environ vocabulary FUNCT_1, BOOLE, ABSVALUE, EUCLID, PRE_TOPC, SQUARE_1, RELAT_1, SUBSET_1, ARYTM_3, METRIC_1, RCOMP_1, FUNCT_5, TOPMETR, COMPTS_1, ORDINAL2, TOPS_2, ARYTM_1, ARYTM, COMPLEX1, MCART_1, PCOMPS_1, JGRAPH_3, BORSUK_1, TOPREAL1, TOPREAL2, JORDAN3, PSCOMP_1, REALSET1, JORDAN5C, JORDAN6, JGRAPH_2, JGRAPH_6, RELAT_2, FINSEQ_1, FINSEQ_4, TARSKI, TOPS_1, FUNCT_4, JORDAN17; notation XBOOLE_0, ORDINAL1, ABSVALUE, EUCLID, TARSKI, RELAT_1, TOPS_2, FUNCT_1, FUNCT_2, SUBSET_1, FINSEQ_1, STRUCT_0, TOPMETR, PCOMPS_1, COMPTS_1, METRIC_1, SQUARE_1, RCOMP_1, PRE_TOPC, FUNCT_4, JGRAPH_3, JORDAN5C, JORDAN6, TOPREAL2, CONNSP_1, FINSEQ_4, TOPS_1, JORDAN17, JGRAPH_2, NUMBERS, XCMPLX_0, XREAL_0, TOPRNS_1, TOPREAL1, PSCOMP_1, REAL_1, NAT_1; constructors TOPS_1, RCOMP_1, JGRAPH_2, TOPREAL2, TOPGRP_1, CONNSP_1, WELLFND1, JGRAPH_3, JORDAN5C, JORDAN6, TOPRNS_1, TREAL_1, FINSEQ_4, TOPS_2, JORDAN17, TOPREAL1, PSCOMP_1, REAL_1, NAT_1; clusters STRUCT_0, RELSET_1, FUNCT_1, EUCLID, PRE_TOPC, TOPMETR, SQUARE_1, PSCOMP_1, BORSUK_1, TOPREAL2, BORSUK_2, TOPREAL1, JGRAPH_3, TOPS_1, JGRAPH_2, TOPREAL6, XREAL_0, NAT_1, MEMBERED, XBOOLE_0; requirements REAL, BOOLE, SUBSET, NUMERALS, ARITHM; begin :: Preliminaries canceled; theorem :: JGRAPH_6:2 for a,b,r being real number st 0<=r & r<=1 & a<=b holds a<=(1-r)*a+r*b & (1-r)*a+r*b<=b; theorem :: JGRAPH_6:3 for a,b being real number st a>=0 & b>0 or a>0 & b>=0 holds a+b>0; theorem :: JGRAPH_6:4 for a,b being real number st -1<=a & a<=1 & -1<=b & b<=1 holds a^2*b^2<=1; theorem :: JGRAPH_6:5 for a,b being real number st a>=0 & b>=0 holds a*sqrt(b)=sqrt(a^2*b); theorem :: JGRAPH_6:6 for a,b being real number st -1<=a & a<=1 & -1<=b & b<=1 holds (-b)*sqrt(1+a^2)<=sqrt(1+b^2) & -sqrt(1+b^2)<= b*sqrt(1+a^2); theorem :: JGRAPH_6:7 for a,b being real number st -1<=a & a<=1 & -1<=b & b<=1 holds b*sqrt(1+a^2)<=sqrt(1+b^2); theorem :: JGRAPH_6:8 for a,b being real number st a>=b holds a*sqrt(1+b^2)>= b*sqrt(1+a^2); theorem :: JGRAPH_6:9 for a,c,d being real number,p being Point of TOP-REAL 2 st c <=d & p in LSeg(|[a,c]|,|[a,d]|) holds p`1=a & c <=p`2 & p`2<=d; theorem :: JGRAPH_6:10 for a,c,d being real number,p being Point of TOP-REAL 2 st c <d & p`1=a & c <=p`2 & p`2<=d holds p in LSeg(|[a,c]|,|[a,d]|); theorem :: JGRAPH_6:11 for a,b,d being real number,p being Point of TOP-REAL 2 st a <=b & p in LSeg(|[a,d]|,|[b,d]|) holds p`2=d & a <=p`1 & p`1<=b; theorem :: JGRAPH_6:12 :: BORSUK_4:48 for a,b being real number,B being Subset of I[01] st B=[.a,b.] holds B is closed; theorem :: JGRAPH_6:13 for X being TopStruct,Y,Z being non empty TopStruct, f being map of X,Y, g being map of X,Z holds dom f=dom g & dom f=the carrier of X & dom f=[#]X; theorem :: JGRAPH_6:14 for X being non empty TopSpace,B being non empty Subset of X ex f being map of X|B,X st (for p being Point of X|B holds f.p=p) & f is continuous; theorem :: JGRAPH_6:15 for X being non empty TopSpace, f1 being map of