environ vocabulary PARTFUN1, ARYTM_1, SEQ_1, RELAT_1, FUNCT_1, BOOLE, LIMFUNC1, LIMFUNC2, SEQ_2, ORDINAL2, RCOMP_1, SEQM_3, LIMFUNC3; notation TARSKI, XBOOLE_0, NUMBERS, XREAL_0, REAL_1, NAT_1, SEQ_1, SEQ_2, SEQM_3, RCOMP_1, RELSET_1, PARTFUN1, RFUNCT_2, LIMFUNC1, LIMFUNC2, LIMFUNC3; constructors REAL_1, NAT_1, SEQ_2, SEQM_3, PROB_1, RCOMP_1, PARTFUN1, RFUNCT_2, LIMFUNC1, LIMFUNC2, LIMFUNC3, MEMBERED, XBOOLE_0; clusters RELSET_1, ARYTM_3, MEMBERED, ZFMISC_1, XBOOLE_0; requirements NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve r,r1,r2,g,g1,g2,x0 for Real; reserve f1,f2 for PartFunc of REAL,REAL; theorem :: LIMFUNC4:1 for s be Real_Sequence,X be set st rng s c= dom(f2*f1) /\ X holds rng s c= dom(f2*f1) & rng s c= X & rng s c= dom f1 & rng s c= dom f1 /\ X & rng(f1*s) c= dom f2; theorem :: LIMFUNC4:2 for s be Real_Sequence,X be set st rng s c= dom(f2*f1) \ X holds rng s c= dom(f2*f1) & rng s c= dom f1 & rng s c= dom f1 \ X & rng(f1*s) c= dom f2; theorem :: LIMFUNC4:3 f1 is divergent_in+infty_to+infty & f2 is divergent_in+infty_to+infty & (for r ex g st r<g & g in dom(f2*f1)) implies f2*f1 is divergent_in+infty_to+infty; theorem :: LIMFUNC4:4 f1 is divergent_in+infty_to+infty & f2 is divergent_in+infty_to-infty & (for r ex g st r<g & g in dom(f2*f1)) implies f2*f1 is divergent_in+infty_to-infty; theorem :: LIMFUNC4:5 f1 is divergent_in+infty_to-infty & f2 is divergent_in-infty_to+infty & (for r ex g st r<g & g in dom(f2*f1)) implies f2*f1 is divergent_in+infty_to+infty; theorem :: LIMFUNC4:6 f1 is divergent_in+infty_to-infty & f2 is divergent_in-infty_to-infty & (for r ex g st r<g & g in dom(f2*f1)) implies f2*f1 is divergent_in+infty_to-infty; theorem :: LIMFUNC4:7 f1 is divergent_in-infty_to+infty & f2 is divergent_in+infty_to+infty & (for r ex g st g<r & g in dom(f2*f1)) implies f2*f1 is divergent_in-infty_to+infty; theorem :: LIMFUNC4:8 f1 is divergent_in-infty_to+infty & f2 is divergent_in+infty_to-infty & (for r ex g st g<r & g in dom(f2*f1)) implies f2*f1 is divergent_in-infty_to-infty; theorem :: LIMFUNC4:9 f1 is divergent_in-infty_to-infty & f2 is divergent_in-infty_to+infty & (for r ex g st g<r & g in dom(f2*f1)) implies f2*f1 is divergent_in-infty_to+infty; theorem :: LIMFUNC4:10 f1 is divergent_in-infty_to-infty & f2 is divergent_in-infty_to-infty & (for r ex g st g<r & g in dom(f2*f1)) implies f2*f1 is divergent_in-infty_to-infty; theorem :: LIMFUNC4:11 f1 is_left_divergent_to+infty_in x0 & f2 is divergent_in+infty_to+infty & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) implies f2*f1 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC4:12 f1 is_left_divergent_to+infty_in x0 & f2 is divergent_in+infty_to-infty & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) implies f2*f1 is_left_divergent_to-infty_in x0; theorem :: LIMFUNC4:13 f1 is_left_divergent_to-infty_in x0 & f2 is divergent_in-infty_to+infty & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) implies f2*f1 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC4:14 f1 is_left_divergent_to-infty_in x0 & f2 is divergent_in-infty_to-infty & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) implies f2*f1 is_left_divergent_to-infty_in x0; theorem :: LIMFUNC4:15 f1 is_right_divergent_to+infty_in x0 & f2 is divergent_in+infty_to+infty & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) implies f2*f1 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC4:16 f1 is_right_divergent_to+infty_in x0 & f2 is divergent_in+infty_to-infty & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) implies f2*f1 is_right_divergent_to-infty_in x0; theorem :: LIMFUNC4:17 f1 is_right_divergent_to-infty_in x0 & f2 is divergent_in-infty_to+infty & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) implies f2*f1 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC4:18 f1 is_right_divergent_to-infty_in x0 & f2 is divergent_in-infty_to-infty & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) implies f2*f1 is_right_divergent_to-infty_in x0; theorem :: LIMFUNC4:19 f1 is_left_convergent_in x0 & f2 is_left_divergent_to+infty_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds f1.r<lim_left(f1,x0)) implies f2*f1 