Copyright (c) 1990 Association of Mizar Users
environ vocabulary FUNCT_2, FUNCT_1, BOOLE, RELAT_1, RELAT_2, ANALOAF, DIRAF, PARSP_1, INCSP_1, AFF_1, TRANSGEO; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_2, FUNCT_1, RELSET_1, STRUCT_0, ANALOAF, DIRAF, PARTFUN1, FUNCT_2, AFF_1; constructors DOMAIN_1, RELAT_2, AFF_1, MEMBERED, PARTFUN1, XBOOLE_0; clusters ANALOAF, DIRAF, RELSET_1, STRUCT_0, FUNCT_2, MEMBERED, ZFMISC_1, PARTFUN1, FUNCT_1, XBOOLE_0; requirements SUBSET, BOOLE; definitions RELAT_2; theorems DOMAIN_1, FUNCT_1, FUNCT_2, ANALOAF, DIRAF, AFF_1, PASCH, TARSKI, ZFMISC_1, RELAT_1, REALSET1, XBOOLE_0; schemes FUNCT_2; begin reserve A for non empty set, a,b,x,y,z,t for Element of A, f,g,h for Permutation of A; definition let A be set, f,g be Permutation of A; redefine func g*f -> Permutation of A; coherence proof thus g*f is Permutation of A; end; end; canceled; theorem Th2: ex x st f.x=y proof y in A & rng f = A by FUNCT_2:def 3; then ex x being set st x in dom f & f.x = y by FUNCT_1:def 5; hence thesis; end; canceled; theorem Th4: f.x=y iff (f").y=x proof A1: f is one-to-one & rng f = A & f is Function of A,A by FUNCT_2:def 3; now assume f.x=y; then f".(f.x)=f".y & x in A; then f".(f.x)=f".y & x in dom f by FUNCT_2:def 1; hence x=f".y by FUNCT_1:56; end; hence thesis by A1,FUNCT_1:57; end; definition let A,f,g; func f\g -> Permutation of A equals :Def1: (g*f)*g"; coherence; end; scheme EXPermutation{A() -> non empty set,P[set,set]}: ex f being Permutation of A() st for x,y being Element of A() holds f.x=y iff P[x,y] provided A1: for x being Element of A() ex y being Element of A() st P[x,y] and A2: for y being Element of A() ex x being Element of A() st P[x,y] and A3: for x,y,x' being Element of A() st P[x,y] & P[x',y] holds x=x' and A4: for x,y,y' being Element of A() st P[x,y] & P[x,y'] holds y=y' proof defpred X[Element of A(),Element of A()] means P[$1,$2]; A5: for x being Element of A() ex y being Element of A() st X[x,y] by A1; consider f being Function of A(), A() such that A6: for x being Element of A() holds X[x,f.x] from FuncExD(A5); now now let x1,x2 be set; assume A7: x1 in A() & x2 in A(); then P[x1,f.x1] & P[x2,f.x2] & f.x1 is Element of A() & f.x2 is Element of A() by A6,FUNCT_2:7; hence f.x1 = f.x2 implies x1 = x2 by A3,A7; end; hence f is one-to-one by FUNCT_2:25; now thus rng f c= A(); now let y be set; assume A8: y in A(); then consider x being Element of A() such that A9: P[x,y] by A2; P[x,f.x] & f.x is Element of A() by A6; then f.x = y & A() <> {} by A4,A8,A9; hence y in rng f by FUNCT_2:6; end; hence A() c= rng f by TARSKI:def 3; end; hence rng f = A() by XBOOLE_0:def 10; end; then reconsider f as Permutation of A() by FUNCT_2:83; take f; let x,y be Element of A(); thus f.x=y implies P[x,y] by A6; assume A10: P[x,y]; P[x,f.x] by A6; hence thesis by A4,A10; end; canceled 4; theorem f.(f".x) = x & f".(f.x) = x by Th4; canceled; theorem f*(id A) = (id A)*f proof f*(id A)=f by FUNCT_2:23; hence thesis by FUNCT_2:23; end; Lm1: f*g=f*h implies g=h proof assume f*g=f*h; then (f"*f)*g=f"*(f*h) by RELAT_1:55; then (f"*f)*g=(f"*f)*h by RELAT_1:55; then (id A)*g=(f"*f)*h by FUNCT_2:88; then (id A)*g=(id A)*h by FUNCT_2:88; then g=(id A)*h by FUNCT_2:23; hence thesis by FUNCT_2:23; end; Lm2: g*f=h*f implies g=h proof assume g*f=h*f; then g*(f*f")=(h*f)*f" by RELAT_1:55; then g*(f*f")=h*(f*f") by RELAT_1:55; then g*(id A)=h*(f*f") by FUNCT_2:88; then g*(id A)=h*(id A) by FUNCT_2:88; then g=h*(id A) by FUNCT_2:23; hence thesis by FUNCT_2:23; end; canceled; theorem g*f=h*f or f*g=f*h implies g=h by Lm1,Lm2; canceled 2; theorem (f*g)\h = (f\h)*(g\h) proof thus (f*g)\h = (h*(f*g))*h" by Def1 .= (h*(f*((id A)*g)))*h" by FUNCT_2:23 .= (h*(f*((h"*h)*g)))*h" by FUNCT_2:88 .= (h*(f*(h"*(h*g))))*h" by RELAT_1:55 .= (h*((f*h")*(h*g)))*h" by RELAT_1:55 .= ((h*(f*h"))*(h*g))*h" by RELAT_1:55 .= (h*(f*h"))*((h*g)*h") by RELAT_1:55 .= ((h*f)*h")*((h*g)*h") by RELAT_1:55 .= (f\h)*((h*g)*h") by Def1 .= (f\h)*(g\h) by Def1; end; theorem (f")\g = (f\g)" proof thus (f\g)" = ((g*f)*g")" by Def1 .= (g")"*(g*f)" by FUNCT_1:66 .= (g")"*(f"*g") by FUNCT_1:66 .= g*(f"*g") by FUNCT_1:65 .= (g*f")*g" by RELAT_1:55 .= f"\g by Def1; end; theorem f\(g*h) = (f\h)\g proof thus f\(g*h) = ((g*h)*f)*(g*h)" by Def1 .= ((g*h)*f)*(h"*g") by FUNCT_1:66 .= (((g*h)*f)*h")*g" by RELAT_1:55 .= ((g*(h*f))*h")*g" by RELAT_1:55 .= (g*((h*f)*h"))*g" by RELAT_1:55 .= (g*(f\h))*g" by Def1 .= (f\h)\g by Def1; end; theorem (id A)\f = id A proof thus (id A)\f = (f*(id A))*f" by Def1 .= f*f" by FUNCT_2:23 .= id A by FUNCT_2:88; end; theorem f\(id A) = f proof thus f\(id A) = ((id A)*f)*(id A)" by Def1 .= f*(id A)" by FUNCT_2:23 .= f*(id A) by FUNCT_1:67 .= f by FUNCT_2:23; end; theorem f.a=a implies (f\g).(g.a)=g.a proof assume A1: f.a=a; A2: g".(g.a) = (g"*g).a by FUNCT_2:70 .= (id A).a by FUNCT_2:88 .= a by FUNCT_1:35; thus (f\g).(g.a) = ((g*f)*g").(g.a) by Def1 .= (g*f).a by A2,FUNCT_2:70 .= g.a by A1,FUNCT_2:70; end; reserve R for Relation of [:A,A:]; definition let A,f,R; pred f is_FormalIz_of R means :Def2: for x,y holds [[x,y],[f.x,f.y]] in R; end; canceled; theorem Th23: R is_reflexive_in [:A,A:] implies id A is_FormalIz_of R proof assume A1: for x being set st x in [:A,A:] holds [x,x] in R; let x,y; A2: (id A).x = x & (id A).y = y by FUNCT_1:35; [x,y] in [:A,A:] by ZFMISC_1:def 2; hence thesis by A1,A2; end; theorem Th24: R is_symmetric_in [:A,A:] & f is_FormalIz_of R implies f" is_FormalIz_of R proof assume A1: for x,y being set st x in [:A,A:] & y in [:A,A:] & [x,y] in R holds [y,x] in R; assume A2: for x,y holds [[x,y],[f.x,f.y]] in R; let x,y; A3: f.(f".x) = x & f.(f".y) =y by Th4; [[f".x,f".y],[f.(f".x),f.(f".y)]] in R & [f".x,f".y] in [:A,A:] & [f.(f".x),f.(f".y)] in [:A,A:] by A2,ZFMISC_1:def 2; hence thesis by A1,A3; end; theorem R is_transitive_in [:A,A:] & f is_FormalIz_of R & g is_FormalIz_of R implies (f*g) is_FormalIz_of R proof assume that A1: (for x,y,z being set st x in [:A,A:] & y in [:A,A:] & z in [:A,A:] & [x,y] in R & [y,z] in R holds [x,z] in R) and A2: (for x,y holds [[x,y],[f.x,f.y]] in R) & (for x,y holds [[x,y],[g.x,g.y]] in R); let x,y; f.(g.x) = (f*g).x & f.(g.y) = (f*g).y by FUNCT_2:70; then [[x,y],[g.x,g.y]] in R & [[g.x,g.y],[(f*g).x,(f*g).y]] in R & [x,y] in [:A,A:] & [g.x,g.y] in [:A,A:] & [(f*g).x,(f*g).y] in [:A,A:] by A2,ZFMISC_1:def 2; hence [[x,y],[(f*g).x,(f*g).y]] in R by A1; end; theorem Th26: (for a,b,x,y,z,t st [[x,y],[a,b]] in R & [[a,b],[z,t]] in R & a<>b holds [[x,y],[z,t]] in R) & (for x,y,z holds [[x,x],[y,z]] in R) & f is_FormalIz_of R & g is_FormalIz_of R implies f*g is_FormalIz_of R proof assume that A1: for a,b,x,y,z,t st [[x,y],[a,b]] in R & [[a,b],[z,t]] in R & a<>b holds [[x,y],[z,t]] in R and A2: for x,y,z holds [[x,x],[y,z]] in R and A3: (for x,y holds [[x,y],[f.x,f.y]] in R) & (for x,y holds [[x,y],[g.x,g.y]] in R); let x,y; f.(g.x) = (f*g).x & f.(g.y) = (f*g).y by FUNCT_2:70; then A4: [[x,y],[g.x,g.y]] in R & [[g.x,g.y],[(f*g).x,(f*g).y]] in R & [x,y] in [:A,A:] & [g.x,g.y] in [:A,A:] & [(f*g).x,(f*g).y] in [:A,A:] by A3,ZFMISC_1:def 2; now assume g.x = g.y; then x = y by FUNCT_2:85; hence [[x,y],[(f*g).x,(f*g).y]] in R by A2; end; hence [[x,y],[(f*g).x,(f*g).y]] in R by A1,A4; end; definition let A; let f; let R; pred f is_automorphism_of R means :Def3: for x,y,z,t holds ([[x,y],[z,t]] in R iff [[f.x,f.y],[f.z,f.t]] in R); end; canceled; theorem Th28: id A is_automorphism_of R proof let x,y,z,t; A1: (id A).x = x & (id A).y = y & (id A).z = z & (id A).t = t by FUNCT_1:35; hence [[x,y],[z,t]] in R implies [[(id A).x,(id A).y],[(id A).z,(id A).t]] in R; assume [[(id A).x,(id A).y],[(id A).z,(id A).t]] in R; hence [[x,y],[z,t]] in R by A1; end; theorem Th29: f is_automorphism_of R implies f" is_automorphism_of R proof assume A1: for x,y,z,t holds ([[x,y],[z,t]] in R iff [[f.x,f.y],[f.z,f.t]] in R); let x,y,z,t; f.