X,R^1,a being real number st f1 is continuous holds ex g being map of X,R^1 st (for p being Point of X,r1 being real number st f1.p=r1 holds g.p=r1-a) & g is continuous; theorem :: JGRAPH_6:16 for X being non empty TopSpace, f1 being map of X,R^1,a being real number st f1 is continuous holds ex g being map of X,R^1 st (for p being Point of X,r1 being real number st f1.p=r1 holds g.p=a-r1) & g is continuous; theorem :: JGRAPH_6:17 for X being non empty TopSpace, n being Nat, p being Point of TOP-REAL n, f being map of X,R^1 st f is continuous ex g being map of X,TOP-REAL n st (for r being Point of X holds g.r=(f.r)*p) & g is continuous; theorem :: JGRAPH_6:18 Sq_Circ.(|[-1,0]|)= |[-1,0]|; theorem :: JGRAPH_6:19 for P being compact non empty Subset of TOP-REAL 2 st P={p where p is Point of TOP-REAL 2: |.p.|=1} holds Sq_Circ.(|[-1,0]|)=W-min(P); theorem :: JGRAPH_6:20 for X being non empty TopSpace, n being Nat, g1,g2 being map of X,TOP-REAL n st g1 is continuous & g2 is continuous ex g being map of X,TOP-REAL n st (for r being Point of X holds g.r=g1.r + g2.r) & g is continuous; theorem :: JGRAPH_6:21 for X being non empty TopSpace, n being Nat, p1,p2 being Point of TOP-REAL n, f1,f2 being map of X,R^1 st f1 is continuous & f2 is continuous ex g being map of X,TOP-REAL n st (for r being Point of X holds g.r=(f1.r)*p1+(f2.r)*p2) & g is continuous; theorem :: JGRAPH_6:22 for f being Function,A being set st f is one-to-one & A c= dom f holds f".:(f.:A)=A; begin reserve p,p1,p2,p3,q,q1,q2 for Point of TOP-REAL 2,i,j for Nat, r,lambda for Real; theorem :: JGRAPH_6:23 for f,g being map of I[01],TOP-REAL 2, C0,KXP,KXN,KYP,KYN being Subset of TOP-REAL 2, O,I being Point of I[01] st O=0 & I=1 & f is continuous one-to-one & g is continuous one-to-one & C0={p: |.p.|<=1}& KXP={q1 where q1 is Point of TOP-REAL 2: |.q1.|=1 & q1`2<=q1`1 & q1`2>=-q1`1} & KXN={q2 where q2 is Point of TOP-REAL 2: |.q2.|=1 & q2`2>=q2`1 & q2`2<=-q2`1} & KYP={q3 where q3 is Point of TOP-REAL 2: |.q3.|=1 & q3`2>=q3`1 & q3`2>=-q3`1} & KYN={q4 where q4 is Point of TOP-REAL 2: |.q4.|=1 & q4`2<=q4`1 & q4`2<=-q4`1} & f.O in KXP & f.I in KXN & g.O in KYP & g.I in KYN & rng f c= C0 & rng g c= C0 holds rng f meets rng g; theorem :: JGRAPH_6:24 for f,g being map of I[01],TOP-REAL 2, C0,KXP,KXN,KYP,KYN being Subset of TOP-REAL 2, O,I being Point of I[01] st O=0 & I=1 & f is continuous & f is one-to-one & g is continuous & g is one-to-one & C0={p: |.p.|<=1}& KXP={q1 where q1 is Point of TOP-REAL 2: |.q1.|=1 & q1`2<=q1`1 & q1`2>=-q1`1} & KXN={q2 where q2 is Point of TOP-REAL 2: |.q2.|=1 & q2`2>=q2`1 & q2`2<=-q2`1} & KYP={q3 where q3 is Point of TOP-REAL 2: |.q3.|=1 & q3`2>=q3`1 & q3`2>=-q3`1} & KYN={q4 where q4 is Point of TOP-REAL 2: |.q4.|=1 & q4`2<=q4`1 & q4`2<=-q4`1} & f.O in KXP & f.I in KXN & g.O in KYN & g.I in KYP & rng f c= C0 & rng g c= C0 holds rng f meets rng g; theorem :: JGRAPH_6:25 for p1,p2,p3,p4 being Point of TOP-REAL 2, P being compact non empty Subset of TOP-REAL 2,C0 being Subset of TOP-REAL 2 st P={p where p is Point of TOP-REAL 2: |.p.