Copyright (c) 2003 Association of Mizar Users
environ
vocabulary FUNCT_2, MARGREL1, PARTIT1, ZF_LANG, BVFUNC_1, BINARITH;
notation XBOOLE_0, MARGREL1, VALUAT_1, FRAENKEL, BVFUNC_1;
constructors BVFUNC_1;
clusters MARGREL1, VALUAT_1, FRAENKEL;
theorems BVFUNC_1, BVFUNC_4, BVFUNC_5, BVFUNC_6, BVFUNC_7, BVFUNC_8, BVFUNC_9;
begin
reserve Y for non empty set,
a,b,c,d for Element of Funcs(Y,BOOLEAN);
theorem
'not' (a 'imp' b) = a '&' 'not' b
proof
thus 'not' (a 'imp' b)='not' ('not' a 'or' b) by BVFUNC_4:8
.='not' 'not' a '&' 'not' b by BVFUNC_1:16
.=a '&' 'not' b by BVFUNC_1:4;
end;
theorem Th2:
('not' b 'imp' 'not' a) 'imp' (a 'imp' b)=I_el(Y)
proof
('not' b 'imp' 'not' a) 'imp' (a 'imp' b)
='not' ('not' b 'imp' 'not' a) 'or' (a 'imp' b) by BVFUNC_4:8
.='not' ('not' 'not' b 'or' 'not' a) 'or' (a 'imp' b) by BVFUNC_4:8
.='not' (b 'or' 'not' a) 'or' (a 'imp' b) by BVFUNC_1:4
.=('not' b '&' 'not' 'not' a) 'or' (a 'imp' b) by BVFUNC_1:16
.=('not' b '&' a) 'or' (a 'imp' b) by BVFUNC_1:4
.=('not' b '&' a) 'or' ('not' a 'or' b) by BVFUNC_4:8
.=(('not' b '&' a) 'or' 'not' a) 'or' b by BVFUNC_1:11
.=(('not' b 'or' 'not' a) '&' (a 'or' 'not' a)) 'or' b by BVFUNC_1:14
.=(('not' b 'or' 'not' a) '&' I_el(Y)) 'or' b by BVFUNC_4:6
.=('not' b 'or' 'not' a) 'or' b by BVFUNC_1:9
.='not' a 'or' ('not' b 'or' b) by BVFUNC_1:11
.='not' a 'or' I_el(Y) by BVFUNC_4:6;
hence thesis by BVFUNC_1:13;
end;
theorem Th3:
a 'imp' b = 'not' b 'imp' 'not' a
proof
('not' b 'imp' 'not' a) 'imp' (a 'imp' b)=I_el(Y) by Th2;
then A1:('not' b 'imp' 'not' a) '<' (a 'imp' b) by BVFUNC_1:19;
(a 'imp' b) 'imp' ('not' b 'imp' 'not' a)=I_el(Y) by BVFUNC_5:33;
then a 'imp' b '<' 'not' b 'imp' 'not' a by BVFUNC_1:19;
hence thesis by A1,BVFUNC_1:18;
end;
theorem
a 'eqv' b = 'not' a 'eqv' 'not' b
proof
thus 'not' a 'eqv' 'not' b
=('not' a 'imp' 'not' b) '&' ('not' b 'imp' 'not' a) by BVFUNC_4:7
.=(b 'imp' a) '&' ('not' b 'imp' 'not' a) by Th3
.=(b 'imp' a) '&' (a 'imp' b) by Th3
.=a 'eqv' b by BVFUNC_4:7;
end;
theorem Th5:
a 'imp' b = a 'imp' (a '&' b)
proof
a 'imp' (a '&' b)='not' a 'or' (a '&' b) by BVFUNC_4:8
.=('not' a 'or' a) '&' ('not' a 'or' b) by BVFUNC_1:14
.=I_el(Y) '&' ('not' a 'or' b) by BVFUNC_4:6
.='not' a 'or' b by BVFUNC_1:9;
hence thesis by BVFUNC_4:8;
end;
theorem
a 'eqv' b = (a 'or' b) 'imp' (a '&' b)
proof
thus (a 'or' b) 'imp' (a '&' b)
=(a 'imp' (a '&' b)) '&' (b 'imp' (a '&' b)) by BVFUNC_7:5
.=(a 'imp' b) '&' (b 'imp' (a '&' b)) by Th5
.=(a 'imp' b) '&' (b 'imp' a) by Th5
.=a 'eqv' b by BVFUNC_4:7;
end;
theorem
a 'eqv' 'not' a = O_el(Y)
proof
thus a 'eqv' 'not' a
=(a 'imp' 'not' a) '&' ('not' a 'imp' a) by BVFUNC_4:7
.=('not' a 'or' 'not' a) '&' ('not' a 'imp' a) by BVFUNC_4:8
.=('not' a 'or' 'not' a) '&' ('not' 'not' a 'or' a) by BVFUNC_4:8
.='not' a '&' ('not' 'not' a 'or' a) by BVFUNC_1:10
.='not' a '&' (a 'or' a) by BVFUNC_1:4
.='not' a '&' a by BVFUNC_1:10
.=O_el(Y) by BVFUNC_4:5;
end;
theorem
a 'imp' (b 'imp' c) = b 'imp' (a 'imp' c)
proof
thus a 'imp' (b 'imp' c)
='not' a 'or' (b 'imp' c) by BVFUNC_4:8
.='not' a 'or' ('not' b 'or' c) by BVFUNC_4:8
.='not' b 'or' ('not' a 'or' c) by BVFUNC_1:11
.='not' b 'or' (a 'imp' c) by BVFUNC_4:8
.=b 'imp' (a 'imp' c) by BVFUNC_4:8;
end;
theorem
a 'imp' (b 'imp' c) = (a 'imp' b) 'imp' (a 'imp' c)
proof
thus (a 'imp' b) 'imp' (a 'imp' c)
=(a 'imp' b) 'imp' ('not' a 'or' c) by BVFUNC_4:8
.='not' (a 'imp' b) 'or' ('not' a 'or' c) by BVFUNC_4:8
.='not' ('not' a 'or' b) 'or' ('not' a 'or' c) by BVFUNC_4:8
.=('not' 'not' a '&' 'not' b) 'or' ('not' a 'or' c) by BVFUNC_1:16
.=(a '&' 'not' b) 'or' ('not' a 'or' c) by BVFUNC_1:4
.=((a '&' 'not' b) 'or' 'not' a) 'or' c by BVFUNC_1:11
.=((a 'or' 'not' a) '&' ('not' b 'or' 'not' a)) 'or' c by BVFUNC_1:14
.=(I_el(Y) '&' ('not' b 'or' 'not' a)) 'or' c by BVFUNC_4:6
.=('not' a 'or' 'not' b) 'or' c by BVFUNC_1:9
.='not' a 'or' ('not' b 'or' c) by BVFUNC_1:11
.='not' a 'or' (b 'imp' c) by BVFUNC_4:8
.=a 'imp' (b 'imp' c) by BVFUNC_4:8;
end;
theorem
a 'eqv' b = a 'xor' 'not' b
proof
'not' (a 'xor' b) = 'not' 'not' ( a 'eqv' b) by BVFUNC_8:12;
then 'not' (a 'xor' b) = (a 'eqv' b) by BVFUNC_1:4;
hence thesis by BVFUNC_8:17;
end;
theorem
a '&' (b 'xor' c) = a '&' b 'xor' a '&' c
proof
A1:a '&' (b 'xor' c)
=a '&' (('not' b '&' c) 'or' (b '&' 'not' c)) by BVFUNC_4:9
.=(a '&' ('not' b '&' c)) 'or' (a '&' (b '&' 'not' c)) by BVFUNC_1:15
.=((a '&' c) '&' 'not' b) 'or' (a '&' (b '&' 'not' c)) by BVFUNC_1:7
.=((a '&' c) '&' 'not' b) 'or' ((a '&' b) '&' 'not' c) by BVFUNC_1:7;
A2:a '&' b 'xor' a '&' c
=('not' (a '&' b) '&' (a '&' c)) 'or' ((a '&' b) '&' 'not' (a '&' c))
by BVFUNC_4:9
.=(('not' a 'or' 'not' b) '&' (a '&' c)) 'or'
((a '&' b) '&' 'not' (a '&' c)) by BVFUNC_1:17
.=((a '&' c) '&' ('not' a 'or' 'not' b)) 'or'
((a '&' b) '&' ('not' a 'or' 'not' c)) by BVFUNC_1:17
.=(((a '&' c) '&' 'not' a) 'or' ((a '&' c) '&' 'not' b)) 'or'
((a '&' b) '&' ('not' a 'or' 'not' c)) by BVFUNC_1:15
.=(((a '&' c) '&' 'not' a) 'or' ((a '&' c) '&' 'not' b)) 'or'