(f".x) = x & f.(f".y) = y & f.(f".z) = z & f.(f".t) = t by Th4; hence thesis by A1; end; theorem Th30: f is_automorphism_of R & g is_automorphism_of R implies g*f is_automorphism_of R proof assume A1: (for x,y,z,t holds ([[x,y],[z,t]] in R iff [[f.x,f.y],[f.z,f.t]] in R)) & (for x,y,z,t holds ([[x,y],[z,t]] in R iff [[g.x,g.y],[g.z,g.t]] in R)); let x,y,z,t; A2: g.(f.x) = (g*f).x & g.(f.y) = (g*f).y & g.(f.z) = (g*f).z & g.(f.t) = (g*f).t by FUNCT_2:70; ([[x,y],[z,t]] in R iff [[f.x,f.y],[f.z,f.t]] in R) & ([[f.x,f.y],[f.z,f.t]] in R iff [[g.(f.x),g.(f.y)],[g.(f.z),g.(f.t)]] in R) by A1; hence thesis by A2; end; theorem R is_symmetric_in [:A,A:] & R is_transitive_in [:A,A:] & f is_FormalIz_of R implies f is_automorphism_of R proof assume that A1: for x,y being set st x in [:A,A:] & y in [:A,A:] & [x,y] in R holds [y,x] in R and A2: for x,y,z being set st x in [:A,A:] & y in [:A,A:] & z in [:A,A:] & [x,y] in R & [y,z] in R holds [x,z] in R and A3: for x,y holds [[x,y],[f.x,f.y]] in R; let x,y,z,t; A4: [x,y] in [:A,A:] & [z,t] in [:A,A:] & [f.x,f.y] in [:A,A:] & [f.z,f.t] in [:A,A:] by ZFMISC_1:def 2; A5: now assume A6: [[x,y],[z,t]] in R; [[x,y],[f.x,f.y]] in R & [[z,t],[f.z,f.t]] in R by A3; then [[f.x,f.y],[x,y]] in R & [[z,t],[f.z,f.t]] in R by A1,A4; then [[f.x,f.y],[z,t]] in R & [[z,t],[f.z,f.t]] in R by A2,A4,A6; hence [[f.x,f.y],[f.z,f.t]] in R by A2,A4; end; now assume A7: [[f.x,f.y],[f.z,f.t]] in R; [[x,y],[f.x,f.y]] in R & [[z,t],[f.z,f.t]] in R by A3; then [[x,y],[f.z,f.t]] in R & [[f.z,f.t],[z,t]] in R by A1,A2,A4,A7; hence [[x,y],[z,t]] in R by A2,A4; end; hence thesis by A5; end; theorem (for a,b,x,y,z,t st [[x,y],[a,b]] in R & [[a,b],[z,t]] in R & a<>b holds [[x,y],[z,t]] in R) & (for x,y,z holds [[x,x],[y,z]] in R) & R is_symmetric_in [:A,A:] & f is_FormalIz_of R implies f is_automorphism_of R proof assume that A1: for a,b,x,y,z,t st [[x,y],[a,b]] in R & [[a,b],[z,t]] in R & a<>b holds [[x,y],[z,t]] in R and A2: for x,y,z holds [[x,x],[y,z]] in R and A3: for x,y being set st x in [:A,A:] & y in [:A,A:] & [x,y] in R holds [y,x] in R and A4: for x,y holds [[x,y],[f.x,f.y]] in R; A5: for x,y,z holds [[y,z],[x,x]] in R proof let x,y,z; A6: [y,z] in [:A,A:] & [x,x] in [:A,A:] by ZFMISC_1:def 2; [[x,x],[y,z]] in R by A2; hence thesis by A3,A6; end; let x,y,z,t; A7: [x,y] in [:A,A:] & [z,t] in [:A,A:] & [f.x,f.y] in [:A,A:] & [f.z,f.t] in [:A,A:] by ZFMISC_1:def 2; A8: [[x,y],[f.x,f.y]] in R & [[z,t],[f.z,f.t]] in R by A4; then A9: [[f.x,f.y],[x,y]] in R & [[f.z,f.t],[z,t]] in R by A3,A7; A10: now assume A11: [[x,y],[z,t]] in R; now assume A12: x<>y & z<>t; then [[f.x,f.y],[z,t]] in R by A1,A9,A11; hence [[f.x,f.y],[f.z,f.t]] in R by A1,A8,A12; end; hence [[f.x,f.y],[f.z,f.t]] in R by A2,A5; end; now assume A13: [[f.x,f.y],[f.z,f.t]] in R; A14: now assume f.x = f.y; then x=y by FUNCT_2:85; hence [[x,y],[z,t]] in R by A2; end; A15: now assume f.z = f.t; then z=t by FUNCT_2:85; hence [[x,y],[z,t]] in R by A5; end; now assume A16: f.x<>f.y & f.z<>f.t; then [[x,y],[f.z,f.t]] in R by A1,A8,A13; hence [[x,y],[z,t]] in R by A1,A9,A16; end; hence [[x,y],[z,t]] in R by A14,A15; end; hence thesis by A10; end; theorem f is_FormalIz_of R & g is_automorphism_of R implies f\g is_FormalIz_of R proof assume that A1: for x,y holds [[x,y],[f.x,f.y]] in R and A2: for x,y,z,t holds ([[x,y],[z,t]] in R iff [[g.x,g.y],[g.z,g.t]] in R); let x,y; A3: g.(g".x) = x & g.(g".y) = y by Th4; [[g".x,g".y],[f.(g".x),f.(g".y)]] in R by A1; then [[x,y],[g.(f.(g".x)),g.(f.(g".y))]] in R by A2,A3; then [[x,y],[(g*f).(g".x),g.(f.(g".y))]] in R by FUNCT_2:70; then [[x,y],[(g*f).(g".x),(g*f).(g".y)]] in R by FUNCT_2:70; then [[x,y],[((g*f)*g").x,(g*f).(g".y)]] in R by FUNCT_2:70; then [[x,y],[((g*f)*g").x,((g*f)*g").y]] in R by FUNCT_2:70; then [[x,y],[(f\g).x,((g*f)*g").y]] in R by Def1; hence [[x,y],[(f\g).x,(f\g).y]] in R by Def1; end; reserve AS for non empty AffinStruct; definition let AS; let f be Permutation of the carrier of AS; pred f is_DIL_of AS means :Def4: f is_FormalIz_of the CONGR of AS; end; reserve a,b,x,y for Element of AS; canceled; theorem Th35: for f being Permutation of the carrier of AS holds (f is_DIL_of AS iff (for a,b holds a,b // f.a,f.b)) proof let f be Permutation of the carrier of AS; A1: now assume f is_DIL_of AS; then A2: f is_FormalIz_of the CONGR of AS by Def4; let a,b; [[a,b],[f.a,f.b]] in the CONGR of AS by A2,Def2; hence a,b // f.a,f.b by ANALOAF:def 2; end; now assume A3: for a,b holds a,b // f.a,f.b; for x,y holds [[x,y],[f.x,f.y]] in the CONGR of AS proof let x,y; x,y // f.x,f.y by A3; hence thesis by ANALOAF:def 2; end; then f is_FormalIz_of the CONGR of AS by Def2; hence f is_DIL_of AS by Def4; end; hence thesis by A1; end; definition let IT be non empty AffinStruct; attr IT is CongrSpace-like means :Def5: (for x,y,z,t,a,b being Element of IT st x,y // a,b & a,b // z,t & a<>b holds x,y // z,t) & (for x,y,z being Element of IT holds x,x // y,z) & (for x,y,z,t being Element of IT st x,y // z,t holds z,t // x,y) & (for x,y being Element of IT holds x,y // x,y); end; definition cluster strict CongrSpace-like (non empty AffinStruct); existence proof consider OAS being strict OAffinSpace; (for x,y,z,t,a,b being Element of OAS st x,y // a,b & a,b // z,t & a<>b holds x,y // z,t) & (for x,y,z being Element of OAS holds x,x // y,z) & (for x,y,z,t being Element of OAS st x,y // z,t holds z,t // x,y) & for x,y being Element of OAS holds x,y // x,y by DIRAF:4,5,6,7; then OAS is CongrSpace-like by Def5; hence thesis; end; end; definition mode CongrSpace is CongrSpace-like (non empty AffinStruct); end; reserve CS for CongrSpace; Lm3: the CONGR of CS is_reflexive_in [:the carrier of CS,the carrier of CS:] proof let x be set; assume x in [:the carrier of CS,the carrier of CS:]; then consider x1,x2 being Element of CS such that A1: x=[x1,x2] by DOMAIN_1:9; x1,x2 // x1,x2 by Def5; hence [x,x] in the CONGR of CS by A1,ANALOAF:def 2; end; Lm4: the CONGR of CS is_symmetric_in [:the carrier of CS,the carrier of CS:] proof let x,y be set; assume that A1: x in [:the carrier of CS,the carrier of CS:] & y in [:the carrier of CS,the carrier of CS:] and A2: [x,y] in the CONGR of CS; consider x1,x2 being Element of CS such that A3: x=[x1,x2] by A1,DOMAIN_1:9; consider y1,y2 being Element of CS such that A4: y=[y1,y2] by A1,DOMAIN_1:9; x1,x2 // y1,y2 by A2,A3,A4,ANALOAF:def 2; then y1,y2 // x1,x2 by Def5; hence [y,x] in the CONGR of CS by A3,A4,ANALOAF:def 2; end; canceled; theorem Th37: id the carrier of CS is_DIL_of CS proof the CONGR of CS is_reflexive_in [:the carrier of CS,the carrier of CS:] by Lm3; then id the carrier of CS is_FormalIz_of the CONGR of CS by Th23; hence thesis by Def4; end; theorem Th38: for f being Permutation of the carrier of CS st f is_DIL_of CS holds f" is_DIL_of CS proof let f be Permutation of the carrier of CS; assume f is_DIL_of CS; then f is_FormalIz_of the CONGR of CS & the CONGR of CS is_symmetric_in [:the carrier of CS,the carrier of CS:] by Def4,Lm4; then f" is_FormalIz_of the CONGR of CS by Th24; hence thesis by Def4; end; theorem Th39: for f,g being Permutation of the carrier of CS st f is_DIL_of CS & g is_DIL_of CS holds f*g is_DIL_of CS proof let f,g be Permutation of the carrier of CS; assume f is_DIL_of CS & g is_DIL_of CS; then A1: f is_FormalIz_of the CONGR of CS & g is_FormalIz_of the CONGR of CS by Def4; A2: now let a,b,x,y,z,t be Element of CS; assume [[x,y],[a,b]] in the CONGR of CS & [[a,b],[z,t]] in the CONGR of CS & a<>b; then x,y // a,b & a,b // z,t & a<>b by ANALOAF:def 2; then x,y // z,t by Def5; hence [[x,y],[z,t]] in the CONGR of CS by ANALOAF:def 