Journal of Formalized Mathematics
Volume 10, 1998
University of Bialystok
Copyright (c) 1998
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Yatsuka Nakamura,
and
- Adam Grabowski
- Received June 8, 1998
- MML identifier: JORDAN5D
- [
Mizar article,
MML identifier index
]
environ
vocabulary PRE_TOPC, EUCLID, SEQM_3, GOBOARD5, FINSEQ_1, SEQ_2, SEQ_4,
ARYTM_1, TOPREAL1, NAT_1, RELAT_1, FUNCT_1, JORDAN4, GOBOARD2, TREES_1,
MCART_1, GOBOARD1, MATRIX_1, PSCOMP_1, FUNCT_5, REALSET1, SUBSET_1,
BOOLE, ORDINAL2, FINSET_1, SQUARE_1, SPPOL_1, JORDAN5D, FINSEQ_4, ARYTM;
notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, MCART_1,
REAL_1, NAT_1, BINARITH, RELAT_1, FINSEQ_1, FUNCT_1, FINSEQ_4, FINSET_1,
SEQ_4, MATRIX_1, CQC_SIM1, STRUCT_0, TOPREAL1, SPPOL_1, GOBOARD1,
GOBOARD2, GOBOARD5, PRE_TOPC, EUCLID, PRE_CIRC, JORDAN4, PSCOMP_1;
constructors REAL_1, SPPOL_1, CQC_SIM1, GOBOARD2, BINARITH, PRE_CIRC, JORDAN4,
PSCOMP_1, FINSEQ_4, COMPTS_1, REALSET1;
clusters EUCLID, GOBOARD2, GOBOARD5, RELSET_1, STRUCT_0, GROUP_2, PRELAMB,
SPRECT_1, FINSEQ_1, XREAL_0, ARYTM_3, MEMBERED, PRE_CIRC, ORDINAL2;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: Preliminaries
reserve p, q for Point of TOP-REAL 2,
r for Real,
h for non constant standard special_circular_sequence,
g for FinSequence of TOP-REAL 2,
f for non empty FinSequence of TOP-REAL 2,
I, i1, i, j, k for Nat;
canceled 2;
theorem :: JORDAN5D:3
for n be Nat,
h be FinSequence of TOP-REAL n st len h >= 2 holds
h/.len h in LSeg(h,len h-'1);
theorem :: JORDAN5D:4
3 <= i implies i mod (i-'1) = 1;
theorem :: JORDAN5D:5
p in rng h implies ex i be Nat st 1 <= i & i+1 <= len h & h.i = p;
theorem :: JORDAN5D:6
for g being FinSequence of REAL st r in rng g holds
Incr g.1 <= r & r <= Incr g.len Incr g;
theorem :: JORDAN5D:7
1 <= i & i <= len h & 1 <= I & I <= width GoB h implies
(GoB h)*(1,I)`1 <= (h/.i)`1 & (h/.i)`1 <= (GoB h)*(len GoB h,I)`1;
theorem :: JORDAN5D:8
1 <= i & i <= len h & 1 <= I & I <= len GoB h implies
(GoB h)*(I,1)`2 <= (h/.i)`2 & (h/.i)`2 <= (GoB h)*(I,width GoB h)`2;
theorem :: JORDAN5D:9
1 <= i & i <= len GoB f implies
ex k,j st k in dom f & [i,j] in Indices GoB f & f/.k = (GoB f)*(i,j);
theorem :: JORDAN5D:10
1 <= j & j <= width GoB f implies
ex k,i st k in dom f & [i,j] in Indices GoB f & f/.k = (GoB f)*(i,j);
theorem :: JORDAN5D:11
1 <= i & i <= len GoB f & 1 <= j & j <= width GoB f implies
ex k st k in dom f & [i,j] in Indices GoB f & (f/.k)`1 = (GoB f)*(i,j)`1;
theorem :: JORDAN5D:12
1 <= i & i <= len GoB f & 1 <= j & j <= width GoB f implies
ex k st k in dom f & [i,j] in Indices GoB f & (f/.k)`2 = (GoB f)*(i,j)`2;
begin :: Extrema of projections
theorem :: JORDAN5D:13
1 <= i & i <= len h implies
S-bound L~h <= (h/.i)`2 & (h/.i)`2 <= N-bound L~h;
theorem :: JORDAN5D:14
1 <= i & i <= len h implies
W-bound L~h <= (h/.i)`1 & (h/.i)`1 <= E-bound L~h;
theorem :: JORDAN5D:15
for X being Subset of REAL st
X = { q`2 : q`1 = W-bound L~h & q in L~h } holds
X = (proj2 || W-most L~h).:the carrier of (TOP-REAL 2)|(W-most L~h);
theorem :: JORDAN5D:16
for X being Subset of REAL st
X = { q`2 : q`1 = E-bound L~h & q in L~h } holds
X = (proj2 || E-most L~h).:the carrier of (TOP-REAL 2)|(E-most L~h);
theorem :: JORDAN5D:17
for X being Subset of REAL st