(((a '&' b) '&' 'not' a) 'or' ((a '&' b) '&' 'not' c)) by BVFUNC_1:15
.=((a '&' c) '&' 'not' a) 'or' (((a '&' c) '&' 'not' b) 'or'
(((a '&' b) '&' 'not' c) 'or' ((a '&' b) '&' 'not' a))) by BVFUNC_1:11
.=((a '&' c) '&' 'not' a) 'or' ((((a '&' c) '&' 'not' b) 'or'
((a '&' b) '&' 'not' c)) 'or' ((a '&' b) '&' 'not' a)) by BVFUNC_1:11
.=(((a '&' c) '&' 'not' a) 'or' ((a '&' b) '&' 'not' a)) 'or'
(((a '&' c) '&' 'not' b) 'or' ((a '&' b) '&' 'not' c)) by BVFUNC_1:11;
((c '&' a) '&' 'not' a) 'or' ((b '&' a) '&' 'not' a)
=(c '&' (a '&' 'not' a)) 'or' ((b '&' a) '&' 'not' a) by BVFUNC_1:7
.=(c '&' (a '&' 'not' a)) 'or' (b '&' (a '&' 'not' a)) by BVFUNC_1:7
.=(c '&' O_el(Y)) 'or' (b '&' (a '&' 'not' a)) by BVFUNC_4:5
.=(c '&' O_el(Y)) 'or' (b '&' O_el(Y)) by BVFUNC_4:5
.=O_el(Y) 'or' (b '&' O_el(Y)) by BVFUNC_1:8
.=O_el(Y) 'or' O_el(Y) by BVFUNC_1:8
.=O_el(Y) by BVFUNC_1:10;
hence thesis by A1,A2,BVFUNC_1:12;
end;
theorem
a 'eqv' b = 'not' (a 'xor' b)
proof
'not' (a 'xor' b) = 'not' 'not' (a 'eqv' b) by BVFUNC_8:12;
hence thesis by BVFUNC_1:4;
end;
theorem
a 'xor' a = O_el(Y)
proof
thus a 'xor' a =('not' a '&' a) 'or' (a '&' 'not' a) by BVFUNC_4:9
.=O_el(Y) 'or' (a '&' 'not' a) by BVFUNC_4:5
.=O_el(Y) 'or' O_el(Y) by BVFUNC_4:5
.=O_el(Y) by BVFUNC_1:10;
end;
theorem
a 'xor' 'not' a = I_el(Y)
proof
thus a 'xor' 'not' a
=('not' a '&' 'not' a) 'or' (a '&' 'not' 'not' a) by BVFUNC_4:9
.=('not' a '&' 'not' a) 'or' (a '&' a) by BVFUNC_1:4
.=('not' a) 'or' (a '&' a) by BVFUNC_1:6
.='not' a 'or' a by BVFUNC_1:6
.=I_el(Y) by BVFUNC_4:6;
end;
theorem
(a 'imp' b) 'imp' (b 'imp' a) = b 'imp' a
proof
(a 'imp' b) 'imp' (b 'imp' a)
=('not' a 'or' b) 'imp' (b 'imp' a) by BVFUNC_4:8
.=('not' a 'or' b) 'imp' ('not' b 'or' a) by BVFUNC_4:8
.='not' ('not' a 'or' b) 'or' ('not' b 'or' a) by BVFUNC_4:8
.=('not' 'not' a '&' 'not' b) 'or' ('not' b 'or' a) by BVFUNC_1:16
.=(a '&' 'not' b) 'or' ('not' b 'or' a) by BVFUNC_1:4
.=((a '&' 'not' b) 'or' 'not' b) 'or' a by BVFUNC_1:11
.=((a 'or' 'not' b) '&' ('not' b 'or' 'not' b)) 'or' a by BVFUNC_1:14
.=((a 'or' 'not' b) '&' 'not' b) 'or' a by BVFUNC_1:10
.=((a 'or' 'not' b) 'or' a) '&' ('not' b 'or' a) by BVFUNC_1:14
.=('not' b 'or' (a 'or' a)) '&' ('not' b 'or' a) by BVFUNC_1:11
.=('not' b 'or' a) '&' ('not' b 'or' a) by BVFUNC_1:10
.=('not' b 'or' a) by BVFUNC_1:6;
hence thesis by BVFUNC_4:8;
end;
theorem Th16:
(a 'or' b) '&' ('not' a 'or' 'not' b) = ('not' a '&' b) 'or' (a '&' 'not' b)
proof
a 'xor' b = ('not' a '&' b) 'or' (a '&' 'not' b) by BVFUNC_4:9;
hence thesis by BVFUNC_8:13;
end;
theorem Th17:
(a '&' b) 'or' ('not' a '&' 'not' b) = ('not' a 'or' b) '&' (a 'or' 'not' b)
proof
thus (a '&' b) 'or' ('not' a '&' 'not' b)
=('not' 'not' a '&' b) 'or' ('not' a '&' 'not' b) by BVFUNC_1:4
.=('not' a 'or' b) '&' ('not' 'not' a 'or' 'not' b) by Th16
.=('not' a 'or' b) '&' (a 'or' 'not' b) by BVFUNC_1:4;
end;
theorem
a 'xor' (b 'xor' c) = (a 'xor' b) 'xor' c
proof
A1:a 'xor' (b 'xor' c)
=('not' a '&' (b 'xor' c)) 'or' (a '&' 'not' (b 'xor' c)) by BVFUNC_4:9
.=('not' a '&' (('not' b '&' c) 'or' (b '&' 'not' c))) 'or'
(a '&' 'not' (b 'xor' c)) by BVFUNC_4:9
.=('not' a '&' (('not' b '&' c) 'or' (b '&' 'not' c))) 'or'
(a '&' 'not' (('not' b '&' c) 'or' (b '&' 'not' c))) by BVFUNC_4:9
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
(a '&' 'not' (('not' b '&' c) 'or' (b '&' 'not' c))) by BVFUNC_1:15
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
(a '&' (('not' ('not' b '&' c)) '&' ('not' (b '&' 'not' c))))
by BVFUNC_1:16
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
(a '&' ((('not' 'not' b 'or' 'not' c)) '&' ('not' (b '&' 'not' c))))
by BVFUNC_1:17
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
(a '&' ((b 'or' 'not' c) '&' ('not' (b '&' 'not' c)))) by BVFUNC_1:4
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
(a '&' ((b 'or' 'not' c) '&' (('not' b 'or' 'not' 'not' c))))
by BVFUNC_1:17
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
(a '&' ((b 'or' 'not' c) '&' (('not' b 'or' c))))
by BVFUNC_1:4
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
(a '&' ((b '&' c) 'or' ('not' b '&' 'not' c)))
by Th17
.=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:15
.=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7
.=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' b '&' 'not' c)) 'or'
((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7
.=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' b '&' 'not' c)) 'or'
((a '&' b '&' c) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7
.=((a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c)) 'or'
(('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c))
by BVFUNC_1:7
.=(a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c) 'or'
('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c)
by BVFUNC_1:11;
(a 'xor' b) 'xor' c
=(('not' a '&' b) 'or' (a '&' 'not' b)) 'xor' c by BVFUNC_4:9
.=('not' (('not' a '&' b) 'or' (a '&' 'not' b)) '&' c) 'or'