2; end; now let x,y,z be Element of CS; x,x // y,z by Def5; hence [[x,x],[y,z]] in the CONGR of CS by ANALOAF:def 2; end; then f*g is_FormalIz_of the CONGR of CS by A1,A2,Th26; hence thesis by Def4; end; reserve OAS for OAffinSpace; reserve a,b,c,d,p,q,r,x,y,z,t,u for Element of OAS; theorem Th40: OAS is CongrSpace-like proof thus for x,y,z,t,a,b being Element of OAS st x,y // a,b & a,b // z,t & a<>b holds x,y // z,t by DIRAF:6; thus for x,y,z being Element of OAS holds x,x // y,z by DIRAF:7; thus for x,y,z,t being Element of OAS st x,y // z,t holds z,t // x,y by DIRAF:5; thus for x,y being Element of OAS holds x,y // x,y by DIRAF:4; end; reserve f,g for Permutation of the carrier of OAS; definition let OAS; let f be Permutation of the carrier of OAS; attr f is positive_dilatation means :Def6: f is_DIL_of OAS; synonym f is_CDil; end; canceled; theorem Th42: for f being Permutation of the carrier of OAS holds (f is_CDil iff (for a,b holds a,b // f.a,f.b)) proof let f be Permutation of the carrier of OAS; A1: now assume f is_CDil; then f is_DIL_of OAS by Def6; hence for a,b holds a,b // f.a,f.b by Th35; end; now assume for a,b holds a,b // f.a,f.b; then f is_DIL_of OAS by Th35; hence f is_CDil by Def6; end; hence thesis by A1; end; definition let OAS; let f be Permutation of the carrier of OAS; attr f is negative_dilatation means :Def7: for a,b holds a,b // f.b,f.a; synonym f is_SDil; end; canceled; theorem Th44: id the carrier of OAS is_CDil proof OAS is CongrSpace by Th40; then id the carrier of OAS is_DIL_of OAS by Th37; hence thesis by Def6; end; theorem for f being Permutation of the carrier of OAS st f is_CDil holds f" is_CDil proof let f be Permutation of the carrier of OAS such that A1: f is_CDil; A2: OAS is CongrSpace by Th40; f is_DIL_of OAS by A1,Def6; then f" is_DIL_of OAS by A2,Th38; hence thesis by Def6; end; theorem for f,g being Permutation of the carrier of OAS st f is_CDil & g is_CDil holds f*g is_CDil proof let f,g be Permutation of the carrier of OAS; assume f is_CDil & g is_CDil; then f is_DIL_of OAS & g is_DIL_of OAS & OAS is CongrSpace by Def6,Th40; then f*g is_DIL_of OAS by Th39; hence thesis by Def6; end; theorem not ex f st f is_SDil & f is_CDil proof given f such that A1: f is_SDil & f is_CDil; consider a,b such that A2: a<>b by REALSET1:def 20; a,b // f.a,f.b & a,b // f.b,f.a by A1,Def7,Th42; then f.a,f.b // f.b,f.a by A2,ANALOAF:def 5; then f.a = f.b by ANALOAF:def 5 ; hence contradiction by A2,FUNCT_2:85; end; theorem f is_SDil implies f" is_SDil proof assume A1: f is_SDil; let x,y; set x'=f".x, y'=f".y; f.x'=x & f.y'=y by Th4; then y',x' // x,y by A1,Def7; hence x,y // f".y,f".x by DIRAF:5; end; theorem f is_CDil & g is_SDil implies f*g is_SDil & g*f is_SDil proof assume that A1: f is_CDil and A2: g is_SDil; thus x,y // (f*g).y,(f*g).x proof set x'=g.x; set y'=g.y; A3: (f*g).x= f.x' & (f*g).y=f.y' by FUNCT_2:70; A4: x,y // y',x' by A2,Def7; A5: y',x' // f.y',f.x' by A1,Th42; now assume x'=y'; then x=y by FUNCT_2:85; hence x,y // (f*g).y,(f*g).x by DIRAF:7; end; hence x,y // (f*g).y,(f*g).x by A3,A4,A5,DIRAF:6; end; thus x,y // (g*f).y,(g*f).x proof set x'=f.x; set y'=f.y; A6: (g*f).x= g.x' & (g*f).y=g.y' by FUNCT_2:70; A7: x,y // x',y' by A1,Th42; A8: x',y' // g.y',g.x' by A2,Def7; now assume x'=y'; then x=y by FUNCT_2:85; hence x,y // (g*f).y,(g*f).x by DIRAF:7; end; hence x,y // (g*f).y,(g*f).x by A6,A7,A8,DIRAF:6; end; end; definition let OAS; let f be Permutation of the carrier of OAS; attr f is dilatation means :Def8: f is_FormalIz_of lambda(the CONGR of OAS); synonym f is_Dil; end; canceled; theorem Th51: for f being Permutation of the carrier of OAS holds (f is_Dil iff (for a,b holds a,b '||' f.a,f.b)) proof let f be Permutation of the carrier of OAS; A1: now assume f is_Dil; then A2: f is_FormalIz_of lambda(the CONGR of OAS) by Def8; let a,b; [[a,b],[f.a,f.b]] in lambda(the CONGR of OAS) by A2,Def2; hence a,b '||' f.a,f.b by DIRAF:23; end; now assume A3: for a,b holds a,b '||' f.a,f.b; now let a,b; a,b '||' f.a,f.b by A3; hence [[a,b],[f.a,f.b]] in lambda(the CONGR of OAS) by DIRAF:23; end; then f is_FormalIz_of lambda(the CONGR of OAS) by Def2; hence f is_Dil by Def8; end; hence thesis by A1; end; theorem f is_CDil or f is_SDil implies f is_Dil proof assume A1: f is_CDil or f is_SDil; now let x,y; x,y // f.x,f.y or x,y // f.y,f.x by A1,Def7,Th42; hence x,y '||' f.x,f.y by DIRAF:def 4; end; hence thesis by Th51; end; theorem for f being Permutation of the carrier of OAS st f is_Dil ex f' being Permutation of the carrier of Lambda(OAS) st f=f' & f' is_DIL_of Lambda(OAS) proof let f be Permutation of the carrier of OAS; assume f is_Dil; then A1: f is_FormalIz_of lambda(the CONGR of OAS) by Def8; A2: Lambda(OAS) = AffinStruct(#the carrier of OAS, lambda(the CONGR of OAS)#) by DIRAF:def 2; then reconsider f'=f as Permutation of the carrier of Lambda(OAS); take f'; thus thesis by A1,A2,Def4; end; theorem for f being Permutation of the carrier of Lambda(OAS) st f is_DIL_of Lambda(OAS) ex f' being Permutation of the carrier of OAS st f=f' & f' is_Dil proof let f be Permutation of the carrier of Lambda(OAS); assume f is_DIL_of Lambda(OAS); then A1: f is_FormalIz_of the CONGR of Lambda(OAS) by Def4; A2: Lambda(OAS) = AffinStruct(#the carrier of OAS, lambda(the CONGR of OAS)#) by DIRAF:def 2; then reconsider f'=f as Permutation of the carrier of OAS; take f'; thus thesis by A1,A2,Def8; end; theorem id the carrier of OAS is_Dil proof now let x,y; (id the carrier of OAS).x = x & (id the carrier of OAS).y = y by FUNCT_1:35; hence x,y '||' (id the carrier of OAS).x,(id the carrier of OAS).y by DIRAF:24; end; hence thesis by Th51; end; theorem Th56: f is_Dil implies f" is_Dil proof assume A1: f is_Dil; now let x,y; set x'=f".x; set y'=f".y; f.x'=x & f.y'=y by Th4; then x',y' '||' x,y by A1,Th51; hence x,y '||' f".x,f".y by DIRAF:27; end; hence thesis by Th51; end; theorem Th57: f is_Dil & g is_Dil implies f*g is_Dil proof assume that A1: f is_Dil and A2: g is_Dil; now let x,y; set x'=g.x; set y'=g.y; A3: (f*g).x= f.x' by FUNCT_2:70; A4: (f*g).y=f.y' by FUNCT_2:70; A5: x,y '||' x',y' & x',y' '||' f.x',f.y' by A1,A2,Th51; now assume x'=y'; then x=y by FUNCT_2:85; hence x,y '||' (f*g).x,(f*g).y by DIRAF:25; end; hence x,y '||' (f*g).x,(f*g).y by A3,A4,A5,DIRAF:28; end; hence thesis by Th51; end; theorem Th58: f is_Dil implies (for a,b,c,d holds a,b '||' c,d iff f.a,f.b '||' f.c,f.d) proof assume A1: f is_Dil; let a,b,c,d; A2: a,b '||' f.a,f.b by A1,Th51; A3: c,d '||' f.c,f.d by A1,Th51; A4: now assume a,b '||' c,d; then A5: f.a,f.b '||' c,d or a=b by A2,DIRAF:28; now assume A6: f.a,f.b '||' c,d; c = d implies f.a,f.b '||' f.c,f.d by DIRAF:25; hence f.a,f.b '||' f.c,f.d by A3,A6,DIRAF:28; end; hence f.a,f.b '||' f.c,f.d by A5,DIRAF:25; end; now assume A7: f.a,f.b '||' f.c,f.d; A8: now assume f.a=f.b; then a=b by FUNCT_2:85; hence a,b '||' c,d by DIRAF:25; end; now assume A9: a,b '||' f.c,f.d; now assume f.c = f.d; then c = d by FUNCT_2:85; hence a,b '||' c,d by DIRAF:25; end; hence a,b '||' c,d by A3,A9,DIRAF:28; end; hence a,b '||' c,d by A2,A7,A8,DIRAF:28; end; hence thesis by A4; end; theorem Th59: f is_Dil implies (for a,b,c holds LIN a,b,c iff LIN f.a,f.b,f.c) proof assume A1: f is_Dil; let a,b,c; a,b '||' a,c iff f.a,f.b '||' f.a,f.c by A1,Th58; hence LIN a,b,c iff LIN f.a,f.b,f.c by DIRAF:def 5; end; theorem Th60: f is_Dil & LIN x,f.x,y implies LIN x,f.x,f.y proof assume A1: f is_Dil; assume A2: LIN x,f.x,y; now assume A3: x<>y; x,f.x '||' x,y & x,y '||' f.x,f.y by A1,A2,Th51,DIRAF:def 5; then x,f.x '||' f.x,f.y by A3,DIRAF:28; then f.x,x '||' f.x,f.y by DIRAF:27; then LIN f.x,x,f.y by DIRAF:def 5; hence LIN x,f.x,f.y by DIRAF:36; end; hence thesis by DIRAF:37; end; theorem Th61: a,b '||' c,d