Copyright (c) 1990 Association of Mizar Users
environ vocabulary DIRAF, FUNCT_2, AFF_2, ANALOAF, INCSP_1, AFF_1, TRANSGEO, FUNCT_1, RELAT_1, HOMOTHET; notation TARSKI, PARTFUN1, FUNCT_2, STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2, TRANSGEO; constructors AFF_1, AFF_2, TRANSGEO, PARTFUN1, XBOOLE_0; clusters STRUCT_0, ZFMISC_1, PARTFUN1, FUNCT_2, FUNCT_1, XBOOLE_0; requirements SUBSET, BOOLE; theorems TRANSGEO, AFF_1, AFF_2, TRANSLAC, SUBSET_1, DIRAF, FUNCT_1, XBOOLE_0; schemes TRANSGEO; begin reserve AFP for AffinPlane; reserve a,a',b,b',c,c',d,d',o,p,p',q,q',r,s,t,x,y,z for Element of AFP; reserve A,A',C,D,P,B',M,N,K for Subset of AFP; reserve f for Permutation of the carrier of AFP; Lm1: AFP satisfies_DES iff (for o,a,a',p,p',q,q' st LIN o,a,a' & LIN o,p,p' & LIN o,q,q' & not LIN o,a,p & not LIN o,a,q & a,p // a',p' & a,q // a',q' holds p,q // p',q') proof thus AFP satisfies_DES implies (for o,a,a',p,p',q,q' st LIN o,a,a' & LIN o,p,p' & LIN o,q,q' & not LIN o,a,p & not LIN o,a,q & a,p // a',p' & a,q // a',q' holds p,q // p',q') proof assume A1: AFP satisfies_DES; let o,a,a',p,p',q,q'; assume A2: LIN o,a,a' & LIN o,p,p' & LIN o,q,q' & not LIN o,a,p & not LIN o,a,q & a,p // a',p' & a,q // a',q'; then A3: o<>a & o<>p & a<>p & o<>q & a<>q by AFF_1:16; set A=Line(o,a), P=Line(o,p), C=Line(o,q); A4: A is_line & P is_line & C is_line by A3,AFF_1:def 3; A5: o in A & a in A & o in P & p in P & o in C & q in C by AFF_1:26; then A6: a' in A & p' in P & q' in C by A2,A3,A4,AFF_1:39; A7: A<>P by A2,A4,A5,AFF_1:33; A<>C by A2,A4,A5,AFF_1:33; hence p,q // p',q' by A1,A2,A3,A4,A5,A6,A7,AFF_2:def 4; end; assume A8: for o,a,a',p,p',q,q' st LIN o,a,a' & LIN o,p,p' & LIN o,q,q' & not LIN o,a,p & not LIN o,a,q & a,p // a',p' & a,q // a',q' holds p,q // p',q'; now let A,P,C,o,a,b,c,a',b',c'; assume A9: o in A & o in P & o in C & o<>a & o<>b & o<>c & a in A & a' in A & b in P & b' in P & c in C & c' in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c'; then A10: LIN o,a,a' & LIN o,b,b' & LIN o,c,c' by AFF_1:33; A11: not LIN o,a,b proof assume LIN o,a,b; then b in A by A9,AFF_1:39; hence contradiction by A9,AFF_1:30; end; not LIN o,a,c proof assume LIN o,a,c; then c in A by A9,AFF_1:39; hence contradiction by A9,AFF_1:30; end; hence b,c // b',c' by A8,A9,A10,A11; end; hence thesis by AFF_2:def 4; end; Lm2: AFP satisfies_TDES iff (for o,K,c,c',a,b,a',b' st o in K & c in K & c' in K & K is_line & LIN o,a,a' & LIN o,b,b' & not a in K & a,b // K & a',b' // K & a,c // a',c' holds b,c // b',c') proof thus AFP satisfies_TDES implies (for o,K,c,c',a,b,a',b' st o in K & c in K & c' in K & K is_line & LIN o,a,a' & LIN o,b,b' & not a in K & a,b // K & a',b' // K & a,c // a',c' holds b,c // b',c') proof assume A1: AFP satisfies_TDES; let o,K,c,c',a,b,a',b'; assume A2: o in K & c in K & c' in K & K is_line & LIN o,a,a' & LIN o,b,b' & not a in K & a,b // K & a',b' // K & a,c // a',c'; then A3: a,b // a',b' by AFF_1:45; A4: now assume A5: o=c; then LIN a,c,a' by A2,AFF_1:15; then LIN a,c,c' by A2,AFF_1:18; then A6: LIN c,c',a by AFF_1:15; then A7: c = c' by A2,AFF_1:39; LIN c,b,b' & LIN c',b,b' by A2,A5,A6,AFF_1 :39; then LIN b,b',c & LIN b',b,c' by AFF_1:15; then b,b' // b,c & b',b // b',c' by AFF_1:def 1; then A8: b,b' // b,c & b,b' // b',c' by AFF_1:13; b=b' implies thesis by A7,AFF_1:11; hence thesis by A8,AFF_1:14; end; now assume A9: o<>c; now assume A10: a=b; then LIN o,a,a' & LIN o,a,b' & LIN o,a,o by A2,AFF_1:16; then LIN a',b',o by A2,AFF_1:17; then A11: a',b' // a',o by AFF_1:def 1; now assume A12: a',o // K & a'<>b'; o,a // o,a' by A2,AFF_1:def 1; then a',o // o,a by AFF_1:13; then A13: o,a // K or a'=o by A12,AFF_1:46; A14: now assume o,a // K; then a,o // K by AFF_1:48; hence contradiction by A2,AFF_1:49; end; A15: b' in K by A2,A13,AFF_1:37; LIN o,b',b by A2,AFF_1:15;hence contradiction by A2,A10,A12,A13,A14, A15,AFF_1:39; end; hence thesis by A2,A10,A11,AFF_1:46; end; hence thesis by A1,A2,A3,A9,AFF_2:def 7; end; hence thesis by A4; end; assume A16: for o,K,c,c',a,b,a',b' st o in K & c in K & c' in K & K is_line & LIN o,a,a' & LIN o,b,b' & not a in K & a,b // K & a',b' // K & a,c // a',c' holds b,c // b',c'; now let K,o,a,b,c,a',b',c'; assume A17: K is_line & o in K & c in K & c' in K & not a in K & o<>c & a<>b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a,c // a',c' & a,b // K; then a',b' // K by AFF_1:46; hence b,c // b',c' by A16,A17; end; hence thesis by AFF_2:def 7; end; Lm3: AFP satisfies_TDES implies (for K,o,a,b,c,a',b',c' st K is_line & o in K & c in K & c' in K & not a in K & a<>b & LIN o,a,a' & a,b // a',b' & b,c // b',c' & a,c // a',c' & a,b // K holds LIN o,b,b') proof assume A1: AFP satisfies_TDES; thus for K,o,a,b,c,a',b',c' st K is_line & o in K & c in K & c' in K & not a in K & a<>b & LIN o,a,a' & a,b // a',b' & b,c // b',c' & a,c // a',c' & a,b // K holds LIN o,b,b' proof let K,o,a,b,c,a',b',c'; assume that A2: K is_line and A3: o in K & c in K & c' in K and A4: not a in K and A5: a<>b & LIN o,a,a' & a,b // a',b' & b,c // b',c' & a,c // a',c' & a,b // K; assume A6: not LIN o,b,b'; A7: not b in K by A4,A5,AFF_1:49; A8: b<>c by A3,A4,A5,AFF_1:49; A9: o<>b & o<>a by A3,A4,A6,AFF_1:16; set A=Line(o,b), C=Line(o,a); A10: A is_line & C is_line & o in A & b in A & o in C & a in C by A9,AFF_1:26,def 3; then A11: a' in C by A3,A4,A5,AFF_1:39; consider P such that A12: a' in P & K // P by A2,AFF_1:63; A13: P is_line & P // K by A12,AFF_1:50; not A // P