((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_4:9
.=(('not' ('not' a '&' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or'
((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:16
.=((('not' 'not' a 'or' 'not' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or'
((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:17
.=(((a 'or' 'not' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or'
((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:4
.=(((a 'or' 'not' b) '&' ('not' a 'or' 'not' 'not' b)) '&' c) 'or'
((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:17
.=(((a 'or' 'not' b) '&' ('not' a 'or' b)) '&' c) 'or'
((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:4
.=(((a 'or' 'not' b) '&' ('not' a 'or' b)) '&' c) 'or'
(('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c))
by BVFUNC_1:15
.=(((a '&' b) 'or' ('not' a '&' 'not' b)) '&' c) 'or'
(('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c)) by Th17
.=((a '&' b '&' c) 'or' ('not' a '&' 'not' b '&' c)) 'or'
(('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c))
by BVFUNC_1:15
.=(a '&' b '&' c) 'or' ((a '&' 'not' b '&' 'not' c) 'or'
('not' a '&' b '&' 'not' c)) 'or' ('not' a '&' 'not' b '&' c)
by BVFUNC_1:11
.=(a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c) 'or'
('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c)
by BVFUNC_1:11;
hence thesis by A1;
end;
theorem
a 'eqv' (b 'eqv' c) = (a 'eqv' b) 'eqv' c
proof
A1:a 'eqv' (b 'eqv' c)
=(a 'imp' (b 'eqv' c)) '&' ((b 'eqv' c) 'imp' a) by BVFUNC_4:7
.=(a 'imp' ((b 'imp' c) '&' (c 'imp' b))) '&' ((b 'eqv' c) 'imp' a)
by BVFUNC_4:7
.=(a 'imp' ((b 'imp' c) '&' (c 'imp' b))) '&'
(((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:7
.=('not' a 'or' ((b 'imp' c) '&' (c 'imp' b))) '&'
(((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
.=('not' a 'or' (('not' b 'or' c) '&' (c 'imp' b))) '&'
(((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
(((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
((('not' b 'or' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
((('not' b 'or' c) '&' ('not' c 'or' b)) 'imp' a) by BVFUNC_4:8
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
('not' (('not' b 'or' c) '&' ('not' c 'or' b)) 'or' a) by BVFUNC_4:8
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
(('not' ('not' b 'or' c)) 'or' ('not' ('not' c 'or' b)) 'or' a)
by BVFUNC_1:17
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
((('not' 'not' b '&' 'not' c)) 'or' ('not' ('not' c 'or' b)) 'or' a)
by BVFUNC_1:16
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
(((b '&' 'not' c)) 'or' ('not' ('not' c 'or' b)) 'or' a) by BVFUNC_1:4
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
(((b '&' 'not' c)) 'or' (('not' 'not' c '&' 'not' b)) 'or' a) by BVFUNC_1:16
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
(((b '&' 'not' c) 'or' (c '&' 'not' b)) 'or' a) by BVFUNC_1:4
.=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
(((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by Th16
.=(('not' a 'or' ('not' b 'or' c)) '&' ('not' a 'or' ('not' c 'or' b))) '&'
(((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:14
.=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' (b 'or' 'not' c))) '&'
(((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:11
.=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
(((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:11
.=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
((a 'or' (b 'or' c)) '&' (a 'or' ('not' b 'or' 'not' c))) by BVFUNC_1:14
.=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
((a 'or' b 'or' c) '&' (a 'or' ('not' b 'or' 'not' c))) by BVFUNC_1:11
.=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
((a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c)) by BVFUNC_1:11
.=((a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c)) '&'
('not' a 'or' b 'or' 'not' c) '&' ('not' a 'or' 'not' b 'or' c)
by BVFUNC_1:7;
(a 'eqv' b) 'eqv' c
=((a 'eqv' b) 'imp' c) '&' (c 'imp' (a 'eqv' b)) by BVFUNC_4:7
.=(((a 'imp' b) '&' (b 'imp' a)) 'imp' c) '&' (c 'imp' (a 'eqv' b))
by BVFUNC_4:7
.=(((a 'imp' b) '&' (b 'imp' a)) 'imp' c) '&'
(c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:7
.=((('not' a 'or' b) '&' (b 'imp' a)) 'imp' c) '&'
(c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
.=((('not' a 'or' b) '&' ('not' b 'or' a)) 'imp' c) '&'
(c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
.=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
(c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
.=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
('not' c 'or' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
.=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' (b 'imp' a))) by BVFUNC_4:8
.=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_4:8
.=(('not' ('not' a 'or' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:17
.=((('not' 'not' a '&' 'not' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:16
