TRANSGEO:20 f\(id A) = f; theorem :: TRANSGEO:21 f.a=a implies (f\g).(g.a)=g.a; reserve R for Relation of [:A,A:]; definition let A,f,R; pred f is_FormalIz_of R means :: TRANSGEO:def 2 for x,y holds [[x,y],[f.x,f.y]] in R; end; canceled; theorem :: TRANSGEO:23 R is_reflexive_in [:A,A:] implies id A is_FormalIz_of R; theorem :: TRANSGEO:24 R is_symmetric_in [:A,A:] & f is_FormalIz_of R implies f" is_FormalIz_of R; theorem :: TRANSGEO:25 R is_transitive_in [:A,A:] & f is_FormalIz_of R & g is_FormalIz_of R implies (f*g) is_FormalIz_of R; theorem :: TRANSGEO:26 (for a,b,x,y,z,t st [[x,y],[a,b]] in R & [[a,b],[z,t]] in R & a<>b holds [[x,y],[z,t]] in R) & (for x,y,z holds [[x,x],[y,z]] in R) & f is_FormalIz_of R & g is_FormalIz_of R implies f*g is_FormalIz_of R; definition let A; let f; let R; pred f is_automorphism_of R means :: TRANSGEO:def 3 for x,y,z,t holds ([[x,y],[z,t]] in R iff [[f.x,f.y],[f.z,f.t]] in R); end; canceled; theorem :: TRANSGEO:28 id A is_automorphism_of R; theorem :: TRANSGEO:29 f is_automorphism_of R implies f" is_automorphism_of R; theorem :: TRANSGEO:30 f is_automorphism_of R & g is_automorphism_of R implies g*f is_automorphism_of R; theorem :: TRANSGEO:31 R is_symmetric_in [:A,A:] & R is_transitive_in [:A,A:] & f is_FormalIz_of R implies f is_automorphism_of R; theorem :: TRANSGEO:32 (for a,b,x,y,z,t st [[x,y],[a,b]] in R & [[a,b],[z,t]] in R & a<>b holds [[x,y],[z,t]] in R) & (for x,y,z holds [[x,x],[y,z]] in R) & R is_symmetric_in [:A,A:] & f is_FormalIz_of R implies f is_automorphism_of R; theorem :: TRANSGEO:33 f is_FormalIz_of R & g is_automorphism_of R implies f\g is_FormalIz_of R; reserve AS for non empty AffinStruct; definition let AS; let f be Permutation of the carrier of AS; pred f is_DIL_of AS means :: TRANSGEO:def 4 f is_FormalIz_of the CONGR of AS; end; reserve a,b,x,y for Element of AS; canceled; theorem :: TRANSGEO:35 for f being Permutation of the carrier of AS holds (f is_DIL_of AS iff (for a,b holds a,b // f.a,f.b)); definition let IT be non empty AffinStruct; attr IT is CongrSpace-like means :: TRANSGEO:def 5 (for x,y,z,t,a,b being Element of IT st x,y // a,b & a,b // z,t & a<>b holds x,y // z,t) & (for x,y,z being Element of IT holds x,x // y,z) & (for x,y,z,t being Element of IT st x,y // z,t holds z,t // x,y) & (for x,y being Element of IT holds x,y // x,y); end; definition cluster strict CongrSpace-like (non empty AffinStruct); end; definition mode CongrSpace is CongrSpace-like (non empty AffinStruct); end; reserve CS for CongrSpace; canceled; theorem :: TRANSGEO:37 id the carrier of CS is_DIL_of CS; theorem :: TRANSGEO:38 for f being Permutation of the carrier of CS st f is_DIL_of CS holds f" is_DIL_of CS; theorem :: TRANSGEO:39 for f,g being Permutation of the carrier of CS st f is_DIL_of CS & g is_DIL_of CS holds f*g is_DIL_of CS; reserve OAS for OAffinSpace; reserve a,b,c,d,p,q,r,x,y,z,t,u for Element of OAS; theorem :: TRANSGEO:40 OAS is CongrSpace-like; reserve f,g for Permutation of the carrier of OAS; definition let OAS; let f be Permutation of the carrier of OAS; attr f is positive_dilatation means :: TRANSGEO:def 6 f is_DIL_of OAS; synonym f is_CDil; end; canceled; theorem :: TRANSGEO:42 for f being Permutation of the carrier of OAS holds (f is_CDil iff (for a,b holds a,b // f.a,f.b)); definition let OAS; let