proof assume A // P; then A // K by A12,AFF_1:58; hence contradiction by A3,A7,A10,AFF_1:59; end; then consider x such that A14: x in A & x in P by A10,A13,AFF_1:72; A15: LIN o,b,x by A10,A14,AFF_1:33; a',x // K by A12,A13,A14,AFF_1:54; then b,c // x,c' by A1,A2,A3,A4,A5,A15,Lm2; then b',c' // x,c' by A5,A8,AFF_1:14; then c',b' // c',x by AFF_1:13; then LIN c',b',x by AFF_1:def 1; then A16: LIN b',x,c' by AFF_1:15; a,b // P by A5,A12,AFF_1:57; then a',b' // P by A5,AFF_1:46; then A17: b' in P by A12,A13,AFF_1:37; then LIN b',x,a' & LIN b',x,b' by A12,A13,A14,AFF_1:33; then LIN b',c',a' by A6,A15,A16,AFF_1:17; then b',c' // b',a' by AFF_1: def 1; then A18: b',c' // a',b' by AFF_1:13; A19: b'<>c' proof assume A20: b'=c'; then P=K by A3,A12,A17,AFF_1:59; then A21: a'=o by A2,A3,A4,A10,A11,A12,AFF_1:30; a',c' // c,a by A5,AFF_1:13; then b'=o by A2,A3,A4,A20,A21,AFF_1:62 ; hence contradiction by A6,AFF_1:16; end; A22: a'<>b' proof assume A23: a'=b'; then A24: a,c // b,c or a'=c' by A5,AFF_1:14; now assume a'=c'; then b'=o by A2,A3,A4,A10,A11,A23,AFF_1:30 ; hence contradiction by A6,AFF_1:16; end; then c,a // c,b by A24,AFF_1:13; then LIN c,a,b by AFF_1:def 1; then LIN a,c,b by AFF_1:15; then a,c // a,b by AFF_1:def 1; then a,b // a,c by AFF_1:13; then a,c // K by A5,AFF_1:46; then c,a // K by AFF_1:48; hence contradiction by A2,A3,A4,AFF_1:37; end; b,c // a',b' by A5,A18,A19,AFF_1:14; then a,b // b,c by A5,A22,AFF_1:14; then b,c // K by A5,AFF_1:46; then c,b // K by AFF_1:48; hence contradiction by A2,A3,A7,AFF_1:37; end; end; Lm4: AFP satisfies_TDES implies (for K,A,C,p,q,a,a',b,b' st K // A & K // C & K<>A & K<>C & p in K & q in K & a in A & a' in A & b in C & b' in C & p,a // q,a' & p,b // q,b' holds a,b // a',b') proof assume A1: AFP satisfies_TDES; let K,A,C,p,q,a,a',b,b'; assume A2: K // A & K // C & K<>A & K<>C & p in K & q in K & a in A & a' in A & b in C & b' in C & p,a // q,a' & p,b // q,b'; A3: AFP satisfies_des by A1,AFF_2:28; K is_line & A is_line & C is_line by A2,AFF_1:50; hence thesis by A2,A3,AFF_2:def 11; end; theorem Th1: not LIN o,a,p & LIN o,a,b & LIN o,a,x & LIN o,a,y & LIN o,p,p' & LIN o,p,q & LIN o,p,q' & p<>q & a<>x & o<>q & o<>x & a,p // b,p' & a,q // b,q' & x,p // y,p' & AFP satisfies_DES implies x,q // y,q' proof assume that A1: not LIN o,a,p & LIN o,a,b & LIN o,a,x & LIN o,a,y & LIN o,p,p' & LIN o,p,q & LIN o,p,q' and A2: p<>q & a<>x & o<>q & o<>x and A3: a,p // b,p' & a,q // b,q' & x,p // y,p' and A4: AFP satisfies_DES; A5: o<>a & o<>p by A1,AFF_1:16; then consider d such that A6: LIN x,p,d & d<>x & d<>p by A1,A2,TRANSLAC:2; set K=Line(x,p); set A=Line(o,a); set B'=Line(o,p); A7: K is_line & x in K & p in K & d in K by A1,A6,AFF_1:26,def 2,def 3; A8: A is_line & o in A & a in A & x in A by A1,A5,AFF_1:26,def 2,def 3; A9: B' is_line & o in B' & p in B' & q in B' by A1,A5,AFF_1:26,def 2,def 3; consider M such that A10: y in M & K // M by A7,AFF_1:63; A11: M is_line by A10,AFF_1:50; not o,d // M proof assume o,d // M; then o,d // K by A10,AFF_1:57; then d,o // K by AFF_1:48; then o in K by A7,AFF_1:37; then A=K by A2,A7,A8,AFF_1:30; hence contradiction by A1,A7,AFF_1:def 2; end; then consider d' such that A12: d' in M & LIN o,d,d' by A11,AFF_1:73; A13: d,x // d',y by A7,A10,A12,AFF_1:53; A14: not LIN o,a,q proof assume LIN o,a,q; then q in A by AFF_1:def 2; then A=B' by A2,A8,A9,AFF_1:30; ::=Line(q,o) hence contradiction by A1,A9,AFF_1:def 2; end; A15: not LIN o,a,d proof assume LIN o,a,d; then d in A by AFF_1:def 2; then A=K by A6,A7,A8,AFF_1:30; ::=Line(x,d) hence contradiction by A1,A7,AFF_1:def 2; end; A16: not LIN o,d,q proof assume LIN o,d,q; then LIN o,q,p & LIN o,q,o & LIN o,q,d by A1,AFF_1:15,16; then LIN o,p,d by A2,AFF_1:17; then d in B' by AFF_1:def 2; then B'=K by A6,A7,A9,AFF_1:30; ::=Line(d,p) then A=B' by A2,A7,A8,A9,AFF_1:30; ::=Line(o,x) hence contradiction by A1,A9,AFF_1:def 2; end; A17: not LIN o,d,x proof assume LIN o,d,x; then LIN o,x,d by AFF_1:15; then d in A by A2,A8,AFF_1:39; then A=K by A6,A7,A8,AFF_1:30; ::=Line(d,x) hence contradiction by A1,A7,AFF_1:def 2; end; A18: not LIN o,p,d proof assume LIN o,p,d; then d in B' by AFF_1:def 2; then K=B' by A6,A7,A9,AFF_1:30; ::=Line(p,d) hence contradiction by A7,A9,A17,AFF_1:33; end; A19: not LIN o,p,a by A1,AFF_1:15; A20: LIN o,q,q' proof q in B' & q' in B' by A1,AFF_1:def 2; hence thesis by A9,AFF_1:33; end; A21: LIN o,x,y proof x in A & y in A by A1,AFF_1:def 2; hence thesis by A8,AFF_1:33; end; A22: p,d // p',d' proof x,p // K by A7,AFF_1:37; then x,p // M by A10,AFF_1:57; then y,p' // M by A1,A3,AFF_1:46; then p' in M by A10,A11,AFF_1:37; hence thesis by A7,A10,A12,AFF_1:53; end; a,d // b,d' proof p,a // p',b by A3,AFF_1:13; hence thesis by A1,A4,A12,A18,A19,A22,Lm1; end; then d,q // d',q' by A1,A3,A4,A12,A14,A15,A20,Lm1; hence thesis by A4,A12,A13,A16,A17,A20,A21,Lm1; end; theorem Th2: (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is_Dil & f.o=o & f.a=b) implies AFP satisfies_DES proof assume A1: for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is_Dil & f.o=o & f.a=b; now let o,a,a',p,p',q,q'; assume A2: LIN o,a,a' & LIN o,p,p' & LIN o,q,q' & not LIN o,a,p & not LIN o,a,q & a,p // a',p' & a,q // a',q'; A3: now assume A4: o=a'; then o=p' by A2,AFF_1:69; then p'=q' by A2,A4,AFF_1:69; hence p,q // p',q' by AFF_1:12; end; now assume A5: o<>a'; o<>a by A2,AFF_1:16; then consider f such that A6: f is_Dil & f.o=o & f.a=a' by A1,A2,A5; set r=f.p; set s=f.q; A7: r=p' proof o,p // o,r & a,p // a',r by A6,TRANSGEO:85; then LIN o,p,r & a,p // a',r by AFF_1:def 1; hence thesis by A2,AFF_1:70; end; s=q' proof o,q // o,s & a,q // a',s by A6,TRANSGEO:85; then LIN o,q,s & a,q // a',s by AFF_1:def 1; hence thesis by A2,AFF_1:70; end; hence p,q // p',q' by A6,A7,TRANSGEO:85; end; hence p,q // p',q' by A3; end; hence thesis by Lm1; end; Lm5: o<>a & o<>b & LIN o,a,b & LIN o,a,y & ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y)) implies LIN o,a,x proof assume that A1: o<>a & o<>b & LIN o,a,b and A2: LIN o,a,y and A3: (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y); assume A4: not LIN o,a,x; set A=Line(o,a); A5: A is_line by A1,AFF_1:def 3; A6: b<>y by A1,A3,A4,AFF_1:68; A7: o in A & a in A by AFF_1:26; x in A proof b in A & y in A by A1,A2,AFF_1:def 2; then A8: A=Line(b,y) by A5,A6,AFF_1:38; b,y // a,x by A3,A4,AFF_1: 13; hence thesis by A6,A7,A8,AFF_1:36; end; hence contradiction by A4,A5,A7,AFF_1:33; end; Lm6: (o<>a & o<>b & LIN o,a,b & ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y))) implies (o<>b & o<>a & LIN o,b,a & ((not LIN o,b,y & LIN o,y,x & b,y // a,x) or (LIN o,b,y & ex p,p' st not LIN o,b,p & LIN o,p,p' & b,p // a,p' & p,y // p',x & LIN o,b,x))) proof assume that A1: o<>a & o<>b & LIN o,a,b and A2: (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y); A3: LIN o,b,a by A1,AFF_1:15; A4: now assume A5: not LIN o,a,x; then A6: not LIN o,a,y by A1,A2,Lm5; not LIN o,b,y proof assume A7: LIN o,b,y; LIN o,b,o & LIN o,b,a by A1,AFF_1:15,16; hence contradiction by A1,A6,A7,AFF_1:17; end; hence thesis by A1,A2,A5,AFF_1:13,15; end; now assume A8: LIN o,a,x; then consider p,q such that A9: not LIN o,a,p & LIN o,p,q & a,p // b,q & p,x // q,y & LIN o,a,y by A2; A10: p,a // q,b & b,q // a,p & q,y // p,x by A9,AFF_1:13; not LIN o,p,a by A9,AFF_1:15; then A11: q<>o by A1,A9,A10,AFF_1:69; set A=Line(o,b); A12: A is_line & o in A & b in A & a in A by A1,A3,AFF_1:26,def 2,def 3; A13: LIN o,q,p by A9,AFF_1:15; A14: not LIN o,b,q proof assume LIN o,b,q; then q in A by AFF_1:def 2; then p in A by A11,A12,A13,AFF_1:39; hence contradiction by A9,A12,AFF_1:33; end; A15: y in A by A1,A9,A12,AFF_1:39; LIN o,a,o by AFF_1:16; then LIN o,b,x by A1,A8,AFF_1:17; hence thesis by A1,A10,A13,A14,A15,AFF_1:15,def 2; end; hence thesis by A4; end; Lm7: (o<>a & o<>b & LIN o,a,b & x=o & ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y))) implies y=o proof assume that A1: o<>a & o<>b & LIN o,a,b and A2: x=o and A3: (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y); assume A4: y<>o; consider p,p' such that A5: not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y by A2,A3,AFF_1:16; set A=Line(o,a); A6: A is_line by A1,AFF_1:def 3; A7: o in A & a in A by AFF_1:26; set K=Line(o,p); A8: o<>p by A5,AFF_1:16; then A9: K is_line by AFF_1:def 3; A10: p in K by AFF_1:26; p' in K by A5,AFF_1:def 2; then A11: y in K & o in K by A2,A5,A8,AFF_1:26,36; y in A by A5,AFF_1:def 2; then o in A & a in A & p in A by A4,A6,A7,A9,A10,A11,AFF_1:30; hence contradiction by A5,A6,AFF_1:33; end; Lm8: for o,a,b,x st o<>a & o<>b & LIN o,a,b ex y st (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) proof let o,a,b,x such that A1: o<>a & o<>b & LIN o,a,b; A2: now assume A3: not LIN o,a,x; o,a // o,b by A1,AFF_1:def 1; then a,o // o,b by AFF_1:13; then consider y such that A4: x,o // o,y & x,a // b,y by A1,DIRAF:47; o,x // o,y by A4,AFF_1:13; then LIN o,x,y & a,x // b,y by A4,AFF_1:13,def 1; hence thesis by A3; end; now assume A5: LIN o,a,x; consider p such that A6: not LIN o,a,p by A1,AFF_1:22; A7: o<>p & o<>a & a<>p by A6,AFF_1:16; set M=Line(o,a); set K=Line(o,p); set A=Line(a,p); A8: o in M & a in M & o in K & p in K & a in A & p in A by AFF_1:26; A9: x in M by A5,AFF_1:def 2; A10: M is_line & K is_line & A is_line by A7,AFF_1:def 3; then consider B' such that A11: b in B' & A // B' by AFF_1:63; A12: B' is_line by A11,AFF_1:50; not B' // K proof assume B' // K; then A // K by A11,AFF_1:58; then A=K by A8,AFF_1:59; hence contradiction by A6,A8,A10,AFF_1:33; end; then consider p' such that A13: p' in B' & p' in K by A10,A12,AFF_1:72; set C=Line(p,x); A14: p in C & x in C by AFF_1:26; A15: C is_line by A5,A6,AFF_1:def 3; then consider D such that A16: p' in D & C // D by AFF_1:63; A17: D is_line by A16,AFF_1:50; not D // M proof assume D // M; then C // M by A16,AFF_1:58; then C=M by A9,A14,AFF_1:59; hence contradiction by A6,A8,A14,A15,AFF_1:33; end; then consider y such that A18: y in D & y in M by A10,A17,AFF_1:72; LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y by A8,A10,A11,A13,A14,A16,A18,AFF_1:33,53; hence thesis by A5,A6; end; hence thesis by A2; end; Lm9: for o,a,b,y st o<>a & o<>b & LIN o,a,b ex x st (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) proof let o,a,b,y; assume o<>a & o<>b & LIN o,a,b; then A1: o<>b & o<>a & LIN o,b,a by AFF_1:15; then consider x such that A2: (not LIN o,b,y & LIN o,y,x & b,y // a,x) or (LIN o,b,y & ex p,p' st not LIN o,b,p & LIN o,p,p' & b,p // a,p' & p,y // p',x & LIN o,b,x) by Lm8; (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) by A1,A2,Lm6; hence thesis; end; Lm10: o<>a & o<>b & LIN o,a,b & a=b & ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y)) implies x=y proof assume that A1: o<>a & o<>b & LIN o,a,b and A2: a=b and A3: (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y); A4: now assume A5: not LIN o,a,x; a,x // a,x & LIN o,a,a & LIN o,x,x by AFF_1:11,16; hence thesis