.=(((a '&' 'not' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:4
.=(((a '&' 'not' b) 'or' ('not' 'not' b '&' 'not' a)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:16
.=(((a '&' 'not' b) 'or' (b '&' 'not' a)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:4
.=(((a 'or' b) '&' ('not' a 'or' 'not' b)) 'or' c) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by Th16
.=(((a 'or' b) 'or' c) '&' (('not' a 'or' 'not' b) 'or' c)) '&'
('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:14
.=((a 'or' b 'or' c) '&' ('not' a 'or' 'not' b 'or' c)) '&'
((a 'or' 'not' b 'or' 'not' c) '&' ('not' a 'or' b 'or' 'not' c))
by BVFUNC_1:14
.=(a 'or' b 'or' c) '&' ((a 'or' 'not' b 'or' 'not' c) '&'
('not' a 'or' b 'or' 'not' c)) '&' ('not' a 'or' 'not' b 'or' c)
by BVFUNC_1:7
.=(a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c) '&'
('not' a 'or' b 'or' 'not' c) '&' ('not' a 'or' 'not' b 'or' c)
by BVFUNC_1:7;
hence thesis by A1;
end;
theorem
'not' 'not' a 'imp' a = I_el(Y)
proof
'not' 'not' a = a by BVFUNC_1:4;
hence thesis by BVFUNC_5:8;
end;
theorem
((a 'imp' b) '&' a) 'imp' b = I_el(Y)
proof
((a 'imp' b) '&' a) 'imp' b = (a '&' b) 'imp' b by BVFUNC_7:10;
hence thesis by BVFUNC_6:41;
end;
theorem Th22:
a 'imp' ('not' a 'imp' a) = I_el(Y)
proof
a 'imp' ('not' a 'imp' a)
='not' a 'or' ('not' a 'imp' a) by BVFUNC_4:8
.='not' a 'or' ('not' 'not' a 'or' a) by BVFUNC_4:8
.='not' a 'or' (a 'or' a) by BVFUNC_1:4
.='not' a 'or' a by BVFUNC_1:10;
hence thesis by BVFUNC_4:6;
end;
theorem
('not' a 'imp' a) 'eqv' a = I_el(Y)
proof
('not' a 'imp' a) 'eqv' a
= (('not' a 'imp' a) 'imp' a) '&' (a 'imp' ('not' a 'imp' a)) by BVFUNC_4:7
.= I_el(Y) '&' (a 'imp' ('not' a 'imp' a)) by BVFUNC_5:12
.= (a 'imp' ('not' a 'imp' a)) by BVFUNC_1:9;
hence thesis by Th22;
end;
theorem
a 'or' (a 'imp' b) = I_el(Y)
proof
a 'or' (a 'imp' b)
=a 'or' ('not' a 'or' b) by BVFUNC_4:8
.=(a 'or' 'not' a) 'or' b by BVFUNC_1:11
.=I_el(Y) 'or' b by BVFUNC_4:6;
hence thesis by BVFUNC_1:13;
end;
theorem
(a 'imp' b) 'or' (c 'imp' a) = I_el(Y)
proof
(a 'imp' b) 'or' (c 'imp' a)
=('not' a 'or' b) 'or' (c 'imp' a) by BVFUNC_4:8
.=('not' a 'or' b) 'or' ('not' c 'or' a) by BVFUNC_4:8
.='not' c 'or' (a 'or' ('not' a 'or' b)) by BVFUNC_1:11
.='not' c 'or' ((a 'or' 'not' a) 'or' b) by BVFUNC_1:11
.='not' c 'or' (I_el(Y) 'or' b) by BVFUNC_4:6
.='not' c 'or' I_el(Y) by BVFUNC_1:13;
hence thesis by BVFUNC_1:13;
end;
theorem
(a 'imp' b) 'or' ('not' a 'imp' b) = I_el(Y)
proof
(a 'imp' b) 'or' ('not' a 'imp' b)
=('not' a 'or' b) 'or' ('not' a 'imp' b) by BVFUNC_4:8
.=('not' a 'or' b) 'or' ('not' 'not' a 'or' b) by BVFUNC_4:8
.=('not' a 'or' b) 'or' (a 'or' b) by BVFUNC_1:4
.=b 'or' ('not' a 'or' (a 'or' b)) by BVFUNC_1:11
.=b 'or' (('not' a 'or' a) 'or' b) by BVFUNC_1:11
.=b 'or' (I_el(Y) 'or' b) by BVFUNC_4:6
.=b 'or' I_el(Y) by BVFUNC_1:13;
hence thesis by BVFUNC_1:13;
end;
theorem
(a 'imp' b) 'or' (a 'imp' 'not' b) = I_el(Y)
proof
(a 'imp' b) 'or' (a 'imp' 'not' b)
=('not' a 'or' b) 'or' (a 'imp' 'not' b) by BVFUNC_4:8
.=('not' a 'or' b) 'or' ('not' a 'or' 'not' b) by BVFUNC_4:8
.='not' a 'or' (b 'or' ('not' b 'or' 'not' a)) by BVFUNC_1:11
.='not' a 'or' ((b 'or' 'not' b) 'or' 'not' a) by BVFUNC_1:11
.='not' a 'or' (I_el(Y) 'or' 'not' a) by BVFUNC_4:6
.='not' a 'or' I_el(Y) by BVFUNC_1:13;
hence thesis by BVFUNC_1:13;
end;
theorem
'not' a 'imp' ('not' b 'eqv' (b 'imp' a)) = I_el(Y)
proof
'not' a 'imp' ('not' b 'eqv' (b 'imp' a))
='not' 'not' a 'or' ('not' b 'eqv' (b 'imp' a)) by BVFUNC_4:8
.='not' 'not' a 'or' (('not' b 'imp' (b 'imp' a)) '&'
((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:7
.=a 'or' (('not' b 'imp' (b 'imp' a)) '&'
((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:4
.=a 'or' (('not' 'not' b 'or' (b 'imp' a)) '&'
((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:8
.=a 'or' ((b 'or' (b 'imp' a)) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:4
.=a 'or' ((b 'or' ('not' b 'or' a)) '&' ((b 'imp' a) 'imp' 'not' b))
by BVFUNC_4:8
.=a 'or' (((b 'or' 'not' b) 'or' a) '&' ((b 'imp' a) 'imp' 'not' b))
by BVFUNC_1:11
.=a 'or' ((I_el(Y) 'or' a) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:6
.=a 'or' (I_el(Y) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:13
.=a 'or' ((b 'imp' a) 'imp' 'not' b) by BVFUNC_1:9
.=a 'or' (('not' b 'or' a) 'imp' 'not' b) by BVFUNC_4:8
.=a 'or' ('not' ('not' b 'or' a) 'or' 'not' b) by BVFUNC_4:8
.=a 'or' (('not' 'not' b '&' 'not' a) 'or' 'not' b) by BVFUNC_1:16
.=a 'or' ((b '&' 'not' a) 'or' 'not' b) by BVFUNC_1:4
.=a 'or' ((b 'or' 'not' b) '&' ('not' a 'or' 'not' b)) by BVFUNC_1:14
.=a 'or' (I_el(Y) '&' ('not' a 'or' 'not' b)) by BVFUNC_4:6
.=a 'or' ('not' a 'or' 'not' b) by BVFUNC_1:9
.=(a 'or' 'not' a) 'or' 'not' b by BVFUNC_1:11
.=I_el(Y) 'or' 'not' b by BVFUNC_4:6;
hence thesis by BVFUNC_1:13;
end;
theorem
(a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b) = I_el(Y)
proof
(a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b)