X = { q`1 : q`2 = N-bound L~h & q in L~h } holds
X = (proj1 || N-most L~h).:the carrier of (TOP-REAL 2)|(N-most L~h);
theorem :: JORDAN5D:18
for X being Subset of REAL st
X = { q`1 : q`2 = S-bound L~h & q in L~h } holds
X = (proj1 || S-most L~h).:the carrier of (TOP-REAL 2)|(S-most L~h);
theorem :: JORDAN5D:19
for X being Subset of REAL st X = { q`1 : q in L~g } holds
X = (proj1 || L~g).:the carrier of (TOP-REAL 2)|L~g;
theorem :: JORDAN5D:20
for X being Subset of REAL st X = { q`2 : q in L~g } holds
X = (proj2 || L~g).:the carrier of (TOP-REAL 2)|L~g;
theorem :: JORDAN5D:21
for X being Subset of REAL st
X = { q`2 : q`1 = W-bound L~h & q in L~h } holds
lower_bound X = inf (proj2 || W-most L~h);
theorem :: JORDAN5D:22
for X being Subset of REAL st
X = { q`2 : q`1 = W-bound L~h & q in L~h } holds
upper_bound X = sup (proj2 || W-most L~h);
theorem :: JORDAN5D:23
for X being Subset of REAL st
X = { q`2 : q`1 = E-bound L~h & q in L~h } holds
lower_bound X = inf (proj2 || E-most L~h);
theorem :: JORDAN5D:24
for X being Subset of REAL st
X = { q`2 : q`1 = E-bound L~h & q in L~h } holds
upper_bound X = sup (proj2 || E-most L~h);
theorem :: JORDAN5D:25
for X being Subset of REAL st X = { q`1 : q in L~g } holds
lower_bound X = inf (proj1 || L~g);
theorem :: JORDAN5D:26
for X being Subset of REAL st
X = { q`1 : q`2 = S-bound L~h & q in L~h } holds
lower_bound X = inf (proj1 || S-most L~h);
theorem :: JORDAN5D:27
for X being Subset of REAL st
X = { q`1 : q`2 = S-bound L~h & q in L~h } holds
upper_bound X = sup (proj1 || S-most L~h);
theorem :: JORDAN5D:28
for X being Subset of REAL st
X = { q`1 : q`2 = N-bound L~h & q in L~h } holds
lower_bound X = inf (proj1 || N-most L~h);
theorem :: JORDAN5D:29
for X being Subset of REAL st
X = { q`1 : q`2 = N-bound L~h & q in L~h } holds
upper_bound X = sup (proj1 || N-most L~h);
theorem :: JORDAN5D:30
for X being Subset of REAL st X = { q`2 : q in L~g } holds
lower_bound X = inf (proj2 || L~g);
theorem :: JORDAN5D:31
for X being Subset of REAL st X = { q`1 : q in L~g } holds
upper_bound X = sup (proj1 || L~g);
theorem :: JORDAN5D:32
for X being Subset of REAL st X = { q`2 : q in L~g } holds
upper_bound X = sup (proj2 || L~g);
theorem :: JORDAN5D:33
p in L~h & 1 <= I & I <= width GoB h implies (GoB h)*(1,I)`1 <= p`1;
theorem :: JORDAN5D:34
p in L~h & 1 <= I & I <= width GoB h implies p`1 <= (GoB h)*(len GoB h,I)`1;
theorem :: JORDAN5D:35
p in L~h & 1 <= I & I <= len GoB h implies (GoB h)*(I,1)`2 <= p`2;
theorem :: JORDAN5D:36
p in L~h & 1 <= I & I <= len GoB h implies p`2 <= (GoB h)*(I,width GoB h)`2;
theorem :: JORDAN5D:37
1 <= i & i <= len GoB h & 1 <= j & j <= width GoB h implies
ex q st q`1 = (GoB h)*(i,j)`1 & q in L~h;
theorem :: JORDAN5D:38
1 <= i & i <= len GoB h & 1 <= j & j <= width GoB h implies
ex q st q`2 = (GoB h)*(i,j)`2 & q in L~h;
theorem :: JORDAN5D:39
W-bound L~h = (GoB h)*(1,1)`1;
theorem :: JORDAN5D:40
S-bound L~h = (GoB h)*(1,1)`2;
theorem :: JORDAN5D:41
E-bound L~h = (GoB h)*(len GoB h,1)`1;
theorem :: JORDAN5D:42
N-bound L~h = (GoB h)*(1,width GoB h)`2;
theorem :: JORDAN5D:43
for Y being non empty finite Subset of NAT st
1 <= i & i <= len f & 1 <= I & I <= len GoB f &
Y = { j : [I,j] in Indices GoB f & ex k st k in dom f &