by A2,A3,A5,AFF_1:70; end; now assume A6: LIN o,a,x & x<>o; then consider p,q such that A7: not LIN o,a,p & LIN o,p,q & a,p // b,q & p,x // q,y & LIN o,a,y by A3; A8: a,p // a,q & a,p // a,p & LIN o,a,a & LIN o,p,p by A2,A7,AFF_1:11,16; A9: not LIN o,p,x proof assume LIN o,p,x; then LIN o,x,o & LIN o,x,p & LIN o,x,a by A6,AFF_1:15,16; hence contradiction by A6,A7,AFF_1:17; end; LIN o,a,o by AFF_1:16; then A10: LIN o,x,y by A1,A6,A7,AFF_1:17; p,x // p,x & p,x // p,y & LIN o,p,p & LIN o,x,x by A7,A8,AFF_1:11,16,70; hence thesis by A9,A10,AFF_1:70; end; hence thesis by A1,A3,A4,Lm7; end; Lm11: o<>a & o<>b & LIN o,a,b & AFP satisfies_DES & LIN o,a,x & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',r & LIN o,a,r) implies y=r proof assume that A1: o<>a & o<>b & LIN o,a,b and A2: AFP satisfies_DES and A3: LIN o,a,x and A4: ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y and A5: ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',r & LIN o,a,r; consider p,p' such that A6: not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y by A4; consider q,q' such that A7: not LIN o,a,q & LIN o,q,q' & a,q // b,q' & q,x // q',r & LIN o,a,r by A5; A8: o<>a & o<>p & o<>q by A6,A7,AFF_1:16; A9: a=b implies thesis proof assume a=b; then x=y & x=r by A1,A3,A4,A5,Lm10; hence thesis; end; A10: o=x implies thesis proof assume A11: o=x; then y=o by A1,A3,A4,Lm7; hence thesis by A1,A3,A5,A11,Lm7; end; A12: p=q & o<>x implies thesis proof assume A13: p=q & o<>x; then A14: p'=q' by A1,A6,A7,AFF_1:70; LIN o,a,o by AFF_1:16; then A15: LIN o,x,y & LIN o,x,r by A3,A6,A7,A8,AFF_1:17; not LIN o,p,x proof assume LIN o,p,x; then LIN o,x,o & LIN o,x,p & LIN o,x,a by A3,AFF_1:15,16; hence contradiction by A6,A13,AFF_1:17; end; hence thesis by A6,A7,A13,A14,A15,AFF_1:70; end; A16: a=x implies thesis proof assume A17: a=x; A18: not LIN o,p,a by A6,AFF_1:15; p,a // p',b & p,a // p',y by A6,A17,AFF_1:13; then A19: b=y by A1,A6,A18,AFF_1:70; A20: not LIN o,q,a by A7,AFF_1:15; q,a // q',b & q,a // q',r by A7,A17,AFF_1:13; hence thesis by A1,A7,A19,A20,AFF_1:70; end; a<>b & a<>x & p<>q & o<>x implies thesis proof assume A21: a<>b & a<>x & p<>q & o<>x; A22: now assume A23: LIN o,p,q; then LIN o,q,o & LIN o,q,p & LIN o,q,q' by A7,AFF_1:15,16; then A24: LIN o,p,q' by A8,AFF_1:17; x,p // y,p' by A6,AFF_1:13; then x,q // y,q' by A1,A2,A3,A6,A7,A8,A21,A23,A24,Th1; then A25: q,x // q',y by AFF_1:13; set A=Line(o,a); set K=Line(o,p); A26: A is_line & o in A & a in A & b in A & x in A & y in A & r in A by A1,A3,A6,A7,AFF_1:26,def 2,def 3; A27: K is_line & o in K & p in K & q in K & q' in K & p' in K by A6,A8,A23,A24,AFF_1:26,def 2,def 3; A28: not LIN o,q,x proof assume A29: LIN o,q,x; K=Line(o,q) by A8,A27,AFF_1:38; then x in K by A29,AFF_1:def 2; then A is_line & o in A & a in A & p in A by A21,A26,A27,AFF_1:30; hence contradiction by A6,AFF_1:33; end; LIN o,x,y & LIN o,x,r by A26,AFF_1:33; hence thesis by A7,A25,A28,AFF_1:70; end; now assume A30: not LIN o,p,q; A31: p,q // p',q' by A1,A2,A6,A7,Lm1; A32: not LIN o,p,x proof assume LIN o,p,x; then A33: LIN o,x,p by AFF_1:15; LIN o,a,o & LIN o,a,x by A3,AFF_1:16; hence contradiction by A6,A21,A33,AFF_1:20; end; set A=Line(o,a); set K=Line(o,q); A34: A is_line & o in A & a in A & b in A & x in A & y in A & r in A by A1,A3,A6,A7,AFF_1:26,def 2,def 3; A35: K is_line & o in K & q in K & q' in K by A7,A8,AFF_1:26,def 2,def 3; LIN o,x,y by A34,AFF_1:33; then A36: q,x // q',y by A2,A6,A7,A30,A31,A32,Lm1; A37: not LIN o,q,x proof assume LIN o,q,x; then x in K by AFF_1:def 2; then A is_line & o in A & a in A & q in A by A21,A34,A35,AFF_1:30; hence contradiction by A7,AFF_1:33; end; LIN o,x,y & LIN o,x,r by A34,AFF_1:33; hence thesis by A7,A36,A37,AFF_1:70; end; hence thesis by A22; end; hence thesis by A9,A10,A12,A16; end; Lm12: o<>a & o<>b & LIN o,a,b & AFP satisfies_DES & ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y)) & ((not LIN o,a,r & LIN o,r,y & a,r // b,y) or (LIN o,a,r & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,r // p',y & LIN o,a,y)) implies x=r proof assume that A1: o<>a & o<>b & LIN o,a,b & AFP satisfies_DES and A2: (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) and A3: (not LIN o,a,r & LIN o,r,y & a,r // b,y) or (LIN o,a,r & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,r // p',y & LIN o,a,y); A4: o<>b & o<>a & LIN o,b,a & AFP satisfies_DES by A1,AFF_1:15; ((not LIN o,b,y & LIN o,y,x & b,y // a,x) or (LIN o,b,y & ex p,p' st not LIN o,b,p & LIN o,p,p' & b,p // a,p' & p,y // p',x & LIN o,b,x)) & ((not LIN o,b,y & LIN o,y,r & b,y // a,r) or (LIN o,b,y & ex p,p' st not LIN o,b,p & LIN o,p,p' & b,p // a,p' & p,y // p',r & LIN o,b,r)) by A1,A2,A3,Lm6; hence thesis by A4,Lm11,AFF_1:70; end; Lm13: for o,a,b st AFP satisfies_DES & o<>a & o<>b & LIN o,a,b ex f st for x,y holds (f.x=y iff ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y))) proof let o,a,b; defpred P[Element of AFP,Element of AFP] means ((not LIN o,a,$1 & LIN o,$1,$2 & a,$1 // b,$2) or (LIN o,a,$1 & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,$1 // p',$2 & LIN o,a,$2)); assume A1: AFP satisfies_DES & o<>a & o<>b & LIN o,a,b; then A2: for x ex y st P[x,y] by Lm8; A3: for y ex x st P[x,y] by A1,Lm9; A4: for x,y,r st P[x,y] & P[r,y] holds x=r by A1,Lm12; A5: for x,y,s st P[x,y] & P[x,s] holds y=s by A1,Lm11,AFF_1:70; ex f st for x,y holds (f.x=y iff P[x,y]) from EXPermutation(A2,A3,A4,A5); hence thesis; end; Lm14: (AFP satisfies_DES & o<>a & o<>b & LIN o,a,b & not LIN o,a,x & LIN o,x,y & a,x // b,y & LIN o,a,z & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,z // p',t & LIN o,a,t)) implies x,z // y,t proof assume that A1: AFP satisfies_DES and A2: o<>a & o<>b & LIN o,a,b and A3: not LIN o,a,x & LIN o,x,y & a,x // b,y and A4: LIN o,a,z and A5: ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,z // p',t & LIN o,a,t; consider p,p' such that A6: not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,z // p',t & LIN o,a,t by A5; A7: p,x // p',y by A1,A2,A3,A6,Lm1; A8: o<>a & o<>x & o<>p by A3,A6,AFF_1:16; A9: now assume A10: z=o; then A11: t=o by A2,A4,A5,Lm7; o,x // o,y by A3,AFF_1:def 1; hence thesis by A10,A11,AFF_1:13; end; A12: now assume A13: z<>o & not LIN o,p,x; A14: not LIN o,p,z proof assume LIN o,p,z; then LIN o,p,o & LIN o,p,z & LIN o,z,a by A4,AFF_1:15,16; then LIN o,p,a by A13,AFF_1:20; hence contradiction by A6,AFF_1:15; end; LIN o,z,t proof LIN o,a,o & LIN o,a,z & LIN o,a,t by A4,A6,AFF_1:16; hence thesis by A2,AFF_1:17; end; hence thesis by A1,A3,A6,A7,A13,A14,Lm1; end; A15: now assume A16: a=z; A17: not LIN o,p,a by A6,AFF_1:15; p,a // p',b by A6,AFF_1:13; then z,x // t,y by A2,A3,A6,A16,A17,AFF_1:70; hence thesis by AFF_1:13; end; now assume A18: z<>o & LIN o,p,x & a<>z; now assume A19: x<>p; LIN o,x,o & LIN o,x,p by A18,AFF_1:15,16; then A20: LIN o,p,x & LIN o,p,y & LIN o,p,p' by A3,A6,A8,A18,AFF_1:17; z,p // t,p' by A6,AFF_1:13; then z,x // t,y by A1,A2,A3,A4,A6,A8,A18,A19,A20,Th1; hence thesis by AFF_1:13; end; hence thesis by A2,A3,A6,AFF_1:70; end; hence thesis by A9,A12,A15; end; Lm15: AFP satisfies_DES & o<>a & o<>b & LIN o,a,b & LIN o,a,x & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) & not LIN o,a,z & LIN o,z,t & a,z // b,t implies x,z // y,t proof assume AFP satisfies_DES & o<>a & o<>b & LIN o,a,b & LIN o,a,x & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) & not LIN o,a,z & LIN o,z,t & a,z // b,t; then z,x // t,y by Lm14; hence thesis by AFF_1:13; end; Lm16: o<>a & o<>b & LIN o,a,b & LIN o,a,x & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) & LIN o,a,z & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,z // p',t & LIN o,a,t) implies x,z // y,t proof assume that A1: o<>a & o<>b & LIN o,a,b and A2: LIN o,a,x & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) and A3: LIN o,a,z & (ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,z // p',t & LIN o,a,t); set A=Line(o,a); A4: A is_line by A1,AFF_1:def 3; A5: x in A & y in A & z in A & t in A by A2,A3,AFF_1:def 2; now assume A6: x<>z; then A=Line(x,z) by A4,A5,AFF_1:38; hence thesis by A5,A6,AFF_1:36; end; hence thesis by AFF_1:12; end; Lm17: o<>a & o<>b & LIN o,a,b & AFP satisfies_DES & (for x,y holds (f.x=y iff ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y)))) implies f is_Dil & f.o=o & f.a=b proof assume that A1: o<>a & o<>b & LIN o,a,b and A2: AFP satisfies_DES; assume A3: for x,y holds (f.x=y iff ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y))); for x,r holds x,r // f.x,f.r proof let x,r; set y=f.x; set s=f.r; A4: (not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y) by A3; (not LIN o,a,r & LIN o,r,s & a,r // b,s) or (LIN o,a,r & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,r // p',s & LIN o,a,s) by A3; hence thesis by A1,A2,A4,Lm1,Lm14,Lm15,Lm16; end; hence f is_Dil by TRANSGEO:85; thus f.o=o proof set y=f.o; (not LIN o,a,o & LIN o,o,y & a,o // b,y) or (LIN o,a,o & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,o // p',y & LIN o,a,y) by A3; hence thesis by A1,Lm7; end; thus f.a=b proof set y=f.a; LIN o,a,a by AFF_1:16; then consider p,p' such that A5: not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,a // p',y & LIN o,a,y by A3; A6: not LIN o,p,a by A5,AFF_1:15; p,a // p',b by A5,AFF_1:13; hence thesis by A1,A5,A6,AFF_1:70; end; end; theorem Th3: AFP satisfies_DES implies (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is_Dil & f.o=o & f.a=b) proof assume A1: AFP satisfies_DES; let o,a,b; assume A2: o<>a & o<>b & LIN o,a,b; then consider f such that A3: for x,y holds (f.x=y iff ((not LIN o,a,x & LIN o,x,y & a,x // b,y) or (LIN o,a,x & ex p,p' st not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y))) by A1,Lm13; f is_Dil & f.o=o & f.a=b by A1,A2,A3,Lm17; hence thesis; end; theorem AFP satisfies_DES iff (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is_Dil & f.o=o & f.a=b) by Th2,Th3; definition let AFP,f,K; pred f is_Sc K means :Def1: f is_Col & K is_line & (for x st x in K holds f.x = x) & (for x holds x,f.x // K); end; theorem Th5: f is_Sc K & f.p=p & not p in K implies f=id the carrier of AFP proof assume that A1: f is_Sc K and A2: f.p=p & not p in K; f is_Col & K is_line & for x st x in K holds f.x=x by A1,Def1; hence thesis by A2,TRANSGEO:117; end; theorem Th6: (for a,b,K st a,b // K & not a in K ex f st f is_Sc K & f.a=b) implies AFP satisfies_TDES proof assume A1: for a,b,K st a,b // K & not a in K ex f st f is_Sc K & f.a=b; now let o,K,c,c',a,b,a',b'; assume A2: o in K & c in K & c' in K & K is_line & LIN o,a,a' & LIN o,b,b'& not a in K & a,b // K & a',b' // K & a,c // a',c'; then consider f such that A3: f is_Sc K & f.a=b by A1; A4: f is_Col by A3,Def1; A5: a,b // a',b' by A2,AFF_1:45; A6: f.c = c & f.c'=c' by A2,A3,Def1; f.a'=b' proof set x=f.a'; A7: now assume a<>b; then A8: not LIN o,a,b by A2,AFF_1:60; a',x // K by A3,Def1; then A9: a,b // a',x by A2,AFF_1:45; f.o=o by A2,A3,Def1; then LIN o,b,x by