Journal of Formalized Mathematics
Volume 8, 1996
University of Bialystok
Copyright (c) 1996 Association of Mizar Users

The abstract of the Mizar article:

Inverse Limits of Many Sorted Algebras

by
Adam Grabowski

Received June 11, 1996

MML identifier: MSALIMIT
[ Mizar article, MML identifier index ]


environ

 vocabulary ORDERS_1, AMI_1, MSUALG_1, PRALG_2, FUNCT_1, RELAT_1, FRAENKEL,
      CARD_3, RLVECT_2, PRALG_1, MSUALG_3, ALG_1, ZF_REFLE, FUNCOP_1, PBOOLE,
      RELAT_2, CQC_LANG, MCART_1, MSUALG_2, UNIALG_2, TDGROUP, BOOLE, QC_LANG1,
      FUNCT_2, FINSEQ_1, COMPLEX1, FINSEQ_4, TARSKI, FUNCT_6, FUNCT_5,
      NATTRA_1, PUA2MSS1, PARTFUN1, MSALIMIT;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, NAT_1, MCART_1, RELAT_1,
      FUNCT_1, STRUCT_0, RELAT_2, FUNCT_2, FINSEQ_1, ORDERS_1, CQC_LANG,
      FRAENKEL, RELSET_1, PARTFUN1, CARD_3, BINOP_1, FINSEQ_4, FUNCT_5,
      FUNCT_6, PBOOLE, PRALG_1, MSUALG_1, MSUALG_2, MSUALG_3, PRE_CIRC,
      PRALG_2, PUA2MSS1, ORDERS_3;
 constructors CQC_LANG, FINSEQ_4, MSUALG_6, ORDERS_3, PRE_CIRC, PUA2MSS1;
 clusters FUNCT_1, MSUALG_1, MSUALG_2, MSUALG_3, ORDERS_1, ORDERS_3, PRALG_1,
      PRALG_2, PRALG_3, RELSET_1, STRUCT_0, SUBSET_1, RELAT_1, ARYTM_3,
      FRAENKEL, FUNCT_2;
 requirements SUBSET, BOOLE;


begin :: Inverse Limits of Many Sorted Algebras

 reserve P for non empty Poset,
         i, j, k for Element of P;
 reserve S for non void non empty ManySortedSign;

definition let I be non empty set, S;
 let AF be MSAlgebra-Family of I,S; let i be Element of I;
 let o be OperSymbol of S;
  cluster ((OPER AF).i).o -> Function-like Relation-like;
end;

definition let I be non empty set, S;
 let AF be MSAlgebra-Family of I,S; let s be SortSymbol of S;
  cluster (SORTS AF).s -> functional;
end;

definition let P, S;
 mode OrderedAlgFam of P,S -> MSAlgebra-Family of the carrier of P,S means
:: MSALIMIT:def 1

  ex F be ManySortedFunction of the InternalRel of P st
   for i,j,k st i >= j & j >= k
    ex f1 be ManySortedFunction of it.i, it.j,
       f2 be ManySortedFunction of it.j, it.k st f1 = F.(j,i) & f2 = F.(k,j) &
     F.(k,i) = f2 ** f1 & f1 is_homomorphism it.i, it.j;
end;

 reserve OAF for OrderedAlgFam of P, S;

definition let P, S, OAF;
 mode Binding of OAF -> ManySortedFunction of the InternalRel of P means
:: MSALIMIT:def 2
  for i,j,k st i >= j & j >= k
  ex f1 be ManySortedFunction of OAF.i, OAF.j,
     f2 be ManySortedFunction of OAF.j, OAF.k st
    f1 = it.(j,i) & f2 = it.(k,j) &
    it.(k,i) = f2 ** f1 & f1 is_homomorphism OAF.i, OAF.j;
end;

definition let P, S, OAF; let B be Binding of OAF, i,j;
 assume  i >= j;
 func bind (B,i,j) -> ManySortedFunction of OAF.i, OAF.j equals
:: MSALIMIT:def 3
   B.(j,i);
end;

 reserve B for Binding of OAF;

theorem :: MSALIMIT:1
 i >= j & j >= k implies bind (B,j,k) ** bind (B,i,j) = bind (B,i,k);

definition let P, S, OAF;
 let IT be Binding of OAF;
 attr IT is normalized means
:: MSALIMIT:def 4
  for i holds IT.(i,i) = id (the Sorts of OAF.i);
end;

theorem :: MSALIMIT:2
 for P,S,OAF,B,i,j st i >= j
  for f be ManySortedFunction of OAF.i,OAF.j st f = bind (B,i,j) holds
   f is_homomorphism OAF.i,OAF.j;

definition let P, S, OAF, B;
 func Normalized B -> Binding of OAF means
:: MSALIMIT:def 5
  for i, j st i >= j holds it.(j,i) = IFEQ (j, i, id (the Sorts of OAF.i),
                    bind (B,i,j) ** id (the Sorts of OAF.i) );
end;

theorem :: MSALIMIT:3
  for i, j st i >= j & i <> j holds B.(j,i) = (Normalized B).(j,i);

definition let P, S, OAF, B;
 cluster Normalized B -> normalized;
end;

definition let P, S, OAF;
 cluster normalized Binding of OAF;
end;

theorem :: MSALIMIT:4
   for NB be normalized Binding of OAF
  for i, j st i >= j holds (Normalized NB).(j,i) = NB.(j,i);

definition let P, S, OAF; let B be Binding of OAF;
 func InvLim B -> strict MSSubAlgebra of product OAF means
:: MSALIMIT:def 6
  for s be SortSymbol of S
   for f be Element of (SORTS OAF).s holds
    f in (the Sorts of it).s iff
  for i,j st i >= j holds (bind (B,i,j).s).(f.i) = f.j;
end;

theorem :: MSALIMIT:5
    for DP be discrete non empty Poset, S for OAF be OrderedAlgFam of DP,S
   for B be normalized Binding of OAF holds InvLim B = product OAF;

begin  :: Sets and Morphisms of Many Sorted Signatures

 reserve x for set, A for non empty set;

definition let X be set;
  attr X is MSS-membered means
:: MSALIMIT:def 7
    x in X implies x is strict non empty non void ManySortedSign;
end;

definition
  cluster non empty MSS-membered set;
end;

definition
 func TrivialMSSign -> strict ManySortedSign means
:: MSALIMIT:def 8
   it is empty void;
end;

definition
  cluster TrivialMSSign -> empty void;
end;

definition
  cluster strict empty void ManySortedSign;
end;

theorem :: MSALIMIT:6
   for S be void ManySortedSign
  holds id the carrier of S, id the OperSymbols of S
   form_morphism_between S,S;

definition let A;
  func MSS_set A means
:: MSALIMIT:def 9
   x in it iff
    ex S be strict non empty non void ManySortedSign st x = S &
     ( the carrier of S c= A & the OperSymbols of S c= A );
end;

definition let A;
  cluster MSS_set A -> non empty MSS-membered;
end;

definition let A be non empty MSS-membered set;
  redefine mode Element of A -> strict non empty non void ManySortedSign;
end;

definition let S1,S2 be ManySortedSign;
  func MSS_morph (S1,S2) means
:: MSALIMIT:def 10
     x in it iff
     ex f,g be Function st x = [f,g] & f,g form_morphism_between S1,S2;
end;

Back to top