environ vocabulary ANPROJ_2, INCSP_1, AFF_2, PROJDES1; notation STRUCT_0, COLLSP, ANPROJ_2; constructors ANPROJ_2, XBOOLE_0; clusters ANPROJ_2, ZFMISC_1, XBOOLE_0; begin reserve FCPS for up-3-dimensional CollProjectiveSpace; reserve a,a',b,b',c,c',d,d',o,p,q,r,s,t,u,x,y,z for Element of FCPS; theorem :: PROJDES1:1 a,b,c is_collinear implies b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear; canceled 3; theorem :: PROJDES1:5 ex q,r st not p,q,r is_collinear; theorem :: PROJDES1:6 not a,b,c is_collinear & a,b,b' is_collinear & a<>b' implies not a,b',c is_collinear; theorem :: PROJDES1:7 not a,b,c is_collinear & a,b,d is_collinear & a,c,d is_collinear implies a=d; theorem :: PROJDES1:8 not o,a,d is_collinear & o,d,d' is_collinear & a,d,s is_collinear & d<>d' & a',d',s is_collinear & o,a,a' is_collinear & o<>a' implies s<>d; definition let FCPS,a,b,c,d; pred a,b,c,d are_coplanar means :: PROJDES1:def 1 ex x being Element of FCPS st a,b,x is_collinear & c,d,x is_collinear; end; canceled; theorem :: PROJDES1:10 a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear implies a,b,c,d are_coplanar; theorem :: PROJDES1:11 a,b,c,d are_coplanar implies b,c,d,a are_coplanar & c,d,a,b are_coplanar & d,a,b,c are_coplanar & b,a,c,d are_coplanar & c,b,d,a are_coplanar & d,c,a,b are_coplanar & a,d,b,c are_coplanar & a,c,d,b are_coplanar & b,d,a,c are_coplanar & c,a,b,d are_coplanar & d,b,c,a are_coplanar & c,a,d,b are_coplanar & d,b,a,c are_coplanar & a,c,b,d are_coplanar & b,d,c,a are_coplanar & a,b,d,c are_coplanar & a,d,c,b are_coplanar & b,c,a,d are_coplanar & b,a,d,c are_coplanar & c,b,a,d are_coplanar & c,d,b,a are_coplanar & d,a,c,b are_coplanar & d,c,b,a are_coplanar; theorem :: PROJDES1:12 not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar implies p,q,r,s are_coplanar; theorem :: PROJDES1:13 not p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,r are_coplanar & a,b,c,q are_coplanar & p,q,r,s are_coplanar implies a,b,c,s are_coplanar ; theorem :: PROJDES1:14 p<>q & p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar implies a,b,c,r are_coplanar; theorem :: PROJDES1:15 not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar implies ex x st p,q,x is_collinear & r,s,x is_collinear; theorem :: PROJDES1:16 ex a,b,c,d st not a,b,c,d are_coplanar; theorem :: PROJDES1:17 not p,q,r is_collinear implies ex s st not p,q,r,s are_coplanar; theorem :: PROJDES1:18 a=b or a=c or b=c or a=d or b=d or d=c implies a,b,c,d are_coplanar; theorem :: PROJDES1:19 not a,b,c,o are_coplanar & o,a,a' is_collinear & a<>a' implies not a,b,c,a' are_coplanar; theorem :: PROJDES1:20 not a,b,c is_collinear & not a',b',c' is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a',b',c',p are_coplanar & a',b',c',q are_coplanar & a',b',c',r are_coplanar & not a,b,c,a' are_coplanar implies p,q,r is_collinear; theorem :: PROJDES1:21 a<>a' & o,a,a' is_collinear & not a,b,c,o are_coplanar & not a',b',c' is_collinear & a,b,p is_collinear & a',b',p is_collinear & b,c,q is_collinear & b',c',q is_collinear & a,c,r is_collinear & a',c',r is_collinear implies p,q,r is_collinear; theorem :: PROJDES1:22 not a,b,c,d are_coplanar & a,b,c,o are_coplanar & not a,b,o is_collinear implies not a,b,d,o are_coplanar; theorem :: PROJDES1:23 not a,b,c,o are_coplanar & o,a,a' is_collinear & o,b,b' is_collinear & o,c,c' is_collinear & o<>a' & o<>b' & o<>c' implies not a',b',c' is_collinear & not a',b',c',o are_coplanar; theorem :: PROJDES1:24 a,b,c,o are_coplanar & not a,b,c,d are_coplanar & not a,b,d,o are_coplanar & not b,c,d,o are_coplanar & not a,c,d,o are_coplanar & o,d,d' is_collinear & o,a,a' is_collinear & o,b,b' is_collinear & o,c,c' is_collinear & a,d,s is_collinear & a',d',s is_collinear & b,d,t is_collinear & b',d',t is_collinear & c,d,u is_collinear & o<>a' & o<>d' & d<>d' & o<>b' implies not s,t,u is_collinear; definition let FCPS,o,a,b,c; pred o,a,b,c constitute_a_quadrangle means :: PROJDES1:def 2 not a,b,c is_collinear & not o,a,b is_collinear & not o,b,c is_collinear & not o,c,a is_collinear; end; canceled; theorem :: PROJDES1:26 not o,a,b is_collinear & not o,b,c is_collinear & not o,a,c is_collinear & o,a,a' is_collinear & o,b,b' is_collinear & o,c,c' is_collinear & a,b,p is_collinear & a',b',p is_collinear & a<>a' & b,c,r is_collinear & b',c',r is_collinear & a,c,q is_collinear & b<>b' & a',c',q is_collinear & o<>a' & o<>b' & o<>c' implies r,q,p is_collinear; theorem :: PROJDES1:27 for CS being up-3-dimensional CollProjectiveSpace holds CS is Desarguesian; definition cluster -> Desarguesian (up-3-dimensional CollProjectiveSpace); end;