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC4:20 f1 is_left_convergent_in x0 & f2 is_left_divergent_to-infty_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds f1.r<lim_left(f1,x0)) implies f2*f1 is_left_divergent_to-infty_in x0; theorem :: LIMFUNC4:21 f1 is_left_convergent_in x0 & f2 is_right_divergent_to+infty_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds lim_left(f1,x0)<f1.r) implies f2*f1 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC4:22 f1 is_left_convergent_in x0 & f2 is_right_divergent_to-infty_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds lim_left(f1,x0)<f1.r) implies f2*f1 is_left_divergent_to-infty_in x0; theorem :: LIMFUNC4:23 f1 is_right_convergent_in x0 & f2 is_right_divergent_to+infty_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds lim_right(f1,x0)<f1.r) implies f2*f1 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC4:24 f1 is_right_convergent_in x0 & f2 is_right_divergent_to-infty_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds lim_right(f1,x0)<f1.r) implies f2*f1 is_right_divergent_to-infty_in x0; theorem :: LIMFUNC4:25 f1 is_right_convergent_in x0 & f2 is_left_divergent_to+infty_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds f1.r<lim_right(f1,x0)) implies f2*f1 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC4:26 f1 is_right_convergent_in x0 & f2 is_left_divergent_to-infty_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds f1.r<lim_right(f1,x0)) implies f2*f1 is_right_divergent_to-infty_in x0; theorem :: LIMFUNC4:27 f1 is convergent_in+infty & f2 is_left_divergent_to+infty_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds f1.g<lim_in+infty f1) implies f2*f1 is divergent_in+infty_to+infty; theorem :: LIMFUNC4:28 f1 is convergent_in+infty & f2 is_left_divergent_to-infty_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds f1.g<lim_in+infty f1) implies f2*f1 is divergent_in+infty_to-infty; theorem :: LIMFUNC4:29 f1 is convergent_in+infty & f2 is_right_divergent_to+infty_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds lim_in+infty f1<f1.g) implies f2*f1 is divergent_in+infty_to+infty; theorem :: LIMFUNC4:30 f1 is convergent_in+infty & f2 is_right_divergent_to-infty_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds lim_in+infty f1<f1.g) implies f2*f1 is divergent_in+infty_to-infty; theorem :: LIMFUNC4:31 f1 is convergent_in-infty & f2 is_left_divergent_to+infty_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds f1.g<lim_in-infty f1) implies f2*f1 is divergent_in-infty_to+infty; theorem :: LIMFUNC4:32 f1 is convergent_in-infty & f2 is_left_divergent_to-infty_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds f1.g<lim_in-infty f1) implies f2*f1 is divergent_in-infty_to-infty; theorem :: LIMFUNC4:33 f1 is convergent_in-infty & f2 is_right_divergent_to+infty_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds lim_in-infty f1<f1.g) implies f2*f1 is divergent_in-infty_to+infty; theorem :: LIMFUNC4:34 f1 is convergent_in-infty & f2 is_right_divergent_to-infty_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds lim_in-infty f1<f1.g) implies f2*f1 is divergent_in-infty_to-infty; theorem :: LIMFUNC4:35 f1 is_divergent_to+infty_in x0 & f2 is divergent_in+infty_to+infty & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) implies f2*f1 is_divergent_to+infty_in x0; theorem :: LIMFUNC4:36 f1 is_divergent_to+infty_in x0 & f2 is divergent_in+infty_to-infty & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) implies f2*f1 is_divergent_to-infty_in x0; theorem :: LIMFUNC4:37 f1 is_divergent_to-infty_in x0 & f2 is divergent_in-infty_to+infty & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) implies f2*f1 is_divergent_to+infty_in x0; theorem :: LIMFUNC4:38 f1 is_divergent_to-infty_in x0 & f2 is divergent_in-infty_to-infty & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) implies f2*f1 is_divergent_to-infty_in x0; theorem :: LIMFUNC4:39 f1 is_convergent_in x0 & f2 is_divergent_to+infty_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r<>lim(f1,x0)) implies f2*f1 is_divergent_to+infty_in x0; theorem :: LIMFUNC4:40 f1 is_convergent_in x0 & f2 is_divergent_to-infty_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r<>lim(f1,x0)) implies