|=1} & LE p1,p2,P & LE p2,p3,P & LE p3,p4,P holds (for f,g being map of I[01],TOP-REAL 2 st f is continuous one-to-one & g is continuous one-to-one & C0={p8 where p8 is Point of TOP-REAL 2: |.p8.|<=1}& f.0=p3 & f.1=p1 & g.0=p2 & g.1=p4 & rng f c= C0 & rng g c= C0 holds rng f meets rng g); theorem :: JGRAPH_6:26 for p1,p2,p3,p4 being Point of TOP-REAL 2, P being compact non empty Subset of TOP-REAL 2,C0 being Subset of TOP-REAL 2 st P={p where p is Point of TOP-REAL 2: |.p.|=1} & LE p1,p2,P & LE p2,p3,P & LE p3,p4,P holds (for f,g being map of I[01],TOP-REAL 2 st f is continuous one-to-one & g is continuous one-to-one & C0={p8 where p8 is Point of TOP-REAL 2: |.p8.|<=1}& f.0=p3 & f.1=p1 & g.0=p4 & g.1=p2 & rng f c= C0 & rng g c= C0 holds rng f meets rng g); theorem :: JGRAPH_6:27 for p1,p2,p3,p4 being Point of TOP-REAL 2, P being compact non empty Subset of TOP-REAL 2, C0 being Subset of TOP-REAL 2 st P={p where p is Point of TOP-REAL 2: |.p.|=1} & p1,p2,p3,p4 are_in_this_order_on P holds (for f,g being map of I[01],TOP-REAL 2 st f is continuous one-to-one & g is continuous one-to-one & C0={p8 where p8 is Point of TOP-REAL 2: |.p8.|<=1}& f.0=p1 & f.1=p3 & g.0=p2 & g.1=p4 & rng f c= C0 & rng g c= C0 holds rng f meets rng g); begin :: General Rectangles and Circles definition let a,b,c,d be real number; func rectangle(a,b,c,d) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 1 {p: p`1=a & c <=p`2 & p`2<=d or p`2=d & a<=p`1 & p`1<=b or p`1=b & c <=p`2 & p`2<=d or p`2=c & a<=p`1 & p`1<=b}; end; theorem :: JGRAPH_6:28 for a,b,c,d being real number, p being Point of TOP-REAL 2 st a<=b & c <=d & p in rectangle(a,b,c,d) holds a<=p`1 & p`1<=b & c <=p`2 & p`2<=d; definition let a,b,c,d be real number; func inside_of_rectangle(a,b,c,d) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 2 {p: a <p`1 & p`1< b & c <p`2 & p`2< d}; end; definition let a,b,c,d be real number; func closed_inside_of_rectangle(a,b,c,d) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 3 {p: a <=p`1 & p`1<= b & c <=p`2 & p`2<= d}; end; definition let a,b,c,d be real number; func outside_of_rectangle(a,b,c,d) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 4 {p: not(a <=p`1 & p`1<= b & c <=p`2 & p`2<= d)}; end; definition let a,b,c,d be real number; func closed_outside_of_rectangle(a,b,c,d) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 5 {p: not(a <p`1 & p`1< b & c <p`2 & p`2< d)}; end; theorem :: JGRAPH_6:29 for a,b,r being real number,Kb,Cb being Subset of TOP-REAL 2 st r>=0 & Kb={q: |.q.|=1}& Cb={p2 where p2 is Point of TOP-REAL 2: |.(p2- |[a,b]|).