='not' (a 'imp' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_4:8
.='not' ('not' a 'or' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_4:8
.=('not' 'not' a '&' 'not' b) 'or'
(((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_1:16
.=(a '&' 'not' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_1:4
.=(a '&' 'not' b) 'or' ('not' ((a 'imp' c) 'imp' b) 'or' b) by BVFUNC_4:8
.=(a '&' 'not' b) 'or' ('not' (('not' a 'or' c) 'imp' b) 'or' b)
by BVFUNC_4:8
.=(a '&' 'not' b) 'or' ('not' ('not' ('not' a 'or' c) 'or' b) 'or' b)
by BVFUNC_4:8
.=(a '&' 'not' b) 'or' ('not' (('not' 'not' a '&' 'not' c) 'or' b) 'or' b)
by BVFUNC_1:16
.=(a '&' 'not' b) 'or' ('not' ((a '&' 'not' c) 'or' b) 'or' b)
by BVFUNC_1:4
.=(a '&' 'not' b) 'or' (('not' (a '&' 'not' c) '&' 'not' b) 'or' b)
by BVFUNC_1:16
.=(a '&' 'not' b) 'or' ((('not' a 'or' 'not' 'not' c) '&' 'not' b) 'or' b)
by BVFUNC_1:17
.=(a '&' 'not' b) 'or' ((('not' a 'or' c) '&' 'not' b) 'or' b)
by BVFUNC_1:4
.=(a '&' 'not' b) 'or' ((('not' a 'or' c) 'or' b) '&' ('not' b 'or' b))
by BVFUNC_1:14
.=(a '&' 'not' b) 'or' ((('not' a 'or' c) 'or' b) '&' I_el(Y)) by BVFUNC_4:6
.=(a '&' 'not' b) 'or' (('not' a 'or' c) 'or' b) by BVFUNC_1:9
.=((a '&' 'not' b) 'or' b) 'or' ('not' a 'or' c) by BVFUNC_1:11
.=((a 'or' b) '&' ('not' b 'or' b)) 'or' ('not' a 'or' c) by BVFUNC_1:14
.=((a 'or' b) '&' I_el(Y)) 'or' ('not' a 'or' c) by BVFUNC_4:6
.=(a 'or' b) 'or' ('not' a 'or' c) by BVFUNC_1:9
.=b 'or' (a 'or' ('not' a 'or' c)) by BVFUNC_1:11
.=b 'or' ((a 'or' 'not' a) 'or' c) by BVFUNC_1:11
.=b 'or' (I_el(Y) 'or' c) by BVFUNC_4:6
.=b 'or' I_el(Y) by BVFUNC_1:13;
hence thesis by BVFUNC_1:13;
end;
theorem
a 'imp' b = a 'eqv' (a '&' b)
proof
a 'eqv' (a '&' b)
=(a 'imp' (a '&' b)) '&' ((a '&' b) 'imp' a) by BVFUNC_4:7
.=('not' a 'or' (a '&' b)) '&' ((a '&' b) 'imp' a) by BVFUNC_4:8
.=('not' a 'or' (a '&' b)) '&' ('not' (a '&' b) 'or' a) by BVFUNC_4:8
.=(('not' a 'or' a) '&' ('not' a 'or' b)) '&'
('not' (a '&' b) 'or' a) by BVFUNC_1:14
.=(I_el(Y) '&' ('not' a 'or' b)) '&' ('not' (a '&' b) 'or' a) by BVFUNC_4:6
.=('not' a 'or' b) '&' ('not' (a '&' b) 'or' a) by BVFUNC_1:9
.=('not' a 'or' b) '&' (('not' a 'or' 'not' b) 'or' a) by BVFUNC_1:17
.=('not' a 'or' b) '&' ('not' b 'or' ('not' a 'or' a)) by BVFUNC_1:11
.=('not' a 'or' b) '&' ('not' b 'or' I_el(Y)) by BVFUNC_4:6
.=('not' a 'or' b) '&' I_el(Y) by BVFUNC_1:13
.='not' a 'or' b by BVFUNC_1:9;
hence thesis by BVFUNC_4:8;
end;
theorem
a 'imp' b=I_el(Y) & b 'imp' a=I_el(Y) iff a=b
proof
(a 'eqv' b)=I_el(Y) iff ((a 'imp' b)=I_el(Y) & (b 'imp' a)=I_el(Y))
by BVFUNC_4:10;
hence thesis by BVFUNC_1:20;
end;
theorem
a = 'not' a 'imp' a
proof
a 'imp' ('not' a 'imp' a) = I_el(Y) by Th22;
then A1:a '<' ('not' a 'imp' a) by BVFUNC_1:19;
('not' a 'imp' a) 'imp' a = I_el(Y) by BVFUNC_5:12;
then ('not' a 'imp' a) '<' a by BVFUNC_1:19;
hence thesis by A1,BVFUNC_1:18;
end;
theorem Th33:
a 'imp' ((a 'imp' b) 'imp' a) = I_el(Y)
proof
thus a 'imp' ((a 'imp' b) 'imp' a)
='not' a 'or' ((a 'imp' b) 'imp' a) by BVFUNC_4:8
.='not' a 'or' ('not' (a 'imp' b) 'or' a) by BVFUNC_4:8
.='not' a 'or' ('not' ('not' a 'or' b) 'or' a) by BVFUNC_4:8
.='not' a 'or' (('not' 'not' a '&' 'not' b) 'or' a) by BVFUNC_1:16
.='not' a 'or' ((a '&' 'not' b) 'or' a) by BVFUNC_1:4
.='not' a 'or' ((a 'or' a) '&' ('not' b 'or' a)) by BVFUNC_1:14
.='not' a 'or' (a '&' ('not' b 'or' a)) by BVFUNC_1:10
.='not' a 'or' ((a '&' 'not' b) 'or' (a '&' a)) by BVFUNC_1:15
.='not' a 'or' ((a '&' 'not' b) 'or' a) by BVFUNC_1:6
.=('not' a 'or' a) 'or' (a '&' 'not' b) by BVFUNC_1:11
.=I_el(Y) 'or' (a '&' 'not' b) by BVFUNC_4:6
.=I_el(Y) by BVFUNC_1:13;
end;
theorem
a = (a 'imp' b) 'imp' a
proof
a 'imp' ((a 'imp' b) 'imp' a) = I_el(Y) by Th33;
then A1:a '<' ((a 'imp' b) 'imp' a) by BVFUNC_1:19;
((a 'imp' b) 'imp' a) 'imp' a = I_el(Y) by BVFUNC_8:27;
then ((a 'imp' b) 'imp' a) '<' a by BVFUNC_1:19;
hence thesis by A1,BVFUNC_1:18;
end;
theorem
a = (b 'imp' a) '&' ('not' b 'imp' a)
proof
a=(a 'or' b) '&' (a 'or' 'not' b) by BVFUNC_8:7
.=(a 'or' b) '&' (b 'imp' a) by BVFUNC_4:8
.=(a 'or' 'not' 'not' b) '&' (b 'imp' a) by BVFUNC_1:4
.=('not' b 'imp' a) '&' (b 'imp' a) by BVFUNC_4:8;
hence thesis;
end;
theorem
a '&' b = 'not' (a 'imp' 'not' b)
proof
(a '&' b) 'imp' 'not'( a 'imp' 'not' b)=I_el(Y) by BVFUNC_6:35;
then A1:(a '&' b) '<' 'not'( a 'imp' 'not' b) by BVFUNC_1:19;
'not'( a 'imp' 'not' b) 'imp' (a '&' b)=I_el(Y) by BVFUNC_6:36;
then 'not'( a 'imp' 'not' b) '<' (a '&' b) by BVFUNC_1:19;
hence thesis by A1,BVFUNC_1:18;
end;
theorem
a 'or' b = 'not' a 'imp' b
proof
thus 'not' a 'imp' b
='not' 'not' a 'or' b by BVFUNC_4:8
.=a 'or' b by BVFUNC_1:4;
end;
theorem
a 'or' b = (a 'imp' b) 'imp' b
proof
thus (a 'imp' b) 'imp' b
='not' (a 'imp' b) 'or' b by BVFUNC_4:8
.='not' ('not' a 'or' b) 'or' b by BVFUNC_4:8
.=('not' 'not' a '&' 'not' b) 'or' b by BVFUNC_1:16
.=(a '&' 'not' b) 'or' b by BVFUNC_1:4
.=(a 'or' b) '&' ('not' b 'or' b) by BVFUNC_1:14