implies (a,c '||' b,d or (ex x st LIN a,c,x & LIN b,d,x)) proof assume A1: a,b '||' c,d; assume A2: not a,c '||' b,d; A3: now assume a=b; then LIN a,c,a & LIN b,d,a by DIRAF:37; hence thesis; end; now assume A4: a<>b; consider z such that A5: a,b '||' c,z & a,c '||' b,z by DIRAF:31; A6: now assume b=z; then b,a '||' b,c by A5,DIRAF:27; then LIN b,a,c by DIRAF:def 5; then LIN a,c,b & LIN b,d,b by DIRAF:36,37; hence thesis; end; now assume A7: b<>z; c,d '||' c,z by A1,A4,A5,DIRAF:28; then LIN c,d,z by DIRAF:def 5; then LIN d,c,z by DIRAF:36; then d,c '||' d,z by DIRAF:def 5; then z,d '||' d,c by DIRAF:27; then consider t such that A8: b,d '||' d,t & b,z '||' c,t by A2,A5,DIRAF:32; a,c '||' c,t by A5,A7,A8,DIRAF:28; then c,a '||' c,t & d,b '||' d,t by A8,DIRAF:27; then LIN c,a,t & LIN d,b,t by DIRAF:def 5; then LIN a,c,t & LIN b,d,t by DIRAF:36; hence thesis; end; hence thesis by A6; end; hence thesis by A3; end; theorem Th62: f is_Dil implies ((f=id the carrier of OAS or for x holds f.x<>x) iff (for x,y holds x,f.x '||' y,f.y)) proof assume A1: f is_Dil; A2: now assume A3: f=(id the carrier of OAS) or for z holds f.z<>z; let x,y; A4: x,y '||' f.x,f.y by A1,Th51; A5: now assume f=(id the carrier of OAS); then f.y=y by FUNCT_1:35; hence x,f.x '||' y,f.y by DIRAF:25; end; now assume A6: for z holds f.z<>z; assume A7: not x,f.x '||' y,f.y; then consider z such that A8: LIN x,f.x,z & LIN y,f.y,z by A4,Th61; set t=f.z; LIN x,f.x,t by A1,A8,Th60; then A9: x,f.x '||' z,t by A8,DIRAF:40; LIN y,f.y,z & LIN y,f.y,t & y<>f.y by A1,A6,A8,Th60; then y,f.y '||' z,t by DIRAF:40; then z<>t & z,t '||' y,f.y by A6,DIRAF:27; hence contradiction by A7,A9,DIRAF:28; end; hence x,f.x '||' y,f.y by A3,A5; end; now assume A10: for x,y holds x,f.x '||' y,f.y; assume A11: f<>(id the carrier of OAS); given x such that A12: f.x=x; consider y such that A13: f.y<>(id the carrier of OAS).y by A11,FUNCT_2:113; A14:f.y<>y by A13,FUNCT_1:35; x,y '||' f.x,f.y by A1,Th51; then A15: LIN x,y,f.y by A12,DIRAF:def 5; then A16: LIN y,f.y,x by DIRAF:36; LIN y,x,f.y by A15,DIRAF:36; then A17: y,x '||' y,f.y by DIRAF:def 5; x<>y by A12,A13,FUNCT_1:35; then consider z such that A18: not LIN x,y,z by DIRAF:43; x,z '||' f.x,f.z by A1,Th51; then LIN x,z,f.z by A12,DIRAF:def 5; then A19: LIN z,f.z,x by DIRAF:36; A20: now assume z=f.z; then z,y '||' z,f.y by A1,Th51; then LIN z,y,f.y by DIRAF:def 5; then LIN y,f.y,y & LIN y,f.y,z by DIRAF:36,37; hence contradiction by A14,A16,A18,DIRAF:38; end; LIN z,f.z,z by DIRAF:37; then A21: z,f.z '||' x,z by A19,DIRAF:40; y,f.y '||' z,f.z by A10; then y,f.y '||' x,z by A20,A21,DIRAF:28; then y,x '||' x,z by A14,A17,DIRAF:28; then x,y '||' x,z by DIRAF:27; hence contradiction by A18,DIRAF:def 5; end; hence thesis by A2; end; theorem Th63: f is_Dil & f.a=a & f.b=b & not LIN a,b,x implies f.x=x proof assume that A1: f is_Dil and A2: f.a=a & f.b=b and A3: not LIN a,b,x; assume A4: f.x<>x; a,x '||' a,f.x by A1,A2,Th51; then LIN a,x,f.x by DIRAF:def 5; then A5: LIN x,f.x,a by DIRAF:36; b,x '||' b,f.x by A1,A2,Th51; then LIN b,x,f.x by DIRAF:def 5; then LIN x,f.x,x & LIN x,f.x,b by DIRAF:36,37; hence contradiction by A3,A4,A5,DIRAF:38; end; theorem Th64: f is_Dil & f.a=a & f.b=b & a<>b implies f=(id the carrier of OAS) proof assume that A1: f is_Dil and A2: f.a=a & f.b=b & a<>b; now let x; A3: not LIN a,b,x implies f.x=x by A1,A2,Th63; now assume A4: LIN a,b,x; now assume A5: x<>a; consider z such that A6: not LIN a,b,z by A2,DIRAF:43; A7: f.z=z by A1,A2,A6,Th63; not LIN a,z,x proof assume LIN a,z,x; then LIN a,x,a & LIN a,x,z & LIN a,x,b by A4,DIRAF:36,37; hence contradiction by A5,A6,DIRAF:38; end; hence f.x=x by A1,A2,A7,Th63; end; hence f.x=x by A2; end; hence f.x=(id the carrier of OAS).x by A3,FUNCT_1:35; end; hence thesis by FUNCT_2:113; end; theorem f is_Dil & g is_Dil & f.a=g.a & f.b=g.b implies a=b or f=g proof assume that A1: f is_Dil & g is_Dil and A2: f.a=g.a & f.b=g.b; assume A3: a<>b; A4: (g"*f).a=g".(g.a) by A2,FUNCT_2:70 .=a by Th4; A5: (g"*f).b=g".(g.b) by A2,FUNCT_2:70 .=b by Th4; g" is_Dil by A1,Th56; then g"*f is_Dil by A1,Th57; then A6: g"*f=(id the carrier of OAS) by A3,A4,A5,Th64; now let x; g".(f.x)=(g"*f).x by FUNCT_2:70; then g".(f.x)=x by A6,FUNCT_1:35; hence g.x=f.x by Th4; end; hence thesis by FUNCT_2:113; end; definition let OAS; let f be Permutation of the carrier of OAS; attr f is translation means :Def9: f is_Dil & (f = id the carrier of OAS or for a holds a<>f.a); synonym f is_Tr; end; canceled; theorem Th67: f is_Dil implies (f is_Tr iff (for x,y holds x,f.x '||' y,f.y)) proof assume A1: f is_Dil; then (f=id the carrier of OAS or for x holds f.x<>x) iff (for x,y holds x,f.x '||' y,f.y) by Th62; hence thesis by A1,Def9; end; canceled; theorem Th69: f is_Tr & g is_Tr & f.a=g.a & not LIN a,f.a,x implies f.x=g.x proof assume that A1: f is_Tr & g is_Tr and A2: f.a=g.a and A3: not LIN a,f.a,x; A4: f is_Dil & g is_Dil by A1,Def9; set b=f.a, y=f.x, z=g.x; A5: a,x '||' b,y & a,b '||' x,y by A1,A4,Th51,Th67; a,x '||' b,z & a,b '||' x,z by A1,A2,A4,Th51,Th67; hence f.x=g.x by A3,A5,PASCH:12; end; theorem Th70: f is_Tr & g is_Tr & f.a=g.a implies f=g proof assume that A1: f is_Tr and A2: g is_Tr and A3: f.a=g.a; A4: f is_Dil by A1,Def9; set b=f.a; A5: now assume b=a; then f=id the carrier of OAS & g=id the carrier of OAS by A1,A2,A3,Def9; hence thesis; end; now assume A6: a<>b; for x holds f.x=g.x proof let x; now assume A7: LIN a,b,x; now assume x<>a; consider p such that A8: not LIN a,b,p by A6,DIRAF:43; A9: f.p=g.p by A1,A2,A3,A8,Th69; f<>(id the carrier of OAS) by A6,FUNCT_1:35; then A10: f.p<>p & f.x<>x by A1,Def9; not LIN p,f.p,x proof assume LIN p,f.p,x; then LIN p,f.p,x & LIN p,f.p,f.x & LIN p,f.p,p by A4,Th60,DIRAF:37; then A11: LIN x,f.x,p by A10,DIRAF:38; A12: LIN a,b,f.x by A4,A7,Th60; LIN a,b,a by DIRAF:37; then A13: LIN x,f.x,a by A6,A7,A12,DIRAF:38; LIN a,b,b by DIRAF:37; then LIN x,f.x,b by A6,A7,A12,DIRAF:38; hence contradiction by A8,A10,A11,A13,DIRAF:38; end; hence f.x=g.x by A1,A2,A9,Th69; end; hence f.x=g.x by A3; end; hence f.x=g.x by A1,A2,A3,Th69; end; hence thesis by FUNCT_2:113; end; hence thesis by A5; end; theorem Th71: f is_Tr implies f" is_Tr proof assume A1: f is_Tr; then f is_Dil by Def9; then A2: f" is_Dil by Th56; A3: f=(id the carrier of OAS) implies f"=(id the carrier of OAS) by FUNCT_1:67; now assume A4: for x holds f.x<>x; given y such that A5: f".y=y; f.y=y by A5,Th4; hence contradiction by A4; end; hence thesis by A1,A2,A3,Def9; end; theorem f is_Tr & g is_Tr implies (f*g) is_Tr proof assume that A1: f is_Tr and A2: g is_Tr; A3: f is_Dil by A1,Def9; g is_Dil by A2,Def9; then A4: (f*g) is_Dil by A3,Th57; now assume A5: (f*g)<>(id the carrier of OAS); for x holds (f*g).x<>x proof given x such that A6: (f*g).x=x; f.