|=r} holds AffineMap(r,a,r,b).:Kb=Cb; theorem :: JGRAPH_6:30 for P,Q being Subset of TOP-REAL 2 st (ex f being map of (TOP-REAL 2)|P,(TOP-REAL 2)|Q st f is_homeomorphism) & P is_simple_closed_curve holds Q is_simple_closed_curve; theorem :: JGRAPH_6:31 for P being Subset of TOP-REAL 2 st P is being_simple_closed_curve holds P is compact; theorem :: JGRAPH_6:32 for a,b,r be real number, Cb being Subset of TOP-REAL 2 st r>0 & Cb={p where p is Point of TOP-REAL 2: |.(p- |[a,b]|).|=r} holds Cb is_simple_closed_curve; definition let a,b,r be real number; assume r>0; func circle(a,b,r) -> compact non empty Subset of TOP-REAL 2 equals :: JGRAPH_6:def 6 {p where p is Point of TOP-REAL 2: |.p- |[a,b]| .|=r}; end; definition let a,b,r be real number; func inside_of_circle(a,b,r) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 7 {p where p is Point of TOP-REAL 2: |.p- |[a,b]| .|<r}; end; definition let a,b,r be real number; func closed_inside_of_circle(a,b,r) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 8 {p where p is Point of TOP-REAL 2: |.p- |[a,b]| .|<=r}; end; definition let a,b,r be real number; func outside_of_circle(a,b,r) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 9 {p where p is Point of TOP-REAL 2: |.p- |[a,b]| .|>r}; end; definition let a,b,r be real number; func closed_outside_of_circle(a,b,r) -> Subset of TOP-REAL 2 equals :: JGRAPH_6:def 10 {p where p is Point of TOP-REAL 2: |.p- |[a,b]| .|>=r}; end; theorem :: JGRAPH_6:33 for r being real number holds inside_of_circle(0,0,r)={p : |.p.|<r} & (r>0 implies circle(0,0,r)={p2 : |.p2.|=r}) & outside_of_circle(0,0,r)={p3 : |.p3.|>r} & closed_inside_of_circle(0,0,r)={q : |.q.|<=r} & closed_outside_of_circle(0,0,r)={q2 : |.q2.|>=r}; theorem :: JGRAPH_6:34 for Kb,Cb being Subset of TOP-REAL 2 st Kb={p: -1 <p`1 & p`1< 1 & -1 <p`2 & p`2< 1}& Cb={p2 where p2 is Point of TOP-REAL 2: |.p2.|<1} holds Sq_Circ.:Kb=Cb; theorem :: JGRAPH_6:35 for Kb,Cb being Subset of TOP-REAL 2 st Kb={p: not(-1 <=p`1 & p`1<= 1 & -1 <=p`2 & p`2<= 1)}& Cb={p2 where p2 is Point of TOP-REAL 2: |.p2.|>1} holds Sq_Circ.:Kb=Cb; theorem :: JGRAPH_6:36 for Kb,Cb being Subset of TOP-REAL 2 st Kb={p: -1 <=p`1 & p`1<= 1 & -1 <=p`2 & p`2<= 1}& Cb={p2 where p2 is Point of TOP-REAL 2: |.p2.|<=1} holds Sq_Circ.:Kb=Cb; theorem :: JGRAPH_6:37 for Kb,Cb being Subset of TOP-REAL 2 st Kb={p: not(-1 <p`1 & p`1< 1 & -1 <p`2 & p`2< 1)}& Cb={p2 where p2 is Point of TOP-REAL 2: |.p2.|>=1} holds Sq_Circ.:Kb=Cb; theorem :: JGRAPH_6:38 for P0,P1,P01,P11,K0,K1,K01,K11 being Subset of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & P0= inside_of_circle(0,0,1) & P1= outside_of_circle(0,0,1) & P01= closed_inside_of_circle(0,0,1) & P11= closed_outside_of_circle(0,0,1) & K=rectangle(-1,1,-1,1) & K0=inside_of_rectangle(-1,1,-1,1) & K1=outside_of_rectangle(-1,1,-1,1) & K01=closed_inside_of_rectangle(-1,1,-1,1) & K11=closed_outside_of_rectangle(-1,1,-1,1) & f=Sq_Circ holds f.:K=P & f".:P=K & f.:K0=P0 & f".:P0=K0 & f.:K1=P1 & f".:P1=K1 & f.:K01=P01 & f.:K11=P11 & f".:P01=K01 & f".:P11=K11; begin :: Order of Points on Rectangle theorem :: JGRAPH_6:39 for a,b,c,d being real number st a <= b & c <= d holds LSeg(|[ a,c ]|, |[ a,d ]|) = { p1 : p1`1 = a & p1`2 <= d & p1`2 >= c} & LSeg(|[ a,d ]|, |[ b,d ]|) = { p2 : p2`1 <= b & p2`1 >= a & p2`2 = d} & LSeg(|[ a,c ]|, |[ b,c ]|) = { q1 : q1`1 <= b & q1`1 >= a & q1`2 = c} & LSeg(|[ b,c ]|, |[ b,d ]|) = { q2 : q2`1 = b & q2`2 <= d & q2`2 >= c}; theorem :: JGRAPH_6:40 for a,b,c,d being real number st a<=b & c <=d holds {p: p`1=a & c <=p`2 & p`2<=d or p`2=d & a<=p`1 & p`1<=b or p`1=b & c <=p`2 & p`2<=d or p`2=c & a<=p`1 & p`1<=b} = (LSeg(|[ a,c ]|, |[ a,d ]|) \/ LSeg(|[ a,d ]|, |[ b,d ]|)) \/ (LSeg(|[ a,c ]|, |[ b,c ]|) \/ LSeg(|[ b,c ]|, |[ b,d ]|)); theorem :: JGRAPH_6:41 for a,b,c,d being real number st a <= b & c <= d holds LSeg(|[a,c]|,|[a,d]|) /\ LSeg(|[a,c]|,|[b,c]|) = {|[a,c]|}; theorem :: JGRAPH_6:42 for a,b,c,d being real number st a <= b & c <= d holds LSeg(|[a,c]|,|[b,c]|) /\ LSeg(|[b,c]|,|[b,d]|) = {|[b,c]|}; theorem :: JGRAPH_6:43 for a,b,c,d being real number st a <= b & c <= d holds LSeg(|[a,d]|,|[b,d]|) /\ LSeg(|[b,c]|,|[b,d]|) = {|[b,d]|}; theorem :: JGRAPH_6:44 for a,b,c,d being real number st a <= b & c <= d holds LSeg(|[a,c]|,|[a,d]|) /\ LSeg(|[a,d]|,|[b,d]|) = {|[a,d]|}; theorem :: JGRAPH_6:45 {q: -1=q`1 & -1<=q`2 & q`2<=1 or q`1=1 & -1<=q`2 & q`2<=1 or -1=q`2 & -1<=q`1 & q`1<=1 or 1=q`2 & -1<=q`1 & q`1<=1} = {p: p`1=-1 & -1 <=p`2 & p`2<=1 or p`2=1 & -1<=p`1 & p`1<=1 or p`1=1 & -1 <=p`2 & p`2<=1 or p`2=-1 & -1<=p`1 & p`1<=1}; theorem :: JGRAPH_6:46 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds W-bound K = a; theorem :: JGRAPH_6:47 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds N-bound K = d; theorem :: JGRAPH_6:48 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds E-bound K = b; theorem :: JGRAPH_6:49 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds S-bound K = c; theorem :: JGRAPH_6:50 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds NW-corner K = |[a,d]|; theorem :: JGRAPH_6:51 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds NE-corner K = |[b,d]|; theorem :: JGRAPH_6:52 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds SW-corner K = |[a,c]|; theorem :: JGRAPH_6:53 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds SE-corner K = |[b,c]|; theorem :: JGRAPH_6:54 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds W-most K = LSeg(|[a,c]|,|[a,d]|); theorem :: JGRAPH_6:55 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds E-most K = LSeg(|[b,c]|,|[b,d]|); theorem :: JGRAPH_6:56 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<=b & c <=d holds W-min K=|[a,c]| & E-max K=|[b,d]|; theorem :: JGRAPH_6:57 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<b & c <d holds LSeg(|[a,c]|,|[a,d]|) \/ LSeg(|[a,d]|,|[b,d]|) is_an_arc_of W-min(K),E-max(K) & LSeg(|[a,c]|,|[b,c]|) \/ LSeg(|[b,c]|,|[b,d]|) is_an_arc_of E-max(K),W-min(K); theorem :: JGRAPH_6:58 for P,P1,P2 being Subset of TOP-REAL 2, a,b,c,d being real number, f1,f2 being FinSequence of TOP-REAL 