f2*f1 is_divergent_to-infty_in x0; theorem :: LIMFUNC4:41 f1 is_convergent_in x0 & f2 is_right_divergent_to+infty_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r>lim(f1,x0)) implies f2*f1 is_divergent_to+infty_in x0; theorem :: LIMFUNC4:42 f1 is_convergent_in x0 & f2 is_right_divergent_to-infty_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r>lim(f1,x0)) implies f2*f1 is_divergent_to-infty_in x0; theorem :: LIMFUNC4:43 f1 is_right_convergent_in x0 & f2 is_divergent_to+infty_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds f1.r<>lim_right(f1,x0)) implies f2*f1 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC4:44 f1 is_right_convergent_in x0 & f2 is_divergent_to-infty_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds f1.r<>lim_right(f1,x0)) implies f2*f1 is_right_divergent_to-infty_in x0; theorem :: LIMFUNC4:45 f1 is convergent_in+infty & f2 is_divergent_to+infty_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds f1.g<>lim_in+infty f1) implies f2*f1 is divergent_in+infty_to+infty; theorem :: LIMFUNC4:46 f1 is convergent_in+infty & f2 is_divergent_to-infty_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds f1.g<>lim_in+infty f1) implies f2*f1 is divergent_in+infty_to-infty; theorem :: LIMFUNC4:47 f1 is convergent_in-infty & f2 is_divergent_to+infty_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds f1.g<>lim_in-infty f1) implies f2*f1 is divergent_in-infty_to+infty; theorem :: LIMFUNC4:48 f1 is convergent_in-infty & f2 is_divergent_to-infty_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds f1.g<>lim_in-infty f1) implies f2*f1 is divergent_in-infty_to-infty; theorem :: LIMFUNC4:49 f1 is_convergent_in x0 & f2 is_left_divergent_to+infty_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r<lim(f1,x0)) implies f2*f1 is_divergent_to+infty_in x0; theorem :: LIMFUNC4:50 f1 is_convergent_in x0 & f2 is_left_divergent_to-infty_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r<lim(f1,x0)) implies f2*f1 is_divergent_to-infty_in x0; theorem :: LIMFUNC4:51 f1 is_left_convergent_in x0 & f2 is_divergent_to+infty_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds f1.r<>lim_left(f1,x0)) implies f2*f1 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC4:52 f1 is_left_convergent_in x0 & f2 is_divergent_to-infty_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds f1.r<>lim_left(f1,x0)) implies f2*f1 is_left_divergent_to-infty_in x0; theorem :: LIMFUNC4:53 f1 is divergent_in+infty_to+infty & f2 is convergent_in+infty & (for r ex g st r<g & g in dom(f2*f1)) implies f2*f1 is convergent_in+infty & lim_in+infty(f2*f1)=lim_in+infty f2; theorem :: LIMFUNC4:54 f1 is divergent_in+infty_to-infty & f2 is convergent_in-infty & (for r ex g st r<g & g in dom(f2*f1)) implies f2*f1 is convergent_in+infty & lim_in+infty(f2*f1)=lim_in-infty f2; theorem :: LIMFUNC4:55 f1 is divergent_in-infty_to+infty & f2 is convergent_in+infty & (for r ex g st g<r & g in dom(f2*f1)) implies f2*f1 is convergent_in-infty & lim_in-infty(f2*f1)=lim_in+infty f2; theorem :: LIMFUNC4:56 f1 is divergent_in-infty_to-infty & f2 is convergent_in-infty & (for r ex g st g<r & g in dom(f2*f1)) implies f2*f1 is convergent_in-infty & lim_in-infty(f2*f1)=lim_in-infty f2; theorem :: LIMFUNC4:57 f1 is_left_divergent_to+infty_in x0 & f2 is convergent_in+infty & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) implies f2*f1 is_left_convergent_in x0 & lim_left(f2*f1,x0)=lim_in+infty f2; theorem :: LIMFUNC4:58 f1 is_left_divergent_to-infty_in x0 & f2 is convergent_in-infty & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) implies f2*f1 is_left_convergent_in x0 & lim_left(f2*f1,x0)=lim_in-infty f2; theorem :: LIMFUNC4:59 f1 is_right_divergent_to+infty_in x0 & f2 is convergent_in+infty & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) implies f2*f1 is_right_convergent_in x0 & lim_right(f2*f1,x0)=lim_in+infty f2; theorem :: LIMFUNC4:60 f1 is_right_divergent_to-infty_in x0 & f2 is convergent_in-infty & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) implies f2*f1 is_right_convergent_in x0 & lim_right(f2*f1,x0)=lim_in-infty f2; theorem :: LIMFUNC4:61 f1 is_left_convergent_in x0 & f2 