(g.x)=x by A6,FUNCT_2:70; then g.x=f".x & f" is_Tr by A1,Th4,Th71; then f*g=f*f" by A2,Th70; hence contradiction by A5,FUNCT_2:88; end; hence thesis by A4,Def9; end; hence thesis by A4,Def9; end; Lm5: f is_Tr & not LIN a,f.a,b implies a,b // f.a,f.b & a,f.a // b,f.b proof assume that A1: f is_Tr and A2: not LIN a,f.a,b; A3: f is_Dil by A1,Def9; then A4: a,b '||' f.a,f.b by Th51; a,f.a '||' b,f.b by A1,A3,Th67; hence a,b // f.a,f.b & a,f.a // b,f.b by A2,A4,PASCH:21; end; Lm6: f is_Tr & a<>f.a & LIN a,f.a,b implies a,f.a // b,f.b proof assume that A1: f is_Tr and A2: a<>f.a and A3: LIN a,f.a,b; A4: f is_Dil by A1,Def9; consider p such that A5: not LIN a,f.a,p by A2,DIRAF:43; f<>(id the carrier of OAS) by A2, FUNCT_1:35; then A6: p<>f.p & b<>f.b by A1,Def9; A7: not LIN p,f.p,a proof assume LIN p,f.p,a; then LIN p,f.p,p & LIN p,f.p,a & LIN p,f.p,f.a by A4,Th60,DIRAF:37; hence contradiction by A5,A6,DIRAF:38; end; A8: not LIN p,f.p,b proof assume A9: LIN p,f.p,b; LIN a,f.a,b & LIN a,f.a,f.b & LIN a,f.a,a by A3,A4,Th60,DIRAF:37; then LIN b,f.b,a by A2,DIRAF:38; then A10: LIN b,f.b,f.a & LIN b,f.b,a by A4,Th60; A11: LIN p,f.p,f.b by A4,A9,Th60; LIN p,f.p,p by DIRAF:37; then LIN b,f.b,p by A6,A9,A11,DIRAF:38; hence contradiction by A5,A6,A10,DIRAF:38; end; A12: p,a // f.p,f.a & p,f.p // a,f.a by A1,A7,Lm5; p,b // f.p,f.b & p,f.p // b,f.b by A1,A8,Lm5; hence a,f.a // b,f.b by A6,A12,ANALOAF:def 5; end; Lm7: f is_Tr & Mid a,f.a,b & a<>f.a implies a,b // f.a,f.b proof assume that A1: f is_Tr and A2: Mid a,f.a,b and A3: a<>f.a; A4: LIN a,f.a,b by A2,DIRAF:34; then A5: a,f.a // b,f.b by A1,A3,Lm6; now assume A6: b<>f.a; Mid b,f.a,a by A2,DIRAF:13; then b,f.a // f.a,a by DIRAF:def 3; then b,f.a // b,a by ANALOAF:def 5; then A7: a,b // f.a,b by DIRAF:5; a,f.a // f.a,b by A2,DIRAF:def 3; then f.a,b // b,f.b by A3,A5,ANALOAF:def 5 ; then f.a,b // f.a,f.b by ANALOAF:def 5; hence a,b // f.a,f.b by A6,A7,DIRAF:6; end; hence thesis by A1,A3,A4,Lm6; end; Lm8: f is_Tr & a<>f.a & b<>f.a & Mid a,b,f.a implies a,b // f.a,f.b proof assume A1: f is_Tr & a<>f.a & b<>f.a & Mid a,b,f.a; then A2: f<>(id the carrier of OAS) by FUNCT_1:35; A3: f is_Dil by A1,Def9; A4: LIN a,b,f.a by A1,DIRAF:34; then A5: LIN a,f.a,b by DIRAF:36; A6: a,b // b,f.a by A1,DIRAF:def 3; now assume A7: a<>b; A8: a,b '||' f.a,f.b by A3,Th51; now assume A9: a,b // f.b,f.a; A10: Mid f.a,f.b,b proof a,b // a,f.a & a,f.a // b,f.b by A1,A5,A6,Lm6, ANALOAF:def 5; then a,b // b,f.b by A1,DIRAF:6; then b,f.b // f.b,f.a by A7,A9,ANALOAF:def 5 ; then Mid b,f.b,f.a by DIRAF:def 3; hence thesis by DIRAF:13; end; consider q such that A11: not LIN a,f.a,q by A1,DIRAF:43; consider x such that A12: q,b // b,x & q,a // f.a,x by A6,A7,ANALOAF:def 5; A13: x<>f.a proof assume x=f.a; then Mid q,b,f.a by A12,DIRAF:def 3; then LIN q,b,f.a by DIRAF:34; then LIN f.a,b,q & LIN f.a,b,a & LIN f.a,b,b by A4,DIRAF:36,37; then LIN a,b,q & LIN a,b,f.a & LIN a,b,a by A1,DIRAF:36,38; hence contradiction by A7,A11,DIRAF:38; end; A14: not LIN x,f.a,b proof assume LIN x,f.a,b; then LIN f.a,x,b by DIRAF:36; then f.a,x '||' f.a,b & q,a '||' f.a,x by A12,DIRAF:def 4,def 5; then f.a,b '||' q,a & LIN f.a,b,a by A4,A13,DIRAF:28,36; then f.a,b '||' q,a & f.a,b '||' f.a,a by DIRAF:def 5; then f.a,a '||' q,a by A1,DIRAF:28; then a,f.a '||' a,q by DIRAF:27; hence contradiction by A11,DIRAF:def 5; end; A15: a,q // f.a,f.q & a,f.a // q,f.q & a<>q by A1,A11,Lm5,DIRAF:37; Mid q,b,x by A12,DIRAF:def 3; then A16: Mid x,b,q by DIRAF:13; A17: LIN x,f.a,f.q proof a,q // x,f.a by A12,DIRAF:5; then f.a,f.q // x,f.a by A15,ANALOAF:def 5 ; then f.a,f.q '||' f.a,x by DIRAF:def 4; then LIN f.a,f.q,x by DIRAF:def 5; hence thesis by DIRAF:36; end; f.a,b '||' q,f.q proof LIN f.a,a,b by A4,DIRAF:36; then f.a,a '||' f.a,b by DIRAF:def 5; then a,f.a '||' b,f.a & a,f.a '||' q,f.q by A15,DIRAF:27,def 4; then b,f.a '||' q,f.q by A1,DIRAF:28; hence thesis by DIRAF:27; end; then Mid x,f.a,f.q by A14,A16,A17,PASCH:15; then consider y such that A18: Mid x,y,b & Mid y,f.b,f.q by A10,A14,PASCH:35; A19: LIN x,y,b & LIN y,f.b,f.q by A18,DIRAF:34; A20: LIN b,f.b,a & LIN b,f.b,f.a proof A21: LIN a,f.a,f.b & LIN a,f.a,a by A3,A5,Th60,DIRAF:37; hence LIN b,f.b,a by A1,A5,DIRAF:38; LIN a,f.a,f.a by DIRAF:37; hence LIN b,f.b,f.a by A1,A5,A21,DIRAF:38; end; A22: b<>f.b by A1,A2,Def9; then A23: not LIN b,f.b,q by A11,A20,DIRAF:38; A24: not LIN b,f.b,f.q proof assume LIN b,f.b,f.q; then LIN b,f.b,f.q & b,f.b '||' q,f.q by A1,A3,Th67; then LIN b,f.b,f.q & b,f.b '||' f.q,q by DIRAF:27; hence contradiction by A22,A23,DIRAF:39; end; A25: x<>b by A14,DIRAF:37; A26:LIN x,b,q & LIN x,b,y & LIN x,b,b by A16,A19,DIRAF:34,36,37; then A27: LIN y,b,q by A25,DIRAF:38; A28: f.b<>f.q & b<>q by A24,DIRAF:37; A29: b,q '||' f.b,f.q by A3,Th51; LIN f.b,f.q,y & LIN b,q,y by A19,A25,A26,DIRAF:36,38; then f.b,f.q '||' f.b,y & b,q '||' b,y by DIRAF:def 5; then b,q '||' f.b,y & b,q '||' b,y by A28,A29,DIRAF:28; then f.b,y '||' b,y by A28,DIRAF:28; then y,b '||' y,f.b by DIRAF:27; then LIN y,b,f.b & LIN y,b,b by DIRAF:37,def 5; hence contradiction by A19,A23,A24,A27,DIRAF:38; end; hence thesis by A8,DIRAF:def 4; end; hence thesis by DIRAF:7; end; Lm9: f is_Tr & a<>f.a & LIN a,f.a,b implies a,b // f.a,f.b proof assume A1: f is_Tr & a<>f.a & LIN a,f.a,b; then f<>(id the carrier of OAS) by FUNCT_1:35; then A2: b<>f.b by A1,Def9; A3: f is_Dil by A1,Def9; now assume A4: a<>b; A5: Mid a,f.a,b implies thesis by A1,Lm7; A6: now assume A7: Mid f.a,a,b; LIN a,f.a,f.b & LIN a,f.a,a by A1,A3,Th60,DIRAF:37; then A8: LIN b,f.b,a by A1,DIRAF:38; A9: now assume Mid b,f.b,a; then b,a // f.b,f.a by A1,A2,Lm7; hence thesis by DIRAF:5; end; A10: now assume Mid b,a,f.b; then A11: b,a // f.b,f.a or a=f.b by A1,A2,Lm8; now assume a=f.b; then a=f.b & a,f.a // b,f.b by A1,Lm6; hence thesis by DIRAF:5; end; hence thesis by A11,DIRAF:5; end; now assume Mid f.b,b,a; then Mid a,b,f.b & Mid b,a,f.a by A7,DIRAF:13; then a,b // b,f.b & b,a // a,f.a by DIRAF:def 3; then A12: a,b // a,f.b & a,b // f.a,a by ANALOAF:def 5; then f.a,a // a,f.b by A4,ANALOAF:def 5; then f.a,a // f.a,f.b by ANALOAF:def 5; hence thesis by A12,DIRAF:6; end; hence thesis by A8,A9,A10,DIRAF:35; end; now assume A13: Mid a,b,f.a; b=f.a implies thesis by A1,Lm6; hence thesis by A1,A13,Lm8; end; hence thesis by A1,A5,A6,DIRAF:35; end; hence thesis by DIRAF:7; end; theorem Th73: f is_Tr implies f is_CDil proof assume A1: f is_Tr; A2: f=id the carrier of OAS implies thesis by Th44; now assume A3: for x holds f.x<>x; for a,b holds a,b // f.a,f.b proof let a,b; A4: a<>f.a by A3; not LIN a,f.a,b implies a,b // f.a,f.b by A1,Lm5; hence a,b // f.a,f.b by A1,A4,Lm9; end; hence thesis by Th42; end; hence thesis by A1,A2,Def9; end; theorem Th74: f is_Dil & f.p=p & Mid q,p,f.q & not LIN p,q,x implies Mid x,p,f.x proof assume that A1: f is_Dil and A2: f.p=p and A3: Mid q,p,f.q and A4: not LIN p,q,x; p,x '||' p,f.x by A1,A2,Th51; then A5: LIN p,x,f.x by DIRAF:def 5; q,x '||' f.q,f.x by A1,Th51; then q,x '||' f.x,f.q by DIRAF:27; hence Mid x,p,f.x by A3,A4,A5,PASCH:13; end; theorem Th75: f is_Dil & f.p=p & Mid q,p,f.q & q<>p implies Mid x,p,f.x proof assume that A1: f is_Dil and A2: f.p=p and A3: Mid q,p,f.q and A4: q<>p; now assume A5: LIN p,q,x; consider r such that A6: not LIN p,q,r by A4,DIRAF:43; A7: Mid r,p,f.r by A1,A2,A3,A6,Th74; x=p or not LIN p,r,x proof assume A8: x<>p & LIN p,r,x; then LIN p,x,r & LIN p,x,q & LIN p,x,p by A5,DIRAF:36,37; hence contradiction by A6,A8,DIRAF:38; end; hence thesis by A1,A2,A7,Th74,DIRAF:14; end; hence thesis by A1,A2,A3,Th74; end; theorem Th76: f is_Dil & f.p=p & q<>p & Mid q,p,f.q & not LIN p,x,y implies x,y // f.y,f.x proof assume A1: f is_Dil; then A2: x,y '||' f.x,f.y by Th51; assume f.p=p & q<>p & Mid q,p,f.q; then Mid x,p,f.x & Mid y,p,f.y by A1,Th75; then x,p // p,f.x & y,p // p,f.y by DIRAF:def 3; hence thesis by A2,PASCH:19; end; theorem Th77: f is_Dil & f.p=p & q<>p & Mid q,p,f.q & LIN p,x,y implies x,y // f.y,f.x proof assume that A1: f is_Dil and A2: f.p=p and A3: q<>p and A4: Mid q,p,f.q and A5: LIN p,x,y; A6: Mid x,p,f.x by A1,A2,A3,A4,Th75; A7: Mid y,p,f.y by A1,A2,A3,A4,Th75; A8: now assume A9: x=p; then y,x // x,f.y by A7,DIRAF:def 3; hence thesis by A2,A9,DIRAF:5; end; now assume A10: x<>p & y<>p & x<>y; then consider u such that A11: not LIN p,x,u by DIRAF:43; consider r such that A12: x,y '||' u,r and A13: x,u '||' y,r by DIRAF:31; A14: not LIN x,y,u proof assume LIN x,y,u; then LIN x,y,u & LIN x,y,p & LIN x,y,x by A5,DIRAF:36,37; hence contradiction by A10,A11,DIRAF:38; end; then A15: x,y // u,r by A12,A13,PASCH:21; A16: not LIN p,u,r proof A17: now assume u=r; then u,x '||' u,y by A13,DIRAF:27; then LIN u,x,y by DIRAF:def 5; hence contradiction by A14,DIRAF:36; end; assume