A2,A3,A4,TRANSGEO:108; hence thesis by A2,A5,A8,A9,AFF_1:70; end; now assume A10: a=b; then f=id the carrier of AFP by A2,A3,Th5; then x=a' by FUNCT_1:35; hence thesis by A2,A10,AFF_1:61; end; hence thesis by A7; end; hence b,c // b',c' by A2,A3,A4,A6,TRANSGEO:107; end; hence thesis by Lm2; end; Lm18: (a,b // K & not a in K & ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K))) implies (b,a // K & not b in K & ((y in K & y=x) or (not y in K & ex p,p' st p in K & p' in K & p,b // p',y & p,a // p',x & y,x // K))) proof assume that A1: a,b // K & not a in K and A2: ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)); now assume not x in K; then y,x // K by A2,AFF_1:48; hence thesis by A1,A2,AFF_1:48,49; end; hence thesis by A1,A2,AFF_1:48,49; end; Lm19: a,b // K & not a in K implies for x ex y st ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)) proof assume A1: a,b // K & not a in K; let x; A2: K is_line by A1,AFF_1:40; then consider p,q such that A3: p in K & q in K & p<>q by AFF_1:31; A4: not b in K by A1,AFF_1:49; A5: p<>a & p<>b by A1,A3,AFF_1:49; now assume A6: not x in K; set A=Line(p,a); set B'=Line(p,b); A7: p in A & p in B' & a in A & b in B' by AFF_1:26; A8: A is_line & B' is_line by A5,AFF_1:def 3; A9: not A // K & not B' // K by A1,A3,A4,A7,AFF_1:59; consider M such that A10: x in M & K // M by A2,AFF_1:63; A11: M is_line by A10,AFF_1:50; consider C such that A12: x in C & A // C by A8,AFF_1:63; A13: C is_line by A12,AFF_1:50; not C // K by A9,A12,AFF_1:58; then consider p' such that A14: p' in C & p' in K by A2,A13,AFF_1:72; consider D such that A15: p' in D & B' // D by A8,AFF_1:63; A16: D is_line by A15,AFF_1:50; A17: M // K by A10; not D // M proof assume D // M; then B' // M by A15,AFF_1:58;hence contradiction by A9,A10,AFF_1:58; end; then consider y such that A18: y in D & y in M by A11,A16,AFF_1:72; A19: x,y // K by A10,A17,A18,AFF_1:54; A20: p,a // p',x by A7,A12,A14,AFF_1:53; p,b // p',y by A7,A15,A18,AFF_1:53; hence thesis by A3,A6,A14,A19,A20; end; hence thesis; end; Lm20: a,b // K & not a in K implies for y ex x st ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)) proof assume A1: a,b // K & not a in K; let y; A2: b,a // K & not b in K by A1,AFF_1:48,49; then consider x such that A3: (y in K & y=x) or (not y in K & ex p,p' st p in K & p' in K & p,b // p',y & p,a // p',x & y,x // K) by Lm19; (x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K) by A2,A3,Lm18; hence thesis; end; theorem Th7: K // M & p in K & q in K & p' in K & q' in K & AFP satisfies_TDES & a in M & b in M & x in M & y in M & a<>b & q<>p & p,a // p',x & p,b // p',y & q,a // q',x implies q,b // q',y proof assume that A1: K // M and A2: p in K & q in K & p' in K & q' in K and A3: AFP satisfies_TDES and A4: a in M & b in M & x in M & y in M and A5: a<>b & q<>p and A6: p,a // p',x & p,b // p',y & q,a // q',x; A7: K is_line & M is_line by A1,AFF_1:50; A8: now assume A9: K=M; K // K by A7,AFF_1:55; hence thesis by A2,A4,A9,AFF_1:53; end; now assume A10: K<>M; then A11: a<>p & a<>q & b<>p & b<>q by A1,A2,A4,AFF_1:59; A12: p'<>x & p'<>y & q'<>x & q'<>y by A1,A2,A4,A10,AFF_1:59; set A=Line(p,a); set B'=Line(p,b); set C=Line(q,b); set D=Line(q,a); set A'=Line(p',x); set B''=Line(p',y); set C'=Line(q',y); set D'=Line(q',x); A13: A is_line & B' is_line & C is_line & D is_line & A' is_line & B'' is_line & C' is_line & D' is_line by A11,A12,AFF_1:def 3; A14: p in A & a in A & p in B' & b in B' & q in C & b in C & q in D & a in D & p' in A' & x in A' & p' in B'' & y in B'' & q' in C' & y in C' & q' in D' & x in D' by AFF_1:26; A15: A // A' & B' // B'' & D // D' by A6,A11,A12,AFF_1:51; A16: not a in K & not b in K & not x in K & not y in K & not p in M & not q in M & not p' in M & not q' in M by A1,A2,A4,A10,AFF_1:59; A17: A<>K & B'<>K & C<>K & D<>K & A'<>K & B''<>K & C'<>K & D'<>K & A<>M & B'<>M & C<>M & D<>M & A'<>M & B''<>M & C'<>M & D'<>M by A1,A2,A4,A10,A14,AFF_1:59; A18: LIN a,b,x & LIN a,b,y & LIN p,q,p' & LIN p,q,q' by A2,A4,A7,AFF_1:33; A19: now assume ex a,b,c st LIN a,b,c & a<>b & a<>c & b<>c; then consider d such that A20: LIN p,b,d & d<>p & d<>b by A11,TRANSLAC:2; A21: d in B' by A20,AFF_1:def 2; consider N such that A22: d in N & K // N by A7,AFF_1:63; A23: N is_line by A22,AFF_1:50; not B'' // N proof assume B'' // N; then B' // N by A15,AFF_1:58; then B' // K by A22,AFF_1:58; hence contradiction by A2,A14,A17,AFF_1:59; end; then consider z such that A24: z in B'' & z in N by A13,A23,AFF_1:72; p,a // p',x & p,d // p',z & p in K & p' in K & a in M & x in M & d in N & z in N & K // M & K // N & K<>M & K<>N by A1,A2,A4,A7,A10,A13,A14,A15,A17,A20,A21,A22,A24,AFF_1:30,53; then a,d // x,z & a,q // x,q' & a in M & x in M & d in N & z in N & q in K & q' in K & M // N & M // K & M<>N & M<>K by A2,A3,A4,A7,A13,A14,A15,A17,A20,A21,Lm4,AFF_1:30,53,58; then d,b // z,y & d,q // z,q' & d in N & z in N & b in M & y in M & q in K & q' in K & N // M & N // K & N<>M & N<>K by A2,A3,A4,A7,A13,A14,A15,A17,A20,A21,A22,A24,Lm4,AFF_1:30,53; hence thesis by A3,Lm4; end; now assume A25: not ex a,b,c st LIN a,b,c & a<>b & a<>c & b<>c; A26: now assume A27: p=p' & p=q'; then LIN p,a,x by A6,AFF_1:def 1; then LIN a,x,p by AFF_1:15; then a=x by A4,A7,A16,AFF_1:39; then a,q // a,q' by A6,AFF_1:13; then LIN a,q,q' by AFF_1:def 1; then LIN p,q,a by A27,AFF_1:15; hence contradiction by A2,A5,A7,A16,AFF_1:39 ; end; A28: now assume A29: p=p' & q=q'; then LIN p,b,y by A6,AFF_1:def 1; then LIN b,y,p by