.=(a 'or' b) '&' I_el(Y) by BVFUNC_4:6
.= a 'or' b by BVFUNC_1:9;
end;
theorem
(a 'imp' b) 'imp' (a 'imp' a) = I_el(Y)
proof
thus (a 'imp' b) 'imp' (a 'imp' a)=(a 'imp' b) 'imp' I_el(Y) by BVFUNC_5:8
.=I_el(Y) by BVFUNC_7:16;
end;
theorem
(a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) = I_el(
Y
)
proof
thus (a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c)))
='not' (a 'imp' (b 'imp' c)) 'or' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c)))
by BVFUNC_4:8
.='not' ('not' a 'or' (b 'imp' c)) 'or'
((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
.='not' ('not' a 'or' ('not' b 'or' c)) 'or'
((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
.='not' ('not' a 'or' ('not' b 'or' c)) 'or'
('not' (d 'imp' b) 'or' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
.='not' ('not' a 'or' ('not' b 'or' c)) 'or'
('not' ('not' d 'or' b) 'or' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
.='not' ('not' a 'or' ('not' b 'or' c)) 'or'
('not' ('not' d 'or' b) 'or' ('not' a 'or' (d 'imp' c))) by BVFUNC_4:8
.='not' ('not' a 'or' ('not' b 'or' c)) 'or'
('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_4:8
.=('not' 'not' a '&' 'not' ('not' b 'or' c)) 'or'
('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c)))
by BVFUNC_1:16
.=('not' 'not' a '&' ('not' 'not' b '&' 'not' c)) 'or'
('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c)))
by BVFUNC_1:16
.=('not' 'not' a '&' ('not' 'not' b '&' 'not' c)) 'or'
(('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c)))
by BVFUNC_1:16
.=(a '&' ('not' 'not' b '&' 'not' c)) 'or'
(('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c)))
by BVFUNC_1:4
.=(a '&' (b '&' 'not' c)) 'or'
(('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c)))
by BVFUNC_1:4
.=(a '&' (b '&' 'not' c)) 'or'
((d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:4
.=(a '&' (b '&' 'not' c)) 'or'
(((d '&' 'not' b) 'or' 'not' a) 'or' ('not' d 'or' c)) by BVFUNC_1:11
.=((a '&' (b '&' 'not' c)) 'or'
('not' a 'or' (d '&' 'not' b))) 'or' ('not' d 'or' c) by BVFUNC_1:11
.=(((a '&' (b '&' 'not' c)) 'or' 'not' a) 'or'
(d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:11
.=(((a 'or' 'not' a) '&' ((b '&' 'not' c) 'or' 'not' a)) 'or'
(d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:14
.=((I_el(Y) '&' ((b '&' 'not' c) 'or' 'not' a)) 'or'
(d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_4:6
.=(((b '&' 'not' c) 'or' 'not' a) 'or'
(d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:9
.=((b '&' 'not' c) 'or' 'not' a) 'or'
((d '&' 'not' b) 'or' ('not' d 'or' c)) by BVFUNC_1:11
.=((b '&' 'not' c) 'or' 'not' a) 'or'
((('not' b '&' d) 'or' 'not' d) 'or' c) by BVFUNC_1:11
.=((b '&' 'not' c) 'or' 'not' a) 'or'
((('not' b 'or' 'not' d) '&' (d 'or' 'not' d)) 'or' c) by BVFUNC_1:14
.=((b '&' 'not' c) 'or' 'not' a) 'or'
((('not' b 'or' 'not' d) '&' I_el(Y)) 'or' c) by BVFUNC_4:6
.=((b '&' 'not' c) 'or' 'not' a) 'or'
(('not' b 'or' 'not' d) 'or' c) by BVFUNC_1:9
.='not' a 'or' (('not' c '&' b) 'or' (('not' b 'or' 'not' d) 'or' c))
by BVFUNC_1:11
.='not' a 'or' ((('not' c '&' b) 'or' ('not' b 'or' 'not' d)) 'or' c)
by BVFUNC_1:11
.='not' a 'or' (((('not' c '&' b) 'or' 'not' b) 'or' 'not' d) 'or' c)
by BVFUNC_1:11
.='not' a 'or' (((('not' c 'or' 'not' b) '&' (b 'or' 'not' b))
'or' 'not' d) 'or' c) by BVFUNC_1:14
.='not' a 'or' (((('not' c 'or' 'not' b) '&' I_el(Y))
'or' 'not' d) 'or' c) by BVFUNC_4:6
.='not' a 'or' ((('not' b 'or' 'not' c) 'or' 'not' d) 'or' c) by BVFUNC_1:9
.='not' a 'or' (('not' b 'or' ('not' c 'or' 'not' d)) 'or' c) by BVFUNC_1:11
.='not' a 'or' ('not' b 'or' (('not' d 'or' 'not' c) 'or' c)) by BVFUNC_1:11
.='not' a 'or' ('not' b 'or' ('not' d 'or' ('not' c 'or' c))) by BVFUNC_1:11
.='not' a 'or' ('not' b 'or' ('not' d 'or' I_el(Y))) by BVFUNC_4:6
.='not' a 'or' ('not' b 'or' I_el(Y)) by BVFUNC_1:13
.='not' a 'or' I_el(Y) by BVFUNC_1:13
.=I_el(Y) by BVFUNC_1:13;
end;
theorem
(((a 'imp' b) '&' a) '&' c) 'imp' b = I_el(Y)
proof
thus (((a 'imp' b) '&' a) '&' c) 'imp' b
=((('not' a 'or' b) '&' a) '&' c) 'imp' b by BVFUNC_4:8
.=((('not' a '&' a) 'or' (b '&' a)) '&' c) 'imp' b by BVFUNC_1:15
.=((O_el(Y) 'or' (b '&' a)) '&' c) 'imp' b by BVFUNC_4:5
.=((b '&' a) '&' c) 'imp' b by BVFUNC_1:12
.='not' ((b '&' a) '&' c) 'or' b by BVFUNC_4:8
.=('not' (b '&' a) 'or' 'not' c) 'or' b by BVFUNC_1:17
.=(('not' b 'or' 'not' a) 'or' 'not' c) 'or' b by BVFUNC_1:17
.=(b 'or' ('not' b 'or' 'not' a)) 'or' 'not' c by BVFUNC_1:11
.=((b 'or' 'not' b) 'or' 'not' a) 'or' 'not' c by BVFUNC_1:11
.=(I_el(Y) 'or' 'not' a) 'or' 'not' c by BVFUNC_4:6
.=I_el(Y) 'or' 'not' c by BVFUNC_1:13
.=I_el(Y)by BVFUNC_1:13;
end;
theorem
(b 'imp' c) 'imp' ((a '&' b) 'imp' c) = I_el(Y)
proof
thus (b 'imp' c) 'imp' ((a '&' b) 'imp' c)
='not' (b 'imp' c) 'or' ((a '&' b) 'imp' c) by BVFUNC_4:8
.='not' ('not' b 'or' c) 'or' ((a '&' b) 'imp' c) by BVFUNC_4:8
.='not' ('not' b 'or' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_4:8