f be Permutation of the carrier of OAS; attr f is negative_dilatation means :: TRANSGEO:def 7 for a,b holds a,b // f.b,f.a; synonym f is_SDil; end; canceled; theorem :: TRANSGEO:44 id the carrier of OAS is_CDil; theorem :: TRANSGEO:45 for f being Permutation of the carrier of OAS st f is_CDil holds f" is_CDil; theorem :: TRANSGEO:46 for f,g being Permutation of the carrier of OAS st f is_CDil & g is_CDil holds f*g is_CDil; theorem :: TRANSGEO:47 not ex f st f is_SDil & f is_CDil; theorem :: TRANSGEO:48 f is_SDil implies f" is_SDil; theorem :: TRANSGEO:49 f is_CDil & g is_SDil implies f*g is_SDil & g*f is_SDil; definition let OAS; let f be Permutation of the carrier of OAS; attr f is dilatation means :: TRANSGEO:def 8 f is_FormalIz_of lambda(the CONGR of OAS); synonym f is_Dil; end; canceled; theorem :: TRANSGEO:51 for f being Permutation of the carrier of OAS holds (f is_Dil iff (for a,b holds a,b '||' f.a,f.b)); theorem :: TRANSGEO:52 f is_CDil or f is_SDil implies f is_Dil; theorem :: TRANSGEO:53 for f being Permutation of the carrier of OAS st f is_Dil ex f' being Permutation of the carrier of Lambda(OAS) st f=f' & f' is_DIL_of Lambda(OAS); theorem :: TRANSGEO:54 for f being Permutation of the carrier of Lambda(OAS) st f is_DIL_of Lambda(OAS) ex f' being Permutation of the carrier of OAS st f=f' & f' is_Dil; theorem :: TRANSGEO:55 id the carrier of OAS is_Dil; theorem :: TRANSGEO:56 f is_Dil implies f" is_Dil; theorem :: TRANSGEO:57 f is_Dil & g is_Dil implies f*g is_Dil; theorem :: TRANSGEO:58 f is_Dil implies (for a,b,c,d holds a,b '||' c,d iff f.a,f.b '||' f.c,f.d); theorem :: TRANSGEO:59 f is_Dil implies (for a,b,c holds LIN a,b,c iff LIN f.a,f.b,f.c); theorem :: TRANSGEO:60 f is_Dil & LIN x,f.x,y implies LIN x,f.x,f.y; theorem :: TRANSGEO:61 a,b '||' c,d implies (a,c '||' b,d or (ex x st LIN a,c,x & LIN b,d,x)); theorem :: TRANSGEO:62 f is_Dil implies ((f=id the carrier of OAS or for x holds f.x<>x) iff (for x,y holds x,f.x '||' y,f.y)); theorem :: TRANSGEO:63 f is_Dil & f.a=a & f.b=b & not LIN a,b,x implies f.x=x; theorem :: TRANSGEO:64 f is_Dil & f.a=a & f.b=b & a<>b implies f=(id the carrier of OAS); theorem :: TRANSGEO:65 f is_Dil & g is_Dil & f.a=g.a & f.b=g.b implies a=b or f=g; definition let OAS; let f be Permutation of the carrier of OAS; attr f is translation means :: TRANSGEO:def 9 f is_Dil & (f = id the carrier of OAS or for a holds a<>f.a); synonym f is_Tr; end; canceled; theorem :: TRANSGEO:67 f is_Dil implies (f is_Tr iff (for x,y holds x,f.x '||' y,f.y)); canceled; theorem :: TRANSGEO:69 f is_Tr & g is_Tr & f.a=g.a & not LIN a,f.a,x implies f.x=g.x; theorem :: TRANSGEO:70 f is_Tr & g is_Tr & f.a=g.a implies f=g; theorem :: TRANSGEO:71 f is_Tr implies f" is_Tr; theorem :: TRANSGEO:72 f is_Tr & g is_Tr implies (f*g) is_Tr; theorem :: TRANSGEO:73 f is_Tr implies f is_CDil; theorem :: TRANSGEO:74 f is_Dil & f.p=p & Mid q,p,f.q & not LIN p,q,x implies Mid x,p,f.x; theorem :: TRANSGEO:75 f is_Dil & f.p=p & Mid q,p,f.q & q<>p implies Mid x,p,f.x; theorem :: TRANSGEO:76 f is_Dil & f.p=p & q<>p & Mid q,p,f.q & not LIN p,x,y implies x,y // f.y,f.x; theorem :: TRANSGEO:77 f is_Dil & f.p=p & q<>p & Mid q,p,f.q & LIN p,x,y implies x,y // f.y,f.x; theorem :: TRANSGEO:78 f is_Dil & f.p=p & q<>p & Mid q,p,f.q implies f is_SDil; theorem :: TRANSGEO:79 