2, p0,p1,p01,p10 being Point of TOP-REAL 2 st a < b & c < d & P={p: p`1=a & c <=p`2 & p`2<=d or p`2=d & a<=p`1 & p`1<=b or p`1=b & c <=p`2 & p`2<=d or p`2=c & a<=p`1 & p`1<=b} & p0=|[a,c]| & p1=|[b,d]| & p01=|[a,d]| & p10=|[b,c]| & f1=<*p0,p01,p1*> & f2=<*p0,p10,p1*> holds f1 is_S-Seq & L~f1 = LSeg(p0,p01) \/ LSeg(p01,p1) & f2 is_S-Seq & L~f2 = LSeg(p0,p10) \/ LSeg(p10,p1) & P = L~f1 \/ L~f2 & L~f1 /\ L~f2 = {p0,p1} & f1/.1 = p0 & f1/.len f1=p1 & f2/.1 = p0 & f2/.len f2 = p1; theorem :: JGRAPH_6:59 for P,P1,P2 being Subset of TOP-REAL 2, a,b,c,d being real number, f1,f2 being FinSequence of TOP-REAL 2,p1,p2 being Point of TOP-REAL 2 st a < b & c < d & P={p: p`1=a & c <=p`2 & p`2<=d or p`2=d & a<=p`1 & p`1<=b or p`1=b & c <=p`2 & p`2<=d or p`2=c & a<=p`1 & p`1<=b} & p1=|[a,c]| & p2=|[b,d]| & f1=<*|[a,c]|,|[a,d]|,|[b,d]|*> & f2=<*|[a,c]|,|[b,c]|,|[b,d]|*> & P1=L~f1 & P2=L~f2 holds P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P1 is non empty & P2 is non empty & P = P1 \/ P2 & P1 /\ P2 = {p1,p2}; theorem :: JGRAPH_6:60 for a,b,c,d being real number st a < b & c < d holds rectangle(a,b,c,d) is_simple_closed_curve; theorem :: JGRAPH_6:61 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<b & c <d holds Upper_Arc(K)= LSeg(|[a,c]|,|[a,d]|) \/ LSeg(|[a,d]|,|[b,d]|); theorem :: JGRAPH_6:62 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number st K=rectangle(a,b,c,d) & a<b & c <d holds Lower_Arc(K)= LSeg(|[a,c]|,|[b,c]|) \/ LSeg(|[b,c]|,|[b,d]|); theorem :: JGRAPH_6:63 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d ex f being map of I[01],(TOP-REAL 2)|(Upper_Arc(K)) st f is_homeomorphism & f.0=W-min(K) & f.1=E-max(K) & rng f=Upper_Arc(K) & (for r being Real st r in [.0,1/2 .] holds f.r=(1-2*r)*|[a,c]|+(2*r)*|[a,d]|)& (for r being Real st r in [.1/2,1 .] holds f.r=(1-(2*r-1))*|[a,d]|+(2*r-1)*|[b,d]|)& (for p being Point of TOP-REAL 2 st p in LSeg(|[a,c]|,|[a,d]|) holds 0<=((p`2)-c)/(d-c)/2 & ((p`2)-c)/(d-c)/2<=1 & f.(((p`2)-c)/(d-c)/2)=p)& (for p being Point of TOP-REAL 2 st p in LSeg(|[a,d]|,|[b,d]|) holds 0<=((p`1)-a)/(b-a)/2 + 1/2 & ((p`1)-a)/(b-a)/2 + 1/2<=1 & f.(((p`1)-a)/(b-a)/2 + 1/2)=p); theorem :: JGRAPH_6:64 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d ex f being map of I[01],(TOP-REAL 2)|(Lower_Arc(K)) st f is_homeomorphism & f.0=E-max(K) & f.1=W-min(K) & rng f=Lower_Arc(K) & (for r being Real st r in [.0,1/2.] holds f.r=(1-2*r)*|[b,d]|+(2*r)*|[b,c]|)& (for r being Real st r in [.1/2,1.] holds f.r=(1-(2*r-1))*|[b,c]|+(2*r-1)*|[a,c]|)& (for p being Point of TOP-REAL 2 st p in LSeg(|[b,d]|,|[b,c]|) holds 0<=((p`2)-d)/(c-d)/2 & ((p`2)-d)/(c-d)/2<=1 & f.(((p`2)-d)/(c-d)/2)=p)& (for p being Point of TOP-REAL 2 st p in LSeg(|[b,c]|,|[a,c]|) holds 0<=((p`1)-b)/(a-b)/2+1/2 & ((p`1)-b)/(a-b)/2+1/2<=1 & f.