.=('not' 'not' b '&' 'not' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_1:16
.=(b '&' 'not' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_1:4
.=(b '&' 'not' c) 'or' (('not' a 'or' 'not' b) 'or' c) by BVFUNC_1:17
.=((b '&' 'not' c) 'or' c) 'or' ('not' a 'or' 'not' b) by BVFUNC_1:11
.=((b 'or' c) '&' ('not' c 'or' c)) 'or' ('not' a 'or' 'not' b)
by BVFUNC_1:14
.=((b 'or' c) '&' I_el(Y)) 'or' ('not' a 'or' 'not' b) by BVFUNC_4:6
.=('not' a 'or' 'not' b) 'or' (b 'or' c) by BVFUNC_1:9
.=(('not' a 'or' 'not' b) 'or' b) 'or' c by BVFUNC_1:11
.=('not' a 'or' ('not' b 'or' b)) 'or' c by BVFUNC_1:11
.=('not' a 'or' I_el(Y)) 'or' c by BVFUNC_4:6
.=I_el(Y) 'or' c by BVFUNC_1:13
.=I_el(Y) by BVFUNC_1:13;
end;
theorem
((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b)) = I_el(Y)
proof
((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b))
=('not' (a '&' b) 'or' c) 'imp' ((a '&' b) 'imp' (c '&' b)) by BVFUNC_4:8
.='not' ('not' (a '&' b) 'or' c) 'or' ((a '&' b) 'imp' (c '&' b))
by BVFUNC_4:8
.='not' ('not' (a '&' b) 'or' c) 'or' ('not' (a '&' b) 'or' (c '&' b))
by BVFUNC_4:8
.=('not' 'not' (a '&' b) '&' 'not' c) 'or' ('not' (a '&' b) 'or' (c '&' b))
by BVFUNC_1:16
.=((a '&' b) '&' 'not' c) 'or' ('not' (a '&' b) 'or' (c '&' b))
by BVFUNC_1:4
.=((a '&' b) '&' 'not' c) 'or' (('not' a 'or' 'not' b) 'or' (c '&' b))
by BVFUNC_1:17
.=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' ('not' b 'or' (b '&' c)))
by BVFUNC_1:11
.=((a '&' b) '&' 'not' c) 'or' ('not' a 'or'
(('not' b 'or' b) '&' ('not' b 'or' c))) by BVFUNC_1:14
.=((a '&' b) '&' 'not' c) 'or' ('not' a 'or'
(I_el(Y) '&' ('not' b 'or' c))) by BVFUNC_4:6
.=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' ('not' b 'or' c)) by BVFUNC_1:9
.=(((a '&' b) '&' 'not' c) 'or' 'not' a) 'or' ('not' b 'or' c) by BVFUNC_1:11
.=(((a '&' b) 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or'
('not' b 'or' c) by BVFUNC_1:14
.=(((a 'or' 'not' a) '&' (b 'or' 'not' a)) '&' ('not' c 'or' 'not' a)) 'or'
('not' b 'or' c) by BVFUNC_1:14
.=((I_el(Y) '&' (b 'or' 'not' a)) '&' ('not' c 'or' 'not' a)) 'or'
('not' b 'or' c) by BVFUNC_4:6
.=((b 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or' ('not' b 'or' c)
by BVFUNC_1:9
.=(((b 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or' c) 'or' 'not' b
by BVFUNC_1:11
.=(((b 'or' 'not' a) 'or' c) '&' (('not' c 'or' 'not' a) 'or' c))
'or' 'not' b by BVFUNC_1:14
.=(((b 'or' 'not' a) 'or' c) '&' ('not' a 'or' ('not' c 'or' c)))
'or' 'not' b by BVFUNC_1:11
.=(((b 'or' 'not' a) 'or' c) '&' ('not' a 'or' I_el(Y))) 'or' 'not' b
by BVFUNC_4:6
.=(((b 'or' 'not' a) 'or' c) '&' I_el(Y)) 'or' 'not' b by BVFUNC_1:13
.=((b 'or' 'not' a) 'or' c) 'or' 'not' b by BVFUNC_1:9
.=('not' b 'or' (b 'or' 'not' a)) 'or' c by BVFUNC_1:11
.=(('not' b 'or' b) 'or' 'not' a) 'or' c by BVFUNC_1:11
.=(I_el(Y) 'or' 'not' a) 'or' c by BVFUNC_4:6
.=I_el(Y) 'or' c by BVFUNC_1:13;
hence thesis by BVFUNC_1:13;
end;
theorem
(a 'imp' b) 'imp' ((a '&' c) 'imp' (b '&' c)) = I_el(Y)
proof
a 'imp' b '<' (a '&' c) 'imp' (b '&' c) by BVFUNC_9:10;
hence thesis by BVFUNC_1:19;
end;
theorem
(a 'imp' b) '&' (a '&' c) 'imp' (b '&' c) = I_el(Y)
proof
(a 'imp' b) '&' (a '&' c) 'imp' (b '&' c)
=((a 'imp' b) '&' a) '&' c 'imp' (b '&' c) by BVFUNC_1:7
.=(a '&' b) '&' c 'imp' (b '&' c) by BVFUNC_7:10
.=a '&' (b '&' c) 'imp' (b '&' c) by BVFUNC_1:7;
hence thesis by BVFUNC_6:39;
end;
theorem
a '&' (a 'imp' b) '&' (b 'imp' c) '<' c
proof
(a '&' (a 'imp' b) '&' (b 'imp' c)) 'imp' c
='not' (a '&' (a 'imp' b) '&' (b 'imp' c)) 'or' c by BVFUNC_4:8
.='not' (a '&' b '&' (b 'imp' c)) 'or' c by BVFUNC_7:10
.='not' (a '&' (b '&' (b 'imp' c))) 'or' c by BVFUNC_1:7
.='not' (a '&' (b '&' c)) 'or' c by BVFUNC_7:10
.='not' ((a '&' b) '&' c) 'or' c by BVFUNC_1:7
.=('not' (a '&' b) 'or' 'not' c) 'or' c by BVFUNC_1:17
.='not' (a '&' b) 'or' ('not' c 'or' c) by BVFUNC_1:11
.='not' (a '&' b) 'or' I_el(Y) by BVFUNC_4:6
.= I_el(Y) by BVFUNC_1:13;
hence thesis by BVFUNC_1:19;
end;
theorem
(a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c) '<' ('not' a 'imp' (b 'or' c))
proof
(a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c) 'imp' ('not' a 'imp' (b 'or' c)
)
='not' ((a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c)) 'or'
('not' a 'imp' (b 'or' c)) by BVFUNC_4:8
.='not' ((a 'or' b) '&' ('not' a 'or' c) '&' (b 'imp' c)) 'or'
('not' a 'imp' (b 'or' c)) by BVFUNC_4:8
.='not' ((a 'or' b) '&' ('not' a 'or' c) '&' ('not' b 'or' c)) 'or'
('not' a 'imp' (b 'or' c)) by BVFUNC_4:8
.='not' ((a 'or' b) '&' ('not' a 'or' c) '&' ('not' b 'or' c)) 'or'
('not' 'not' a 'or' (b 'or' c)) by BVFUNC_4:8
.=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' 'not' ('not' b 'or' c)) 'or'
('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:17
.=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' ('not' 'not' b '&' 'not' c))
'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:16
.=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' (b '&' 'not' c))