LIN p,u,r; then A18: LIN u,r,p by DIRAF:36; LIN x,y,p by A5,DIRAF:36; then x,y '||' x,p by DIRAF:def 5; then x,y '||' p,x by DIRAF:27; then A19: u,r '||' p,x by A10,A12,DIRAF:28; then A20: LIN u,r,x by A17,A18,DIRAF:39; p,x '||' p,y by A5,DIRAF:def 5; then u,r '||' p,y by A10,A19,DIRAF:28; then LIN u,r,y & LIN u,r,u by A17,A18,DIRAF:37,39; hence contradiction by A14,A17,A20,DIRAF:38; end; then A21: u,r // f.r,f.u by A1,A2,A3,A4,Th76; set u'=f.u, r'=f.r, x'=f.x, y'=f.y; x',y' '||' u',r' & x',u' '||' y',r' & not LIN x',y',u' by A1,A12,A13,A14,Th58,Th59; then x',y' // u',r' by PASCH:21; then A22: r',u' // y',x' by DIRAF:5; A23: u<>r by A16,DIRAF:37; then A24: u<>r & u'<>r' by FUNCT_2:85; x,y // r',u' by A15,A21,A23,DIRAF:6; hence thesis by A22,A24,DIRAF:6; end; hence thesis by A2,A6,A8,DIRAF:7,def 3; end; theorem Th78: f is_Dil & f.p=p & q<>p & Mid q,p,f.q implies f is_SDil proof assume that A1: f is_Dil and A2: f.p=p and A3: q<>p and A4: Mid q,p,f.q; x,y // f.y,f.x proof not LIN p,x,y implies x,y // f.y,f.x by A1,A2,A3,A4,Th76; hence x,y // f.y,f.x by A1,A2,A3,A4,Th77; end; hence thesis by Def7; end; theorem Th79: f is_Dil & f.p=p & (for x holds p,x // p,f.x) implies (for y,z holds y,z // f.y,f.z) proof assume that A1: f is_Dil and A2: f.p=p and A3: p,x // p,f.x; A4: not LIN p,y,z implies y,z // f.y,f.z proof assume A5: not LIN p,y,z; p,y // p,f.y & p,z // p,f.z & y,z '||' f.y,f.z by A1,A3,Th51; hence y,z // f.y,f.z by A5,PASCH:20; end; let y,z; LIN p,y,z implies y,z // f.y,f.z proof assume A6: LIN p,y,z; A7: now assume p=z; then z,y // f.z,f.y by A2,A3; hence y,z // f.y,f.z by DIRAF:5; end; now assume A8: p<>y & y<>z & z<>p; then consider q such that A9: not LIN p,y,q by DIRAF:43; consider r such that A10: y,z '||' q,r and A11: y,q '||' z,r by DIRAF:31; A12: not LIN y,z,q proof assume LIN y,z,q; then LIN y,z,q & LIN y,z,p & LIN y,z,y by A6,DIRAF:36,37; hence contradiction by A8,A9,DIRAF:38; end; then A13: y,z // q,r by A10,A11,PASCH:21; A14: q<>r proof assume q=r; then q,y '||' q,z by A11,DIRAF:27; then LIN q,y,z by DIRAF:def 5; hence contradiction by A12,DIRAF:36; end; then A15: f.q<>f.r by FUNCT_2:85; not LIN p,q,r proof assume LIN p,q,r; then A16: LIN q,r,p by DIRAF:36; LIN y,p,z by A6,DIRAF:36; then y,p '||' y,z by DIRAF:def 5; then y,z '||' p,y by DIRAF:27; then q,r '||' p,y by A8,A10,DIRAF:28; then LIN q,r,y & LIN q,r,q by A14,A16,DIRAF:37,39; hence contradiction by A9,A14,A16,DIRAF:38; end; then A17: q,r // f.q,f.r by A4; A18: f.y,f.z '||' f.q,f.r by A1,A10,Th58; A19: f.y,f.q '||' f.z,f.r by A1,A11,Th58; not LIN f.y,f.z,f.q by A1,A12,Th59; then f.y,f.z // f.q,f.r by A18,A19,PASCH:21; then A20: f.q,f.r // f.y,f.z by DIRAF:5; y,z // f.q,f.r by A13,A14,A17,DIRAF:6; hence y,z // f.y,f.z by A15,A20,DIRAF:6; end; hence thesis by A2,A3,A7,DIRAF:7; end; hence thesis by A4; end; theorem f is_Dil implies f is_CDil or f is_SDil proof assume A1: f is_Dil; A2: now assume for x holds f.x<>x; then f is_Tr by A1,Def9; hence f is_CDil by Th73; end; now given p such that A3: f.p=p; A4: now assume for x holds p,x // p,f.x; then for x,y holds x,y // f.x,f.y by A1,A3,Th79; hence f is_CDil by Th42; end; now given q such that A5: not p,q // p,f.q; p,q '||' p,f.q by A1,A3,Th51; then p,q // f.q,p by A5,DIRAF:def 4; then q,p // p,f.q by DIRAF:5; then Mid q,p,f.q & p<>q by A5,DIRAF:def 3; hence f is_SDil by A1,A3,Th78; end; hence thesis by A4; end; hence thesis by A2; end; reserve AFS for AffinSpace; reserve a,b,c,d,d1,d2,p,x,y,z,t for Element of AFS; canceled; theorem Th82: AFS is CongrSpace-like proof thus for x,y,z,t,a,b st x,y // a,b & a,b // z,t & a<>b holds x,y // z,t by AFF_1:14; thus for x,y,z holds x,x // y,z by AFF_1:12; thus for x,y,z,t st x,y // z,t holds z,t // x,y by AFF_1:13; thus for x,y holds x,y // x,y by AFF_1:11; end; theorem Lambda(OAS) is CongrSpace proof Lambda(OAS) is AffinSpace by DIRAF:48; hence thesis by Th82; end; reserve f,g for Permutation of the carrier of AFS; definition let AFS; let f; attr f is dilatation means :Def10: f is_DIL_of AFS; synonym f is_Dil; end; canceled; theorem Th85: f is_Dil iff (for a,b holds a,b // f.a,f.b) proof thus f is_Dil implies (for a,b holds a,b // f.a,f.b) proof assume f is_Dil; then A1: f is_DIL_of AFS by Def10; let a,b; thus a,b // f.a,f.b by A1,Th35; end; assume for a,b holds a,b // f.a,f.b; then f is_DIL_of AFS by Th35; hence thesis by Def10; end; theorem Th86: id the carrier of AFS is_Dil proof now let x,y; (id the carrier of AFS).x = x & (id the carrier of AFS).y = y by FUNCT_1:35; hence x,y // (id the carrier of AFS).x,(id the carrier of AFS).y by AFF_1:11; end; hence thesis by Th85; end; theorem Th87: f is_Dil implies f" is_Dil proof assume A1: f is_Dil; now let x,y; set x'=f".x; set y'=f".y; f.x'=x & f.y'=y by Th4; then x',y' // x,y by A1,Th85; hence x,y // f".x,f".y by AFF_1:13; end; hence thesis by Th85; end; theorem Th88: f is_Dil & g is_Dil implies (f*g) is_Dil proof assume that A1: f is_Dil and A2: g is_Dil; now let x,y; set x'=g.x; set y'=g.y; A3: (f*g).x= f.x' by FUNCT_2:70; A4: (f*g).y=f.y' by FUNCT_2:70; A5: x,y // x',y' & x',y' // f.x',f.y' by A1,A2,Th85; now assume x'=y'; then x=y by FUNCT_2:85; hence x,y // (f*g).x,(f*g).y by AFF_1:12; end; hence x,y // (f*g).x,(f*g).y by A3,A4,A5,AFF_1:14; end; hence thesis by Th85; end; theorem Th89: f is_Dil implies (for a,b,c,d holds a,b // c,d iff f.a,f.b // f.c,f.d) proof assume A1: f is_Dil; let a,b,c,d; A2: a,b // f.a,f.b by A1,Th85; A3: c,d // f.c,f.d by A1,Th85; A4: now assume a,b // c,d; then A5: f.a,f.b // c,d or a=b by A2,AFF_1:14; now assume A6: f.a,f.b // c,d; c = d implies f.a,f.b // f.c,f.d by AFF_1:12; hence f.a,f.b // f.c,f.d by A3,A6,AFF_1:14; end; hence f.a,f.b // f.c,f.d by A5,AFF_1:12; end; now assume A7: f.a,f.b // f.c,f.d; A8: now assume f.a=f.b; then a=b by FUNCT_2:85; hence a,b // c,d by AFF_1:12; end; now assume A9: a,b // f.c,f.d; now assume f.c = f.d; then c = d by FUNCT_2:85; hence a,b // c,d by AFF_1:12; end; hence a,b // c,d by A3,A9,AFF_1:14; end; hence a,b // c,d by A2,A7,A8,AFF_1:14; end; hence thesis by A4; end; theorem f is_Dil implies (for a,b,c holds LIN a,b,c iff LIN f.a,f.b,f.c) proof assume A1: f is_Dil; let a,b,c; a,b // a,c iff f.a,f.b // f.a,f.c by A1,Th89; hence LIN a,b,c iff LIN f.a,f.b,f.c by AFF_1:def 1; end; theorem Th91: f is_Dil & LIN x,f.x,y implies LIN x,f.x,f.y proof assume A1: f is_Dil; assume A2: LIN x,f.x,y; now assume A3: x<>y; x,f.x // x,y & x,y // f.x,f.y by A1,A2,Th85,AFF_1:def 1; then x,f.x // f.x,f.y by A3,AFF_1:14; then f.x,x // f.x,f.y by AFF_1:13; then LIN f.x,x,f.y by AFF_1:def 1; hence LIN x,f.x,f.y by AFF_1:15; end; hence thesis by AFF_1:16; end; theorem Th92: a,b // c,d implies (a,c // b,d or (ex x st LIN a,c,x & LIN b,d,x)) proof assume A1: a,b // c,d; assume A2: not a,c // b,d; A3: now assume a=b; then LIN a,c,a & LIN b,d,a by AFF_1:16; hence thesis; end; now assume A4: a<>b; consider z such that A5: a,b // c,z & a,c // b,z by DIRAF:47; A6: now assume b=z; then b,a // b,c by A5,AFF_1:13; then LIN b,a,c by AFF_1:def 1; then LIN a,c,b & LIN b,d,b by AFF_1:15,16; hence thesis; end; now assume A7: b<>z; c,d // c,z by A1,A4,A5,AFF_1:14; then LIN c,d,z by AFF_1:def 1; then LIN d,c,z by AFF_1:15; then d,c // d,z by AFF_1:def 1; then z,d // d,c by AFF_1:13; then consider t such that A8: b,d // d,t & b,z // c,t by A2,A5,DIRAF:47; a,c // c,t by A5,A7,A8,AFF_1:14; then c,a // c,t & d,b // d,t by A8,AFF_1:13; then LIN c,a,t & LIN d,b,t by AFF_1:def 1; then LIN a,c,t & LIN b,d,t by AFF_1:15; hence thesis; end; hence thesis by A6; end; hence thesis by A3; end; theorem Th93: f is_Dil implies ((f=id the carrier of AFS or for x holds f.x<>x) iff (for x,y holds x,f.x // y,f.y)) proof assume A1: f is_Dil; A2: now assume A3: f=id the carrier of AFS or for z holds