AFF_1:15; then b=y by A4,A7,A16,AFF_1:39; hence thesis by A29,AFF_1:11; end; A30: now assume A31: q=p' & q=q'; then LIN q,a,x by A6,AFF_1:def 1; then LIN a,x,q by AFF_1:15; then a=x by A4,A7,A16,AFF_1:39; then a,q // a,p by A6,A31,AFF_1:13; then LIN a,q,p by AFF_1:def 1; then LIN p,q,a by AFF_1:15; hence contradiction by A2,A5,A7,A16,AFF_1:39; end; now assume A32: q=p' & p=q'; A33: now assume a=x; then a,p // a,q by A6,A32,AFF_1:13; then LIN a,p,q by AFF_1:def 1; then LIN p,q,a by AFF_1:15; hence contradiction by A2,A5,A7,A16,AFF_1:39; end; now assume A34: b=x; then q,y // q,a by A6,A11,A32,AFF_1:14; then LIN q,y,a by AFF_1:def 1; then LIN a,y,q by AFF_1:15; then q',y // q,b by A4,A6,A7,A16,A32,A34,AFF_1:39; hence thesis by AFF_1:13 ; end; hence thesis by A5,A18,A25,A33; end; hence thesis by A5,A18,A25,A26,A28,A30; end; hence thesis by A19; end; hence thesis by A8; end; Lm21: a,b // K & not a in K & not x in K & AFP satisfies_TDES & p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K & q in K & q' in K & q,a // q',x implies q,b // q',y proof assume that A1: a,b // K & not a in K & not x in K and A2: AFP satisfies_TDES and A3: p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K and A4: q in K & q' in K & q,a // q',x; A5: K is_line by A1,AFF_1:40; A6: a=b implies x=y proof assume A7: a=b; assume A8: x<>y; p',x // p',y by A1,A3,A7,AFF_1:14; then LIN p',x,y by AFF_1:def 1; then A9: LIN x,y,p' by AFF_1:15; set M=Line(x,y); A10: M is_line & x in M & p' in M by A8,A9,AFF_1:26,def 2,def 3; M // K by A3,A8,AFF_1:def 5;hence contradiction by A1,A3,A10,AFF_1:59; end; A11: now assume A12: p=q; p'=q' proof assume A13: p'<>q'; p',x // q',x by A1,A3,A4,A12,AFF_1:14; then x,p' // x,q' by AFF_1:13; then LIN x,p',q' by AFF_1:def 1; then LIN p',q',x by AFF_1:15; hence contradiction by A1,A3,A4,A5,A13,AFF_1:39; end; hence thesis by A3,A12; end; A14: now assume A15: not a,x // K & a<>b; then A16: a<>x by A5,AFF_1:47; set A=Line(a,x); A17: a in A & x in A & A is_line by A16,AFF_1:26,def 3; then not A // K by A15,AFF_1:54; then consider o such that A18: o in A & o in K by A5,A17,AFF_1:72; A19: LIN o,a,x by A17,A18,AFF_1:33; A20: a,b // x,y by A1,A3,A5,AFF_1:45; a,p // x,p' & b,p // y,p' by A3,AFF_1:13; then A21: LIN o,b,y by A1,A2,A3,A5,A15,A18,A19,A20,Lm3; a,q // x,q' by A4,AFF_1:13; then b,q // y,q' by A1,A2,A3,A4,A5,A18,A19,A21,Lm2; hence thesis by AFF_1:13; end; now assume A22: a,x // K & a<>b & p<>q; set M=Line(a,b); A23: M is_line & a in M & b in M by A22,AFF_1:26,def 3; A24: M // K by A1,A22,AFF_1:def 5; x in M & y in M proof a,b // a,x by A1,A5,A22,AFF_1:45; then LIN a,b,x by AFF_1:def 1; hence A25: x in M by AFF_1:def 2; x,y // M by A3,A24,AFF_1:57; hence y in M by A23,A25,AFF_1:37; end; hence thesis by A2,A3,A4,A22,A23,A24,Th7; end; hence thesis by A4,A6,A11,A14; end; Lm22: a,b // K & not a in K & not x in K & AFP satisfies_TDES & p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K & q in K & q' in K & q,a // q',x & x,s // K & q,b // q',s implies s=y proof assume that A1: a,b // K & not a in K & not x in K and A2: AFP satisfies_TDES and A3: p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K and A4: q in K & q' in K & q,a // q',x & x,s // K & q,b // q',s; assume A5: not thesis; A6: q,b // q',y by A1,A2,A3,A4,Lm21; A7: not b in K & K is_line by A1,AFF_1:40,49; then q',s // q',y by A4,A6,AFF_1:14; then LIN q',s,y by AFF_1:def 1; then A8: LIN y,s,q' by AFF_1:15; consider M such that A9: x in M & K // M by A7,AFF_1:63; A10: M is_line by A9,AFF_1:50; x,y // M by A3,A9,AFF_1:57; then A11: y in M by A9,A10,AFF_1:37; x,s // M by A4,A9,AFF_1:57; then s in M by A9,A10,AFF_1:37; then M=Line(y,s) by A5,A10,A11,AFF_1:38; then q' in M by A8,AFF_1:def 2; hence contradiction by A1,A4,A9,AFF_1:59; end; Lm23: a,b // K & not a in K & AFP satisfies_TDES & ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)) & ((r in K & r=y) or (not r in K & ex p,p' st p in K & p' in K & p,a // p',r & p,b // p',y & r,y // K)) implies x=r proof assume that A1: a,b // K & not a in K & AFP satisfies_TDES and A2: (x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K) and A3: (r in K & r=y) or (not r in K & ex p,p' st p in K & p' in K & p,a // p',r & p,b // p',y & r,y // K); A4: b,a // K & not b in K by A1,AFF_1:48,49; A5: (y in K & y=x) or (not y in K & ex p,p' st p in K & p' in K & p,b // p',y & p,a // p',x & y,x // K) by A1,A2,Lm18; (y in K & y=r) or (not y in K & ex p,p' st p in K & p' in K & p,b // p',y & p,a // p',r & y,r // K) by A1,A3,Lm18; hence thesis by A1,A4,A5,Lm22; end; Lm24: (a,b // K & not a in K & AFP satisfies_TDES) implies ex f st for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K))) proof defpred P[Element of AFP, Element of AFP] means (($1 in K & $1=$2) or (not $1 in K & ex p,p' st p in K & p' in K & p,a // p',$1 & p,b // p',$2 & $1,$2 // K)); assume A1: a,b // K & not a in K & AFP satisfies_TDES; then A2: for x ex y st P[x,y] by Lm19; A3: for y ex x st P[x,y] by A1,Lm20; A4: for x,y,r st P[x,y] & P[r,y] holds x=r by A1,Lm23; A5: for x,y,s st P[x,y] & P[x,s] holds y=s by A1,Lm22; ex f st for x,y holds (f.x=y iff P[x,y]) from EXPermutation(A2,A3,A4,A5); hence thesis; end; Lm25: (a,b // K & not a in K & for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)))) implies f.a=b proof assume A1: a,b // K & not a in K; assume A2: for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K))); K is_line by A1,AFF_1:40; then consider p,q such that A3: p in K & q in K & p<>q by