'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:4
.=(('not' (a 'or' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c))
'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:17
.=((('not' a '&' 'not' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c))
'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:16
.=((('not' a '&' 'not' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c))
'or' (a 'or' (b 'or' c)) by BVFUNC_1:4
.=((('not' a '&' 'not' b) 'or' ('not' 'not' a '&' 'not' c)) 'or'
(b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:16
.=((('not' a '&' 'not' b) 'or' (a '&' 'not' c)) 'or'
(b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:4
.=((('not' a 'or' (a '&' 'not' c)) '&' ('not' b 'or' (a '&' 'not' c))) 'or'
(b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:14
.=(((('not' a 'or' a) '&' ('not' a 'or' 'not' c)) '&'
('not' b 'or' (a '&' 'not' c))) 'or'
(b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:14
.=(((I_el(Y) '&' ('not' a 'or' 'not' c)) '&' ('not' b 'or' (a '&' 'not' c)))
'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_4:6
.=((('not' a 'or' 'not' c) '&' ('not' b 'or' (a '&' 'not' c))) 'or'
(b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:9
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (('not' a 'or' 'not' c) '&'
(a '&' 'not' c))) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c))
by BVFUNC_1:15
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((('not' a 'or' 'not' c)
'&' a) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c))
by BVFUNC_1:7
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((('not' a '&' a) 'or'
('not' c '&' a)) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or'
(a 'or' (b 'or' c)) by BVFUNC_1:15
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((O_el(Y) 'or'
('not' c '&' a)) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or'
(a 'or' (b 'or' c)) by BVFUNC_4:5
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (('not' c '&' a) '&' 'not' c))
'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:12
.=((('not' c '&' a) '&' 'not' c) 'or' ((('not' a 'or' 'not' c) '&' 'not' b)
'or' (b '&' 'not' c))) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:11
.=((('not' c '&' a) '&' 'not' c) 'or' ((('not' a 'or' 'not' c) '&' 'not' b)
'or' (b '&' 'not' c))) 'or' (c 'or' (a 'or' b)) by BVFUNC_1:11
.=((((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
(('not' c '&' a) '&' 'not' c)) 'or' c) 'or' (a 'or' b) by BVFUNC_1:11
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
((('not' c '&' a) '&' 'not' c) 'or' c)) 'or' (a 'or' b) by BVFUNC_1:11
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
((('not' c '&' a) 'or' c) '&' ('not' c 'or' c))) 'or' (a 'or' b)
by BVFUNC_1:14
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
((('not' c '&' a) 'or' c) '&' I_el(Y))) 'or' (a 'or' b) by BVFUNC_4:6
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
((('not' c '&' a) 'or' c))) 'or' (a 'or' b) by BVFUNC_1:9
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
((('not' c 'or' c) '&' (a 'or' c)))) 'or' (a 'or' b) by BVFUNC_1:14
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
((I_el(Y) '&' (a 'or' c)))) 'or' (a 'or' b) by BVFUNC_4:6
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
(a 'or' c)) 'or' (a 'or' b) by BVFUNC_1:9
.=((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((b '&' 'not' c) 'or'
(c 'or' a))) 'or' (a 'or' b) by BVFUNC_1:11
.=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b '&' 'not' c) 'or' c)
'or' a)) 'or' (a 'or' b) by BVFUNC_1:11
.=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b 'or' c) '&'
('not' c 'or' c)) 'or' a)) 'or' (a 'or' b) by BVFUNC_1:14
.=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b 'or' c) '&' I_el(Y))
'or' a)) 'or' (a 'or' b) by BVFUNC_4:6
.=((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((b 'or' c)'or' a))
'or' (a 'or' b) by BVFUNC_1:9
.=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b 'or' (c 'or' a)))
'or' (a 'or' b) by BVFUNC_1:11
.=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' b) 'or' (c 'or' a))
'or' (a 'or' b) by BVFUNC_1:11
.=(((('not' a 'or' 'not' c) 'or' b) '&' ('not' b 'or' b)) 'or' (c 'or' a))
'or' (a 'or' b) by BVFUNC_1:14
.=(((('not' a 'or' 'not' c) 'or' b) '&' I_el(Y)) 'or' (c 'or' a))
'or' (a 'or' b) by BVFUNC_4:6
.=((('not' a 'or' 'not' c) 'or' b) 'or' (c 'or' a))
'or' (a 'or' b) by BVFUNC_1:9
.=(((('not' a 'or' 'not' c) 'or' b) 'or' c) 'or' a)
'or' (a 'or' b) by BVFUNC_1:11
.=(((('not' a 'or' 'not' c) 'or' c) 'or' b) 'or' a)
'or' (a 'or' b) by BVFUNC_1:11
.=((('not' a 'or' ('not' c 'or' c)) 'or' b) 'or' a)
'or' (a 'or' b) by BVFUNC_1:11
.=((('not' a 'or' I_el(Y)) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_4:6
.=((I_el(Y) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_1:13
.=(I_el(Y) 'or' a) 'or' (a 'or' b) by BVFUNC_1:13
.=I_el(Y) 'or' (a 'or' b) by BVFUNC_1:13
.= I_el(Y) by BVFUNC_1:13;
hence thesis by BVFUNC_1:19;
end;