f.z<>z; let x,y; A4: x,y // f.x,f.y by A1,Th85; A5: now assume f=(id the carrier of AFS); then f.y=y by FUNCT_1:35; hence x,f.x // y,f.y by AFF_1:12; end; now assume A6: for z holds f.z<>z; assume A7: not x,f.x // y,f.y; then consider z such that A8: LIN x,f.x,z & LIN y,f.y,z by A4,Th92; set t=f.z; LIN x,f.x,t by A1,A8,Th91; then A9: x,f.x // z,t by A8,AFF_1:19; LIN y,f.y,z & LIN y,f.y,t & y<>f.y by A1,A6,A8,Th91; then y,f.y // z,t by AFF_1:19; then z<>t & z,t // y,f.y by A6,AFF_1:13; hence contradiction by A7,A9,AFF_1:14; end; hence x,f.x // y,f.y by A3,A5; end; now assume A10: for x,y holds x,f.x // y,f.y; assume A11: f<>(id the carrier of AFS); given x such that A12: f.x=x; consider y such that A13: f.y<>(id the carrier of AFS).y by A11,FUNCT_2:113; A14:f.y<>y by A13,FUNCT_1:35; x,y // f.x,f.y by A1,Th85; then A15: LIN x,y,f.y by A12,AFF_1:def 1; then A16: LIN y,f.y,x by AFF_1:15; LIN y,x,f.y by A15,AFF_1:15; then A17: y,x // y,f.y by AFF_1:def 1; x<>y by A12,A13,FUNCT_1:35; then consider z such that A18: not LIN x,y,z by AFF_1:22; x,z // f.x,f.z by A1,Th85; then LIN x,z,f.z by A12,AFF_1:def 1; then A19: LIN z,f.z,x by AFF_1:15; A20: now assume z=f.z; then z,y //z,f.y by A1,Th85; then LIN z,y,f.y by AFF_1:def 1; then LIN y,f.y,y & LIN y,f.y,z by AFF_1:15,16; hence contradiction by A14,A16,A18,AFF_1:17; end; LIN z,f.z,z by AFF_1:16; then A21: z,f.z // x,z by A19,AFF_1:19; y,f.y // z,f.z by A10; then y,f.y // x,z by A20,A21,AFF_1:14; then y,x // x,z by A14,A17,AFF_1:14; then x,y // x,z by AFF_1:13; hence contradiction by A18,AFF_1:def 1; end; hence thesis by A2; end; theorem Th94: f is_Dil & f.a=a & f.b=b & not LIN a,b,x implies f.x=x proof assume that A1: f is_Dil and A2: f.a=a & f.b=b and A3: not LIN a,b,x; assume A4: f.x<>x; a,x // a,f.x by A1,A2,Th85; then LIN a,x,f.x by AFF_1:def 1; then A5: LIN x,f.x,a by AFF_1:15; b,x // b,f.x by A1,A2,Th85; then LIN b,x,f.x by AFF_1:def 1; then LIN x,f.x,x & LIN x,f.x,b by AFF_1:15,16; hence contradiction by A3,A4,A5,AFF_1:17; end; theorem Th95: f is_Dil & f.a=a & f.b=b & a<>b implies f=id the carrier of AFS proof assume that A1: f is_Dil and A2: f.a=a & f.b=b & a<>b; now let x; A3: not LIN a,b,x implies f.x=x by A1,A2,Th94; now assume A4: LIN a,b,x; now assume A5: x<>a; consider z such that A6: not LIN a,b,z by A2,AFF_1:22; A7: f.z=z by A1,A2,A6,Th94; not LIN a,z,x proof assume LIN a,z,x; then LIN a,x,a & LIN a,x,z & LIN a,x,b by A4,AFF_1:15,16; hence contradiction by A5,A6,AFF_1:17; end; hence f.x=x by A1,A2,A7,Th94; end; hence f.x=x by A2; end; hence f.x=(id the carrier of AFS).x by A3,FUNCT_1:35; end; hence thesis by FUNCT_2:113; end; theorem f is_Dil & g is_Dil & f.a=g.a & f.b=g.b implies a=b or f=g proof assume that A1: f is_Dil & g is_Dil and A2: f.a=g.a & f.b=g.b; assume A3: a<>b; A4: (g"*f).a=g".(g.a) by A2,FUNCT_2:70 .=a by Th4; A5: (g"*f).b=g".(g.b) by A2,FUNCT_2:70 .=b by Th4; g" is_Dil by A1,Th87; then g"*f is_Dil by A1,Th88; then A6: g"*f=(id the carrier of AFS) by A3,A4,A5,Th95; now let x; g".(f.x)=(g"*f).x by FUNCT_2:70; then g".(f.x)=x by A6,FUNCT_1:35; hence g.x=f.x by Th4; end; hence thesis by FUNCT_2:113; end; theorem Th97: not LIN a,b,c & a,b // c,d1 & a,b // c,d2 & a,c // b,d1 & a,c // b,d2 implies d1=d2 proof assume that A1: not LIN a,b,c and A2: a,b // c,d1 and A3: a,b // c,d2 and A4: a,c // b,d1 and A5: a,c // b,d2; assume A6: d1<>d2; A7: a<>b & a<>c by A1,AFF_1:16; then A8: c,d1 // c,d2 by A2,A3,AFF_1:14; b,d1 // b,d2 by A4,A5,A7,AFF_1:14; then A9: LIN c,d1,d2 & LIN b,d1,d2 by A8,AFF_1:def 1; then A10: LIN d1,d2,c & LIN d1,d2,b by AFF_1:15; LIN d1,d2,c & LIN d1,d2,d1 by A9,AFF_1:15,16; then d1,d2 // c,d1 by AFF_1:19; then A11: d1,d2 // a,b or c = d1 by A2,AFF_1:14; now assume c = d1; then c,a // c,b by A4,AFF_1:13; then LIN c,a,b by AFF_1:def 1; hence contradiction by A1,AFF_1:15; end; then d1,d2 // b,a by A11,AFF_1:13; then LIN d1,d2,a by A6,A10,AFF_1:18; hence contradiction by A1,A6,A10,AFF_1:17; end; definition let AFS; let f; attr f is translation means :Def11: f is_Dil & (f = id the carrier of AFS or (for a holds a<>f.a)); synonym f is_Tr; end; canceled; theorem id the carrier of AFS is_Tr proof id the carrier of AFS is_Dil by Th86; hence thesis by Def11; end; theorem Th100: f is_Dil implies (f is_Tr iff (for x,y holds x,f.x // y,f.y)) proof assume A1: f is_Dil; then (f=(id the carrier of AFS) or for x holds f.x<>x) iff (for x,y holds x,f.x // y,f.y) by Th93; hence thesis by A1,Def11; end; canceled; theorem Th102: f is_Tr & g is_Tr & f.a=g.a & not LIN a,f.a,x implies f.x=g.x proof assume that A1: f is_Tr & g is_Tr and A2: f.a=g.a and A3: not LIN a,f.a,x; A4: f is_Dil & g is_Dil by A1,Def11; set b=f.a, y=f.x, z=g.x; A5: a,x // b,y & a,b // x,y by A1,A4,Th85,Th100; a,x // b,z & a,b // x,z by A1,A2,A4,Th85,Th100; hence f.x=g.x by A3,A5,Th97; end; theorem Th103: f is_Tr & g is_Tr & f.a=g.a implies f=g proof assume that A1: f is_Tr and A2: g is_Tr and A3: f.a=g.a; A4: f is_Dil by A1,Def11; set b=f.a; A5: now assume b=a; then f=id the carrier of AFS & g=id the carrier of AFS by A1,A2,A3,Def11; hence thesis; end; now assume A6: a<>b; for x holds f.x=g.x proof let x; now assume A7: LIN a,b,x; now assume x<>a; consider p such that A8: not LIN a,b,p by A6,AFF_1:22; A9: f.p=g.p by A1,A2,A3,A8,Th102; f<>(id the carrier of AFS) by A6,FUNCT_1:35; then A10: f.p<>p & f.x<>x by A1,Def11; not LIN p,f.p,x proof assume LIN p,f.p,x; then LIN p,f.p,x & LIN p,f.p,f.x & LIN p,f.p,p by A4,Th91,AFF_1:16; then A11: LIN x,f.x,p by A10,AFF_1:17; A12: LIN a,b,f.x by A4,A7,Th91; LIN a,b,a by AFF_1:16; then A13: LIN x,f.x,a by A6,A7,A12,AFF_1:17; LIN a,b,b by AFF_1:16; then LIN x,f.x,b by A6,A7,A12,AFF_1:17; hence contradiction by A8,A10,A11,A13,AFF_1:17; end; hence f.x=g.x by A1,A2,A9,Th102; end; hence f.x=g.x by A3; end; hence f.x=g.x by A1,A2,A3,Th102; end; hence thesis by FUNCT_2:113; end; hence thesis by A5; end; theorem Th104: f is_Tr implies f" is_Tr proof assume A1: f is_Tr; then f is_Dil by Def11; then A2: f" is_Dil by Th87; A3: f=(id the carrier of AFS) implies f"=(id the carrier of AFS) by FUNCT_1:67 ; now assume A4: for x holds f.x<>x; given y such that A5: f".y=y; f.y=y by A5,Th4; hence contradiction by A4; end; hence thesis by A1,A2,A3,Def11; end; theorem f is_Tr & g is_Tr implies (f*g) is_Tr proof assume that A1: f is_Tr and A2: g is_Tr; A3: f is_Dil by A1,Def11; g is_Dil by A2,Def11; then A4: (f*g) is_Dil by A3,Th88; now assume A5: (f*g)<>(id the carrier of AFS); for x holds (f*g).x<>x proof given x such that A6: (f*g).x=x; f.(g.x)=x by A6,FUNCT_2:70; then g.x=f".x & f" is_Tr by A1,Th4,Th104; then (f*g) = f*f" by A2,Th103; hence contradiction by A5,FUNCT_2:88; end; hence thesis by A4,Def11; end; hence thesis by A4,Def11; end; definition let AFS; let f; attr f is collineation means f is_automorphism_of the CONGR of AFS; synonym f is_Col; end; canceled; theorem Th107: f is_Col iff (for x,y,z,t holds (x,y // z,t iff f.x,f.y // f.z,f.t)) proof thus f is_Col implies (for x,y,z,t holds x,y // z,t iff f.x,f.y // f.z,f.t) proof assume A1: f is_automorphism_of the CONGR of AFS; let x,y,z,t; thus x,y // z,t implies f.x,f.y // f.z,f.t proof assume x,y // z,t; then [[x,y],[z,t]] in the CONGR of AFS by ANALOAF:def 2; then [[f.x,f.y],[f.z,f.t]] in the CONGR of AFS by A1,Def3; hence thesis by ANALOAF:def 2; end; assume f.x,f.y // f.z,f.t; then [[f.x,f.y],[f.z,f.t]] in the CONGR of AFS by ANALOAF:def 2; then [[x,y],[z,t]] in the CONGR of AFS by A1,Def3; hence thesis by ANALOAF:def 2; end; assume A2: for x,y,z,t holds (x,y // z,t iff f.x,f.y // f.z,f.t); let x,y,z,t; x,y // z,t iff f.x,f.y // f.z,f.t by A2; hence thesis by ANALOAF:def 2; end; theorem Th108: f is_Col implies (LIN x,y,z iff LIN f.x,f.y,f.z) proof assume f is_Col; then x,y // x,z iff f.x,f.y // f.x,f.z by