f is_Dil & f.p=p & (for x holds p,x // p,f.x) implies (for y,z holds y,z // f.y,f.z); theorem :: TRANSGEO:80 f is_Dil implies f is_CDil or f is_SDil; reserve AFS for AffinSpace; reserve a,b,c,d,d1,d2,p,x,y,z,t for Element of AFS; canceled; theorem :: TRANSGEO:82 AFS is CongrSpace-like; theorem :: TRANSGEO:83 Lambda(OAS) is CongrSpace; reserve f,g for Permutation of the carrier of AFS; definition let AFS; let f; attr f is dilatation means :: TRANSGEO:def 10 f is_DIL_of AFS; synonym f is_Dil; end; canceled; theorem :: TRANSGEO:85 f is_Dil iff (for a,b holds a,b // f.a,f.b); theorem :: TRANSGEO:86 id the carrier of AFS is_Dil; theorem :: TRANSGEO:87 f is_Dil implies f" is_Dil; theorem :: TRANSGEO:88 f is_Dil & g is_Dil implies (f*g) is_Dil; theorem :: TRANSGEO:89 f is_Dil implies (for a,b,c,d holds a,b // c,d iff f.a,f.b // f.c,f.d); theorem :: TRANSGEO:90 f is_Dil implies (for a,b,c holds LIN a,b,c iff LIN f.a,f.b,f.c); theorem :: TRANSGEO:91 f is_Dil & LIN x,f.x,y implies LIN x,f.x,f.y; theorem :: TRANSGEO:92 a,b // c,d implies (a,c // b,d or (ex x st LIN a,c,x & LIN b,d,x)); theorem :: TRANSGEO:93 f is_Dil implies ((f=id the carrier of AFS or for x holds f.x<>x) iff (for x,y holds x,f.x // y,f.y)); theorem :: TRANSGEO:94 f is_Dil & f.a=a & f.b=b & not LIN a,b,x implies f.x=x; theorem :: TRANSGEO:95 f is_Dil & f.a=a & f.b=b & a<>b implies f=id the carrier of AFS; theorem :: TRANSGEO:96 f is_Dil & g is_Dil & f.a=g.a & f.b=g.b implies a=b or f=g; theorem :: TRANSGEO:97 not LIN a,b,c & a,b // c,d1 & a,b // c,d2 & a,c // b,d1 & a,c // b,d2 implies d1=d2; definition let AFS; let f; attr f is translation means :: TRANSGEO:def 11 f is_Dil & (f = id the carrier of AFS or (for a holds a<>f.a)); synonym f is_Tr; end; canceled; theorem :: TRANSGEO:99 id the carrier of AFS is_Tr; theorem :: TRANSGEO:100 f is_Dil implies (f is_Tr iff (for x,y holds x,f.x // y,f.y)); canceled; theorem :: TRANSGEO:102 f is_Tr & g is_Tr & f.a=g.a & not LIN a,f.a,x implies f.x=g.x; theorem :: TRANSGEO:103 f is_Tr & g is_Tr & f.a=g.a implies f=g; theorem :: TRANSGEO:104 f is_Tr implies f" is_Tr; theorem :: TRANSGEO:105 f is_Tr & g is_Tr implies (f*g) is_Tr; definition let AFS; let f; attr f is collineation means :: TRANSGEO:def 12 f is_automorphism_of the CONGR of AFS; synonym f is_Col; end; canceled; theorem :: TRANSGEO:107 f is_Col iff (for x,y,z,t holds (x,y // z,t iff f.x,f.y // f.z,f.t)); theorem :: TRANSGEO:108 f is_Col implies (LIN x,y,z iff LIN f.x,f.y,f.z); theorem :: TRANSGEO:109 f is_Col & g is_Col implies f" is_Col & f*g is_Col & id the carrier of AFS is_Col; reserve A,C,K for Subset of AFS; theorem :: TRANSGEO:110 a in A implies f.a in f.:A; theorem :: TRANSGEO:111 x in f.:A iff ex y st y in A & f.y=x; theorem :: TRANSGEO:112 f.:A=f.:C implies A=C; theorem :: TRANSGEO:113 f is_Col implies f.:(Line(a,b))=Line(f.a,f.b); theorem :: TRANSGEO:114 f is_Col & K is_line implies f.:K is_line; theorem :: TRANSGEO:115 f is_Col & A // C implies f.:A // f.:C; reserve AFP for AffinPlane, A,C,D,K for Subset of AFP, a,b,c,d,p,x,y for Element of AFP, f for Permutation of the carrier of AFP; theorem :: TRANSGEO:116 (for A st A is_line holds f.:A is_line) implies f is_Col; theorem :: TRANSGEO:117 f is_Col & K is_line & (for x st x in K holds f.x=x) & not p in K & f.p=p implies f=id the carrier of AFP;