is_left_convergent_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds f1.r<lim_left(f1,x0)) implies f2*f1 is_left_convergent_in x0 & lim_left(f2*f1,x0)=lim_left(f2,lim_left(f1,x0)); theorem :: LIMFUNC4:62 f1 is_right_convergent_in x0 & f2 is_right_convergent_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds lim_right(f1,x0)<f1.r) implies f2*f1 is_right_convergent_in x0 & lim_right(f2*f1,x0)=lim_right(f2,lim_right(f1,x0)); theorem :: LIMFUNC4:63 f1 is_left_convergent_in x0 & f2 is_right_convergent_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds lim_left(f1,x0)<f1.r) implies f2*f1 is_left_convergent_in x0 & lim_left(f2*f1,x0)=lim_right(f2,lim_left(f1,x0)); theorem :: LIMFUNC4:64 f1 is_right_convergent_in x0 & f2 is_left_convergent_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds f1.r<lim_right(f1,x0)) implies f2*f1 is_right_convergent_in x0 & lim_right(f2*f1,x0)=lim_left(f2,lim_right(f1,x0)); theorem :: LIMFUNC4:65 f1 is convergent_in+infty & f2 is_left_convergent_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds f1.g<lim_in+infty f1) implies f2*f1 is convergent_in+infty & lim_in+infty(f2*f1)=lim_left(f2,lim_in+infty f1); theorem :: LIMFUNC4:66 f1 is convergent_in+infty & f2 is_right_convergent_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds lim_in+infty f1<f1.g) implies f2*f1 is convergent_in+infty & lim_in+infty(f2*f1)=lim_right(f2,lim_in+infty f1); theorem :: LIMFUNC4:67 f1 is convergent_in-infty & f2 is_left_convergent_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds f1.g<lim_in-infty f1) implies f2*f1 is convergent_in-infty & lim_in-infty(f2*f1)=lim_left(f2,lim_in-infty f1); theorem :: LIMFUNC4:68 f1 is convergent_in-infty & f2 is_right_convergent_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds lim_in-infty f1<f1.g) implies f2*f1 is convergent_in-infty & lim_in-infty(f2*f1)=lim_right(f2,lim_in-infty f1); theorem :: LIMFUNC4:69 f1 is_divergent_to+infty_in x0 & f2 is convergent_in+infty & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) implies f2*f1 is_convergent_in x0 & lim(f2*f1,x0)=lim_in+infty f2; theorem :: LIMFUNC4:70 f1 is_divergent_to-infty_in x0 & f2 is convergent_in-infty & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) implies f2*f1 is_convergent_in x0 & lim(f2*f1,x0)=lim_in-infty f2; theorem :: LIMFUNC4:71 f1 is convergent_in+infty & f2 is_convergent_in lim_in+infty f1 & (for r ex g st r<g & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ right_open_halfline(r) holds f1.g<>lim_in+infty f1) implies f2*f1 is convergent_in+infty & lim_in+infty(f2*f1)=lim(f2,lim_in+infty f1); theorem :: LIMFUNC4:72 f1 is convergent_in-infty & f2 is_convergent_in lim_in-infty f1 & (for r ex g st g<r & g in dom(f2*f1)) & (ex r st for g st g in dom f1 /\ left_open_halfline(r) holds f1.g<>lim_in-infty f1) implies f2*f1 is convergent_in-infty & lim_in-infty(f2*f1)=lim(f2,lim_in-infty f1); theorem :: LIMFUNC4:73 f1 is_convergent_in x0 & f2 is_left_convergent_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r<lim(f1,x0)) implies f2*f1 is_convergent_in x0 & lim(f2*f1,x0)=lim_left(f2,lim(f1,x0)); theorem :: LIMFUNC4:74 f1 is_left_convergent_in x0 & f2 is_convergent_in lim_left(f1,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0-g,x0.[ holds f1.r<>lim_left(f1,x0)) implies f2*f1 is_left_convergent_in x0 & lim_left(f2*f1,x0)=lim(f2,lim_left(f1,x0)); theorem :: LIMFUNC4:75 f1 is_convergent_in x0 & f2 is_right_convergent_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds lim(f1,x0)<f1.r) implies f2*f1 is_convergent_in x0 & lim(f2*f1,x0)=lim_right(f2,lim(f1,x0)); theorem :: LIMFUNC4:76 f1 is_right_convergent_in x0 & f2 is_convergent_in lim_right(f1,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ ].x0,x0+g.[ holds f1.r<>lim_right(f1,x0)) implies f2*f1 is_right_convergent_in x0 & lim_right(f2*f1,x0)=lim(f2,lim_right(f1,x0)); theorem :: LIMFUNC4:77 f1 is_convergent_in x0 & f2 is_convergent_in lim(f1,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f2*f1) & g2<r2 & x0<g2 & g2 in dom(f2*f1)) & (ex g st 0<g & for r st r in dom f1 /\ (].x0-g,x0.[ \/ ].x0,x0+g.[) holds f1.r<>lim(f1,x0)) implies f2*f1 is_convergent_in x0 & lim(f2*f1,x0)=lim(f2,lim(f1,x0));