(((p`1)-b)/(a-b)/2+1/2)=p); theorem :: JGRAPH_6:65 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d & p1 in LSeg(|[a,c]|,|[a,d]|) & p2 in LSeg(|[a,c]|,|[a,d]|) holds LE p1,p2,K iff p1`2<=p2`2; theorem :: JGRAPH_6:66 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d & p1 in LSeg(|[a,d]|,|[b,d]|) & p2 in LSeg(|[a,d]|,|[b,d]|) holds LE p1,p2,K iff p1`1<=p2`1; theorem :: JGRAPH_6:67 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d & p1 in LSeg(|[b,c]|,|[b,d]|) & p2 in LSeg(|[b,c]|,|[b,d]|) holds LE p1,p2,K iff p1`2>=p2`2; theorem :: JGRAPH_6:68 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d & p1 in LSeg(|[a,c]|,|[b,c]|) & p2 in LSeg(|[a,c]|,|[b,c]|) holds LE p1,p2,K & p1<>W-min(K) iff p1`1>=p2`1 & p2<>W-min(K); theorem :: JGRAPH_6:69 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d & p1 in LSeg(|[a,c]|,|[a,d]|) holds LE p1,p2,K iff p2 in LSeg(|[a,c]|,|[a,d]|) & p1`2<=p2`2 or p2 in LSeg(|[a,d]|,|[b,d]|) or p2 in LSeg(|[b,d]|,|[b,c]|) or p2 in LSeg(|[b,c]|,|[a,c]|) & p2<>W-min(K); theorem :: JGRAPH_6:70 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d & p1 in LSeg(|[a,d]|,|[b,d]|) holds LE p1,p2,K iff p2 in LSeg(|[a,d]|,|[b,d]|) & p1`1<=p2`1 or p2 in LSeg(|[b,d]|,|[b,c]|) or p2 in LSeg(|[b,c]|,|[a,c]|) & p2<>W-min(K); theorem :: JGRAPH_6:71 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c <d & p1 in LSeg(|[b,d]|,|[b,c]|) holds LE p1,p2,K iff p2 in LSeg(|[b,d]|,|[b,c]|) & p1`2>=p2`2 or p2 in LSeg(|[b,c]|,|[a,c]|) & p2<>W-min(K); theorem :: JGRAPH_6:72 for K being non empty compact Subset of TOP-REAL 2, a,b,c,d being real number,p1,p2 being Point of TOP-REAL 2 st K=rectangle(a,b,c,d) & a<b & c < d & p1 in LSeg(|[b,c]|,|[a,c]|)& p1<>W-min(K) holds LE p1,p2,K iff p2 in LSeg(|[b,c]|,|[a,c]|) & p1`1>=p2`1 & p2<>W-min(K); theorem :: JGRAPH_6:73 for x being set,a,b,c,d being real number st x in rectangle(a,b,c,d) & a<b & c <d holds x in LSeg(|[a,c]|,|[a,d]|) or x in LSeg(|[a,d]|,|[b,d]|) or x in LSeg(|[b,d]|,|[b,c]|) or x in LSeg(|[b,c]|,|[a,c]|); begin :: General Fashoda Theorem for Unit Square theorem :: JGRAPH_6:74 for p1,p2 being Point of TOP-REAL 2, K being non empty compact Subset of TOP-REAL 2 st K=rectangle(-1,1,-1,1) & LE p1,p2,K & p1 in LSeg(|[-1,-1]|,|[-1,1]|) holds p2 in LSeg(|[-1,-1]|,|[-1,1]|)& p2`2>=p1`2 or p2 in LSeg(|[-1,1]|,|[1,1]|) or p2 in LSeg(|[1,1]|,|[1,-1]|) or p2 in LSeg(|[1,-1]|,|[-1,-1]|)& p2<>|[-1,-1]|; theorem :: JGRAPH_6:75 for p1,p2 being Point of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & K=rectangle(-1,1,-1,1) & f=Sq_Circ & p1 in LSeg(|[-1,-1]|,|[-1,1]|)& p1`2>=0 & LE p1,p2,K holds LE f.p1,f.p2,P; theorem :: JGRAPH_6:76 for p1,p2,p3 being Point of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & K=rectangle(-1,1,-1,1) & f=Sq_Circ & p1 in LSeg(|[-1,-1]|,|[-1,1]|)& p1`2>=0 & LE p1,p2,K & LE p2,p3,K holds LE f.p2,f.p3,P; theorem :: JGRAPH_6:77 for p being Point of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st f=Sq_Circ & p`1=-1 & p`2<0 holds (f.p)`1<0 & (f.p)`2<0; theorem :: JGRAPH_6:78 for p being Point