Th107; hence thesis by AFF_1:def 1; end; theorem f is_Col & g is_Col implies f" is_Col & f*g is_Col & id the carrier of AFS is_Col proof assume f is_automorphism_of the CONGR of AFS & g is_automorphism_of the CONGR of AFS; hence f" is_automorphism_of the CONGR of AFS & f*g is_automorphism_of the CONGR of AFS by Th29,Th30; thus id the carrier of AFS is_automorphism_of the CONGR of AFS by Th28; end; reserve A,C,K for Subset of AFS; theorem Th110: a in A implies f.a in f.:A proof assume A1: a in A; dom f = the carrier of AFS by FUNCT_2:67;hence thesis by A1,FUNCT_1:def 12 ; end; theorem Th111: x in f.:A iff ex y st y in A & f.y=x proof thus x in f.:A implies ex y st y in A & f.y=x proof assume x in f.:A; then consider y being set such that A1: y in dom f & y in A & x=f.y by FUNCT_1:def 12; thus thesis by A1; end; given y such that A2: y in A & f.y=x; dom f = the carrier of AFS by FUNCT_2:67; hence thesis by A2,FUNCT_1:def 12; end; theorem Th112: f.:A=f.:C implies A=C proof assume A1: f.:A=f.:C; A2: A c= C proof now let a be set; assume A3: a in A; then reconsider a'=a as Element of AFS; set x=f.a'; x in f.:A by A3,Th110; then ex b st b in C & f.b=x by A1,Th111; hence a in C by FUNCT_2:85; end; hence thesis by TARSKI:def 3; end; C c= A proof now let b be set; assume A4: b in C; then reconsider b'=b as Element of AFS; set y=f.b'; y in f.:C by A4,Th110; then ex a st a in A & f.a=y by A1,Th111; hence b in A by FUNCT_2:85; end; hence thesis by TARSKI:def 3; end; hence thesis by A2,XBOOLE_0:def 10; end; theorem Th113: f is_Col implies f.:(Line(a,b))=Line(f.a,f.b) proof assume A1: f is_Col; A2: f.:(Line(a,b)) c= Line(f.a,f.b) proof now let x be set; assume A3: x in f.:(Line(a,b)); then reconsider x'=x as Element of AFS; consider y such that A4: y in Line(a,b) & f.y=x' by A3,Th111; LIN a,b,y by A4,AFF_1:def 2; then LIN f.a,f.b,x' by A1,A4,Th108; hence x in Line(f.a,f.b) by AFF_1:def 2; end; hence thesis by TARSKI:def 3; end; Line(f.a,f.b) c= f.:(Line(a,b)) proof now let x be set; assume A5: x in Line(f.a,f.b); then reconsider x'=x as Element of AFS; consider y such that A6: f.y=x' by Th2; LIN f.a,f.b,f.y by A5,A6,AFF_1:def 2; then LIN a,b,y by A1,Th108; then y in Line(a,b) by AFF_1:def 2; hence x in f.:(Line(a,b)) by A6,Th111; end; hence thesis by TARSKI:def 3; end; hence thesis by A2,XBOOLE_0:def 10; end; theorem f is_Col & K is_line implies f.:K is_line proof assume that A1: f is_Col and A2: K is_line; consider a,b such that A3: a<>b & K=Line(a,b) by A2,AFF_1:def 3; set p=f.a; set q=f.b; A4: f.:K=Line(p,q) by A1,A3,Th113; p<>q by A3,FUNCT_2:85; hence thesis by A4,AFF_1:def 3; end; theorem Th115: f is_Col & A // C implies f.:A // f.:C proof assume that A1: f is_Col and A2: A // C; consider a,b,c,d such that A3: a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d) by A2,AFF_1:51; A4: f.:A=Line(f.a,f.b) & f.:C=Line(f.c,f.d) by A1,A3,Th113; A5: f.a<>f.b & f.c <>f.d by A3,FUNCT_2:85; f.a,f.b // f.c,f.d by A1,A3,Th107; hence thesis by A4,A5,AFF_1:51; end; reserve AFP for AffinPlane, A,C,D,K for Subset of AFP, a,b,c,d,p,x,y for Element of AFP, f for Permutation of the carrier of AFP; theorem (for A st A is_line holds f.:A is_line) implies f is_Col proof assume A1: for A st A is_line holds f.:A is_line; A2: a<>b implies f.:(Line(a,b))=Line(f.a,f.b) proof assume A3: a<>b; set A=Line(a,b); set x=f.a; set y=f.b; A4: x<>y by A3,FUNCT_2:85; set K=Line(x,y); set M=f.:A; A5: A is_line & K is_line by A4,AFF_1:def 3; then A6: M is_line by A1; a in A & b in A by AFF_1:26; then x in K & y in K & x in M & y in M by Th110,AFF_1:26; hence thesis by A4,A5,A6,AFF_1:30; end; A7: A // C implies f.:A // f.:C proof assume A8: A // C; then A is_line & C is_line by AFF_1:50; then A9: f.:A is_line & f.:C is_line by A1; A<>C implies thesis proof assume A10: A<>C; assume not f.:A // f.:C; then consider x such that A11: x in f.:A & x in f.:C by A9,AFF_1:72; consider a such that A12: a in A & x=f.a by A11,Th111; consider b such that A13: b in C & x=f.b by A11,Th111; a=b by A12,A13,FUNCT_2:85 ;hence contradiction by A8,A10,A12,A13,AFF_1:59; end; hence thesis by A9,AFF_1:55; end; A14: f.:A is_line implies A is_line proof assume A15: f.:A is_line; set K=f.:A; consider x,y such that A16: x<>y & K=Line(x,y) by A15,AFF_1:def 3; A17: x in K & y in K by A16,AFF_1:26; then consider a such that A18: a in A & f.a=x by Th111; consider b such that A19: b in A & f.b=y by A17,Th111; set C=Line(a,b); A20: C is_line by A16,A18,A19,AFF_1:def 3; f.:C=K by A2,A16,A18,A19; hence thesis by A20,Th112; end; A21: f.:A // f.:C implies A // C proof assume A22: f.:A // f.:C; set K=f.:A; set M=f.:C; K is_line & M is_line by A22,AFF_1:50; then A23: A is_line & C is_line by A14; now assume A<>C; then A24: K<>M by Th112; assume not A // C; then consider p such that A25: p in A & p in C by A23,AFF_1:72; set x=f.p; x in K & x in M by A25,Th110; hence contradiction by A22,A24,AFF_1:59; end; hence thesis by A23,AFF_1:55; end; A26: a,b // c,d implies f.a,f.b // f.c,f.d proof assume A27: a,b // c,d; now assume A28: a<>b & c <>d; set A=Line(a,b); set C=Line(c,d); set K=f.:A; set M=f.:C; A29: A // C by A27,A28,AFF_1:51; a in A & b in A & c in C & d in C by AFF_1:26; then A30: f.a in K & f.b in K & f.c in M & f.d in M by Th110; K // M by A7,A29; hence thesis by A30,AFF_1:53; end; hence thesis by AFF_1:12; end; f.a,f.b // f.c,f.d implies a,b // c,d proof assume A31: f.a,f.b // f.c,f.d; set x=f.a; set y=f.b; set z=f.c; set t=f.d; now assume A32: a<>b & c <>d; set A=Line(a,b); set C=Line(c,d); set K=f.:A; set M=f.:C; A33: a in A & b in A & c in C & d in C by AFF_1:26; A34: x<>y & z<>t by A32,FUNCT_2:85; K=Line(x,y) & M=Line(z,t) by A2,A32; then K // M by A31,A34,AFF_1:51; then A // C by A21; hence thesis by A33,AFF_1:53; end; hence thesis by AFF_1:12; end; hence thesis by A26,Th107; end; theorem f is_Col & K is_line & (for x st x in K holds f.x=x) & not p in K & f.p=p implies f=id the carrier of AFP proof assume that A1: f is_Col and A2: K is_line and A3: for x st x in K holds f.x=x and A4: not p in K & f.p=p; A5: for x holds f.x=x proof let x; now assume not x in K; consider a,b such that A6: a in K & b in K & a<>b by A2,AFF_1:31; set A=Line(p,a); set M=Line(p,b); A7: A is_line & M is_line by A4,A6,AFF_1:def 3; then consider C such that A8: x in C & A // C by AFF_1:63; consider D such that A9: x in D & M // D by A7,AFF_1:63; A10: C is_line & D is_line & A is_line by A8,A9,AFF_1:50; A11: p in A & p in M by AFF_1:26; A12: a in A & b in M by AFF_1:26; A13: not C // K proof assume C // K; then A // K by A8,AFF_1:58; hence contradiction by A4,A6,A11,A12,AFF_1:59; end; A14: not D // K proof assume D // K; then M // K by A9,AFF_1:58; hence contradiction by A4,A6,A11,A12,AFF_1:59; end; consider c such that A15: c in C & c in K by A2,A10,A13,AFF_1:72; consider d such that A16: d in D & d in K by A2,A10,A14,AFF_1:72; A17: f.:A=A proof f.:A=Line(f.p,f.a) by A1,Th113; hence thesis by A3,A4,A6; end; A18: f.:M=M proof f.:M=Line(f.p,f.b) by A1,Th113; hence thesis by A3,A4,A6; end; A19: f.:C=C proof f.:A // f.:C by A1,A8,Th115; then A20: f.:C // C by A8,A17,AFF_1:58; f.c = c by A3,A15; then c in f.:C by A15,Th110; hence thesis by A15,A20,AFF_1:59; end; A21: f.:D=D proof f.:M // f.:D by A1,A9,Th115; then A22: f.:D // D by A9,A18,AFF_1:58; f.d=d by A3,A16; then d in f.:D by A16,Th110; hence thesis by A16,A22,AFF_1:59; end; x=f.x proof assume A23: x<>f.x; f.x in C & f.x in D by A8,A9,A19,A21,Th110; then C=D by A8,A9,A10,A23,AFF_1:30; then A // M by A8,A9,AFF_1:58 ; then A=M by A11,AFF_1:59; hence contradiction by A2,A4,A6,A10,A11,A12,AFF_1:30; end; hence thesis; end; hence thesis by A3; end; for x holds f.x=(id the carrier of AFP).x proof let x; f.x=x by A5; hence thesis by FUNCT_1:35; end; hence thesis by FUNCT_2:113; end;