environ vocabulary FUNCT_2, MARGREL1, PARTIT1, ZF_LANG, BVFUNC_1, BINARITH; notation XBOOLE_0, MARGREL1, VALUAT_1, FRAENKEL, BVFUNC_1; constructors BVFUNC_1; clusters MARGREL1, VALUAT_1, FRAENKEL; begin reserve Y for non empty set, a,b,c,d for Element of Funcs(Y,BOOLEAN); theorem :: BVFUNC25:1 'not' (a 'imp' b) = a '&' 'not' b; theorem :: BVFUNC25:2 ('not' b 'imp' 'not' a) 'imp' (a 'imp' b)=I_el(Y); theorem :: BVFUNC25:3 a 'imp' b = 'not' b 'imp' 'not' a; theorem :: BVFUNC25:4 a 'eqv' b = 'not' a 'eqv' 'not' b; theorem :: BVFUNC25:5 a 'imp' b = a 'imp' (a '&' b); theorem :: BVFUNC25:6 a 'eqv' b = (a 'or' b) 'imp' (a '&' b); theorem :: BVFUNC25:7 a 'eqv' 'not' a = O_el(Y); theorem :: BVFUNC25:8 a 'imp' (b 'imp' c) = b 'imp' (a 'imp' c); theorem :: BVFUNC25:9 a 'imp' (b 'imp' c) = (a 'imp' b) 'imp' (a 'imp' c); theorem :: BVFUNC25:10 a 'eqv' b = a 'xor' 'not' b; theorem :: BVFUNC25:11 a '&' (b 'xor' c) = a '&' b 'xor' a '&' c; theorem :: BVFUNC25:12 a 'eqv' b = 'not' (a 'xor' b); theorem :: BVFUNC25:13 a 'xor' a = O_el(Y); theorem :: BVFUNC25:14 a 'xor' 'not' a = I_el(Y); theorem :: BVFUNC25:15 (a 'imp' b) 'imp' (b 'imp' a) = b 'imp' a; theorem :: BVFUNC25:16 (a 'or' b) '&' ('not' a 'or' 'not' b) = ('not' a '&' b) 'or' (a '&' 'not' b); theorem :: BVFUNC25:17 (a '&' b) 'or' ('not' a '&' 'not' b) = ('not' a 'or' b) '&' (a 'or' 'not' b); theorem :: BVFUNC25:18 a 'xor' (b 'xor' c) = (a 'xor' b) 'xor' c; theorem :: BVFUNC25:19 a 'eqv' (b 'eqv' c) = (a 'eqv' b) 'eqv' c; theorem :: BVFUNC25:20 'not' 'not' a 'imp' a = I_el(Y); theorem :: BVFUNC25:21 ((a 'imp' b) '&' a) 'imp' b = I_el(Y); theorem :: BVFUNC25:22 a 'imp' ('not' a 'imp' a) = I_el(Y); theorem :: BVFUNC25:23 ('not' a 'imp' a) 'eqv' a = I_el(Y); theorem :: BVFUNC25:24 a 'or' (a 'imp' b) = I_el(Y); theorem :: BVFUNC25:25 (a 'imp' b) 'or' (c 'imp' a) = I_el(Y); theorem :: BVFUNC25:26 (a 'imp' b) 'or' ('not' a 'imp' b) = I_el(Y); theorem :: BVFUNC25:27 (a 'imp' b) 'or' (a 'imp' 'not' b) = I_el(Y); theorem :: BVFUNC25:28 'not' a 'imp' ('not' b 'eqv' (b 'imp' a)) = I_el(Y); theorem :: BVFUNC25:29 (a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b) = I_el(Y); theorem :: BVFUNC25:30 a 'imp' b = a 'eqv' (a '&' b); theorem :: BVFUNC25:31 a 'imp' b=I_el(Y) & b 'imp' a=I_el(Y) iff a=b; theorem :: BVFUNC25:32 a = 'not' a 'imp' a; theorem :: BVFUNC25:33 a 'imp' ((a 'imp' b) 'imp' a) = I_el(Y); theorem :: BVFUNC25:34 a = (a 'imp' b) 'imp' a; theorem :: BVFUNC25:35 a = (b 'imp' a) '&' ('not' b 'imp' a); theorem :: BVFUNC25:36 a '&' b = 'not' (a 'imp' 'not' b); theorem :: BVFUNC25:37 a 'or' b = 'not' a 'imp' b; theorem :: BVFUNC25:38 a 'or' b = (a 'imp' b) 'imp' b; theorem :: BVFUNC25:39 (a 'imp' b) 'imp' (a 'imp' a) = I_el(Y); theorem :: BVFUNC25:40 (a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) = I_el( Y ); theorem :: BVFUNC25:41 (((a 'imp' b) '&' a) '&' c) 'imp' b = I_el(Y); theorem :: BVFUNC25:42 (b 'imp' c) 'imp' ((a '&' b) 'imp' c) = I_el(Y); theorem :: BVFUNC25:43 ((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b)) = I_el(Y); theorem :: BVFUNC25:44 (a 'imp' b) 'imp' ((a '&' c) 'imp' (b '&' c)) = I_el(Y); theorem :: BVFUNC25:45 (a 'imp' b) '&' (a '&' c) 'imp' (b '&' c) = I_el(Y); theorem :: BVFUNC25:46 a '&' (a 'imp' b) '&' (b 'imp' c) '<' c; theorem :: BVFUNC25:47 (a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c) '<' ('not' a 'imp' (b 'or' c));