f/.k = (GoB f)*(I,j) } & (f/.i)`1 = ((GoB f)*(I,1))`1 & i1 = min Y holds
(GoB f)*(I,i1)`2 <= (f/.i)`2;
theorem :: JORDAN5D:44
for Y being non empty finite Subset of NAT st
1 <= i & i <= len h & 1 <= I & I <= width GoB h &
Y = { j : [j,I] in Indices GoB h & ex k st k in dom h &
h/.k = (GoB h)*(j,I) } & (h/.i)`2 = ((GoB h)*
(1,I))`2 & i1 = min Y holds
(GoB h)*(i1,I)`1 <= (h/.i)`1;
theorem :: JORDAN5D:45
for Y being non empty finite Subset of NAT st
1 <= i & i <= len h & 1 <= I & I <= width GoB h &
Y = { j : [j,I] in Indices GoB h & ex k st k in dom h &
h/.k = (GoB h)*(j,I) } & (h/.i)`2 = ((GoB h)*
(1,I))`2 & i1 = max Y holds
(GoB h)*(i1,I)`1 >= (h/.i)`1;
theorem :: JORDAN5D:46
for Y being non empty finite Subset of NAT st
1 <= i & i <= len f & 1 <= I & I <= len GoB f &
Y = { j : [I,j] in Indices GoB f & ex k st k in dom f &
f/.k = (GoB f)*(I,j) } & (f/.i)`1 = ((GoB f)*
(I,1))`1 & i1 = max Y holds
(GoB f)*(I,i1)`2 >= (f/.i)`2;
begin :: Coordinates of the special circular sequences bounding boxes
definition let g be non constant standard special_circular_sequence;
func i_s_w g -> Nat means
:: JORDAN5D:def 1
[1,it] in Indices GoB g & (GoB g)*(1,it) = W-min L~g;
func i_n_w g -> Nat means
:: JORDAN5D:def 2
[1,it] in Indices GoB g & (GoB g)*(1,it) = W-max L~g;
func i_s_e g -> Nat means
:: JORDAN5D:def 3
[len GoB g,it] in Indices GoB g & (GoB g)*(len GoB g,it) = E-min L~g;
func i_n_e g -> Nat means
:: JORDAN5D:def 4
[len GoB g,it] in Indices GoB g & (GoB g)*(len GoB g,it) = E-max L~g;
func i_w_s g -> Nat means
:: JORDAN5D:def 5
[it, 1] in Indices GoB g & (GoB g)*(it,1) = S-min L~g;
func i_e_s g -> Nat means
:: JORDAN5D:def 6
[it, 1] in Indices GoB g & (GoB g)*(it,1) = S-max L~g;
func i_w_n g -> Nat means
:: JORDAN5D:def 7
[it, width GoB g] in Indices GoB g & (GoB g)*(it,width GoB g) = N-min L~g;
func i_e_n g -> Nat means
:: JORDAN5D:def 8
[it, width GoB g] in Indices GoB g & (GoB g)*(it,width GoB g) = N-max L~g;
end;
theorem :: JORDAN5D:47
1 <= i_w_n h & i_w_n h <= len GoB h &
1 <= i_e_n h & i_e_n h <= len GoB h &
1 <= i_w_s h & i_w_s h <= len GoB h &
1 <= i_e_s h & i_e_s h <= len GoB h;
theorem :: JORDAN5D:48
1 <= i_n_e h & i_n_e h <= width GoB h &
1 <= i_s_e h & i_s_e h <= width GoB h &
1 <= i_n_w h & i_n_w h <= width GoB h &
1 <= i_s_w h & i_s_w h <= width GoB h;
definition let g be non constant standard special_circular_sequence;
func n_s_w g -> Nat means
:: JORDAN5D:def 9
1 <= it & it+1 <= len g & g.it = W-min L~g;
func n_n_w g -> Nat means
:: JORDAN5D:def 10
1 <= it & it+1 <= len g & g.it = W-max L~g;
func n_s_e g -> Nat means
:: JORDAN5D:def 11
1 <= it & it+1 <= len g & g.it = E-min L~g;
func n_n_e g -> Nat means
:: JORDAN5D:def 12
1 <= it & it+1 <= len g & g.it = E-max L~g;
func n_w_s g -> Nat means
:: JORDAN5D:def 13
1 <= it & it+1 <= len g & g.it = S-min L~g;
func n_e_s g -> Nat means
:: JORDAN5D:def 14
1 <= it & it+1 <= len g & g.it = S-max L~g;
func n_w_n g -> Nat means
:: JORDAN5D:def 15
1 <= it & it+1 <= len g & g.it = N-min L~g;
func n_e_n g -> Nat means
:: JORDAN5D:def 16
1 <= it & it+1 <= len g & g.it = N-max L~g;
end;
theorem :: JORDAN5D:49
n_w_n h <> n_w_s h;
theorem :: JORDAN5D:50
n_s_w h <> n_s_e h;
theorem :: JORDAN5D:51
n_e_n h <> n_e_s h;
theorem :: JORDAN5D:52
n_n_w h <> n_n_e h;
Back to top