AFF_1:31; p,a // p,a & p,b // p,b by AFF_1:11;hence thesis by A1,A2,A3; end; Lm26: (a,b // K & not a in K & for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)))) implies (for x holds x,f.x // K) proof assume that A1: a,b // K & not a in K and A2: for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K))); A3: K is_line by A1,AFF_1:40; let x; set y=f.x; A4: now assume x in K; then y=x by A2; hence thesis by A3,AFF_1:47; end; now assume not x in K; then ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K by A2; hence thesis; end; hence thesis by A4; end; Lm27: (a,b // K & not a in K & AFP satisfies_TDES & for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)))) implies f is_Col proof assume that A1: a,b // K & not a in K and AFP satisfies_TDES and A2: for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K))); A3: b,a // K & not b in K by A1,AFF_1:48,49; A4: K is_line by A1,AFF_1:40; for A st A is_line holds f.:A is_line proof let A such that A5: A is_line; set B'=f.:A; A6: now assume A7: A=K; A8: A c= B' proof now let x such that A9: x in A; set y=f.x; y in B' & x=y by A2,A7,A9,TRANSGEO:110; hence x in B'; end; hence thesis by SUBSET_1:7; end; B' c= A proof now let y; assume y in B'; then ex x st x in A & y=f.x by TRANSGEO:111; hence y in A by A2,A7; end; hence thesis by SUBSET_1:7; end; hence thesis by A5,A8,XBOOLE_0:def 10; end; A10: now assume A11: A // K & A<>K; A12: B' c= A proof now let y; assume y in B'; then consider x such that A13: x in A & y = f.x by TRANSGEO:111; not x in K by A11,A13,AFF_1:59; then ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K by A2,A13; then x,y // A by A11,AFF_1:57; hence y in A by A5,A13,AFF_1:37; end; hence thesis by SUBSET_1:7; end; A c= B' proof now let x such that A14: x in A; consider y such that A15: f.y=x by TRANSGEO:2; (y in K & y=x) or (not y in K & ex p,p' st p in K & p' in K & p,a // p',y & p,b // p',x & y,x // K) by A2,A15; then x,y // K by A11,A14,AFF_1:48,59; then x,y // A by A11,AFF_1:57; then y in A by A5,A14,AFF_1:37; hence x in B' by A15,TRANSGEO:111; end; hence thesis by SUBSET_1:7; end; hence thesis by A5,A12,XBOOLE_0:def 10; end; now assume A16: not A // K & A<>K; then consider p such that A17: p in A & p in K by A4,A5,AFF_1:72; consider M such that A18: a in M & K // M by A4,AFF_1:63; A19: M is_line by A18,AFF_1:50; A20: b in M proof a,b // M by A1,A18,AFF_1:57; hence thesis by A18,A19,AFF_1:37; end; consider A' such that A21: a in A' & A // A' by A5,AFF_1:63; A22: A' is_line by A21,AFF_1:50; not A' // K by A16,A21,AFF_1:58; then consider q such that A23: q in A' & q in K by A4,A22,AFF_1:72; set C'=Line(q,b); q<>b by A1,A18,A20,A23,AFF_1:59; then A24: C' is_line & q in C' & b in C' by AFF_1:26,def 3; then consider C such that A25: p in C & C' // C by AFF_1:63; A26: C is_line by A25,AFF_1:50; A27: C c= B' proof now let y such that A28: y in C; A29: now assume A30: y=p; f.p=p by A2,A17; hence y in B' by A17,A30,TRANSGEO:111; end; now assume A31: y<>p; consider N such that A32: y in N & K // N by A4,AFF_1:63; A33: N is_line & N // K by A32,AFF_1:50; not N // A by A16,A32,AFF_1:58; then consider x such that A34: x in N & x in A by A5,A33,AFF_1:72; A35: not x in K proof assume x in K; then y in K by A32,A34,AFF_1:59; then C' // K by A4,A17,A25,A26,A28,A31,AFF_1:30; hence contradiction by A3,A23,A24,AFF_1:59; end; p,x // q,a & q,b // p,y & x,y // K by A17,A21,A23,A24,A25,A28,A32,A33, A34,AFF_1:53,54; then q,a // p,x & q,b // p,y & x,y // K by AFF_1:13; then y=f.x by A2,A17,A23,A35; hence y in B' by A34,TRANSGEO:111; end; hence y in B' by A29; end; hence thesis by SUBSET_1:7; end; B' c= C proof now let y; assume y in B'; then consider x such that A36: x in A & y=f.x by TRANSGEO:111; now assume A37: x<>p; consider N such that A38: x in N & K // N by A4,AFF_1:63; A39: N is_line & N // K by A38,AFF_1:50; A40: not x in K by A4,A5,A16,A17,A36,A37,AFF_1:30; not C // N proof assume C // N; then C' // N & N // K by A25,A38, AFF_1:58; then C' // K & q in C' by AFF_1:26,58; then C'=K by A23,AFF_1:59; hence contradiction by A3,AFF_1:26; end; then consider z such that A41: z in C & z in N by A26,A39,AFF_1:72; p,x // q,a & q,b // p,z & x,z // K by A17,A21,A23,A24,A25,A36,A38,A39 ,A41,AFF_1:53,54; then q,a // p,x & q,b // p,z & x,z // K by AFF_1:13; hence y in C by A2,A17,A23,A36,A40,A41; end; hence y in C by A2,A17,A25,A36; end; hence thesis by SUBSET_1:7; end; hence thesis by A26,A27,XBOOLE_0:def 10; end; hence thesis by A6,A10; end; hence thesis by TRANSGEO:116; end; Lm28: (a,b // K & not a in K & AFP satisfies_TDES & for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K)))) implies f is_Sc K proof assume that A1: a,b // K & not a in K and A2: AFP satisfies_TDES and A3: for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K))); A4: K is_line by A1,AFF_1:40; A5: f is_Col by A1,A2,A3,Lm27; A6: for x st x in K holds f.x=x by A3; for x holds x,f.x // K by A1,A3,Lm26; hence thesis by A4,A5,A6,Def1; end; theorem Th8: a,b // K & not a in K & AFP satisfies_TDES implies ex f st f is_Sc K & f.a=b proof assume that A1: a,b // K & not a in K and A2: AFP satisfies_TDES; consider f such that A3: for x,y holds (f.x=y iff ((x in K & x=y) or (not x in K & ex p,p' st p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K))) by A1,A2,Lm24; A4: f is_Sc K by A1,A2,A3,Lm28; f.a=b by A1,A3,Lm25; hence thesis by A4; end; theorem AFP satisfies_TDES iff (for a,b,K st a,b // K & not a in K ex f st f is_Sc K & f.a=b) by Th6,Th8;