of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & K=rectangle(-1,1,-1,1) & f=Sq_Circ holds (f.p)`1>=0 iff p`1>=0; theorem :: JGRAPH_6:79 for p being Point of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & K=rectangle(-1,1,-1,1) & f=Sq_Circ holds (f.p)`2>=0 iff p`2>=0; theorem :: JGRAPH_6:80 for p,q being Point of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st f=Sq_Circ & p in LSeg(|[-1,-1]|,|[-1,1]|) & q in LSeg(|[1,-1]|,|[-1,-1]|) holds (f.p)`1<=(f.q)`1; theorem :: JGRAPH_6:81 for p,q being Point of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st f=Sq_Circ & p in LSeg(|[-1,-1]|,|[-1,1]|) & q in LSeg(|[-1,-1]|,|[-1,1]|) & p`2>=q`2 & p`2<0 holds (f.p)`2>=(f.q)`2; theorem :: JGRAPH_6:82 for p1,p2,p3,p4 being Point of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & K=rectangle(-1,1,-1,1) & f=Sq_Circ holds LE p1,p2,K & LE p2,p3,K & LE p3,p4,K implies f.p1,f.p2,f.p3,f.p4 are_in_this_order_on P; theorem :: JGRAPH_6:83 for p1,p2 being Point of TOP-REAL 2, P being non empty compact Subset of TOP-REAL 2 st P is_simple_closed_curve & p1 in P & p2 in P & not LE p1,p2,P holds LE p2,p1,P; theorem :: JGRAPH_6:84 for p1,p2,p3 being Point of TOP-REAL 2, P being non empty compact Subset of TOP-REAL 2 st P is_simple_closed_curve & p1 in P & p2 in P & p3 in P holds LE p1,p2,P & LE p2,p3,P or LE p1,p3,P & LE p3,p2,P or LE p2,p1,P & LE p1,p3,P or LE p2,p3,P & LE p3,p1,P or LE p3,p1,P & LE p1,p2,P or LE p3,p2,P & LE p2,p1,P; theorem :: JGRAPH_6:85 for p1,p2,p3 being Point of TOP-REAL 2, P being non empty compact Subset of TOP-REAL 2 st P is_simple_closed_curve & p1 in P & p2 in P & p3 in P & LE p2,p3,P holds LE p1,p2,P or LE p2,p1,P & LE p1,p3,P or LE p3,p1,P; theorem :: JGRAPH_6:86 for p1,p2,p3,p4 being Point of TOP-REAL 2, P being non empty compact Subset of TOP-REAL 2 st P is_simple_closed_curve & p1 in P & p2 in P & p3 in P & p4 in P & LE p2,p3,P & LE p3,p4,P holds LE p1,p2,P or LE p2,p1,P & LE p1,p3,P or LE p3,p1,P & LE p1,p4,P or LE p4,p1,P; theorem :: JGRAPH_6:87 for p1,p2,p3,p4 being Point of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & K=rectangle(-1,1,-1,1) & f=Sq_Circ & LE f.p1,f.p2,P & LE f.p2,f.p3,P & LE f.p3,f.p4,P holds p1,p2,p3,p4 are_in_this_order_on K; theorem :: JGRAPH_6:88 for p1,p2,p3,p4 being Point of TOP-REAL 2, P,K being non empty compact Subset of TOP-REAL 2, f being map of TOP-REAL 2,TOP-REAL 2 st P= circle(0,0,1) & K=rectangle(-1,1,-1,1) & f=Sq_Circ holds p1,p2,p3,p4 are_in_this_order_on K iff f.p1,f.p2,f.p3,f.p4 are_in_this_order_on P; theorem :: JGRAPH_6:89 for p1,p2,p3,p4 being Point of TOP-REAL 2, K being compact non empty Subset of TOP-REAL 2,K0 being Subset of TOP-REAL 2 st K=rectangle(-1,1,-1,1) & p1,p2,p3,p4 are_in_this_order_on K holds (for f,g being map of I[01],TOP-REAL 2 st f is continuous one-to-one & g is continuous one-to-one & K0= closed_inside_of_rectangle(-1,1,-1,1) & f.0=p1 & f.1=p3 & g.0=p2 & g.1=p4 & rng f c= K0 & rng g c= K0 holds rng f meets rng g);