Copyright (c) 2003 Association of Mizar Users
environ vocabulary FUNCT_2, MARGREL1, PARTIT1, ZF_LANG, BVFUNC_1, BINARITH; notation XBOOLE_0, MARGREL1, VALUAT_1, FRAENKEL, BVFUNC_1; constructors BVFUNC_1; clusters MARGREL1, VALUAT_1, FRAENKEL; theorems BVFUNC_1, BVFUNC_4, BVFUNC_5, BVFUNC_6, BVFUNC_7, BVFUNC_8, BVFUNC_9; begin reserve Y for non empty set, a,b,c,d for Element of Funcs(Y,BOOLEAN); theorem 'not' (a 'imp' b) = a '&' 'not' b proof thus 'not' (a 'imp' b)='not' ('not' a 'or' b) by BVFUNC_4:8 .='not' 'not' a '&' 'not' b by BVFUNC_1:16 .=a '&' 'not' b by BVFUNC_1:4; end; theorem Th2: ('not' b 'imp' 'not' a) 'imp' (a 'imp' b)=I_el(Y) proof ('not' b 'imp' 'not' a) 'imp' (a 'imp' b) ='not' ('not' b 'imp' 'not' a) 'or' (a 'imp' b) by BVFUNC_4:8 .='not' ('not' 'not' b 'or' 'not' a) 'or' (a 'imp' b) by BVFUNC_4:8 .='not' (b 'or' 'not' a) 'or' (a 'imp' b) by BVFUNC_1:4 .=('not' b '&' 'not' 'not' a) 'or' (a 'imp' b) by BVFUNC_1:16 .=('not' b '&' a) 'or' (a 'imp' b) by BVFUNC_1:4 .=('not' b '&' a) 'or' ('not' a 'or' b) by BVFUNC_4:8 .=(('not' b '&' a) 'or' 'not' a) 'or' b by BVFUNC_1:11 .=(('not' b 'or' 'not' a) '&' (a 'or' 'not' a)) 'or' b by BVFUNC_1:14 .=(('not' b 'or' 'not' a) '&' I_el(Y)) 'or' b by BVFUNC_4:6 .=('not' b 'or' 'not' a) 'or' b by BVFUNC_1:9 .='not' a 'or' ('not' b 'or' b) by BVFUNC_1:11 .='not' a 'or' I_el(Y) by BVFUNC_4:6; hence thesis by BVFUNC_1:13; end; theorem Th3: a 'imp' b = 'not' b 'imp' 'not' a proof ('not' b 'imp' 'not' a) 'imp' (a 'imp' b)=I_el(Y) by Th2; then A1:('not' b 'imp' 'not' a) '<' (a 'imp' b) by BVFUNC_1:19; (a 'imp' b) 'imp' ('not' b 'imp' 'not' a)=I_el(Y) by BVFUNC_5:33; then a 'imp' b '<' 'not' b 'imp' 'not' a by BVFUNC_1:19; hence thesis by A1,BVFUNC_1:18; end; theorem a 'eqv' b = 'not' a 'eqv' 'not' b proof thus 'not' a 'eqv' 'not' b =('not' a 'imp' 'not' b) '&' ('not' b 'imp' 'not' a) by BVFUNC_4:7 .=(b 'imp' a) '&' ('not' b 'imp' 'not' a) by Th3 .=(b 'imp' a) '&' (a 'imp' b) by Th3 .=a 'eqv' b by BVFUNC_4:7; end; theorem Th5: a 'imp' b = a 'imp' (a '&' b) proof a 'imp' (a '&' b)='not' a 'or' (a '&' b) by BVFUNC_4:8 .=('not' a 'or' a) '&' ('not' a 'or' b) by BVFUNC_1:14 .=I_el(Y) '&' ('not' a 'or' b) by BVFUNC_4:6 .='not' a 'or' b by BVFUNC_1:9; hence thesis by BVFUNC_4:8; end; theorem a 'eqv' b = (a 'or' b) 'imp' (a '&' b) proof thus (a 'or' b) 'imp' (a '&' b) =(a 'imp' (a '&' b)) '&' (b 'imp' (a '&' b)) by BVFUNC_7:5 .=(a 'imp' b) '&' (b 'imp' (a '&' b)) by Th5 .=(a 'imp' b) '&' (b 'imp' a) by Th5 .=a 'eqv' b by BVFUNC_4:7; end; theorem a 'eqv' 'not' a = O_el(Y) proof thus a 'eqv' 'not' a =(a 'imp' 'not' a) '&' ('not' a 'imp' a) by BVFUNC_4:7 .=('not' a 'or' 'not' a) '&' ('not' a 'imp' a) by BVFUNC_4:8 .=('not' a 'or' 'not' a) '&' ('not' 'not' a 'or' a) by BVFUNC_4:8 .='not' a '&' ('not' 'not' a 'or' a) by BVFUNC_1:10 .='not' a '&' (a 'or' a) by BVFUNC_1:4 .='not' a '&' a by BVFUNC_1:10 .=O_el(Y) by BVFUNC_4:5; end; theorem a 'imp' (b 'imp' c) = b 'imp' (a 'imp' c) proof thus a 'imp' (b 'imp' c) ='not' a 'or' (b 'imp' c) by BVFUNC_4:8 .='not' a 'or' ('not' b 'or' c) by BVFUNC_4:8 .='not' b 'or' ('not' a 'or' c) by BVFUNC_1:11 .='not' b 'or' (a 'imp' c) by BVFUNC_4:8 .=b 'imp' (a 'imp' c) by BVFUNC_4:8; end; theorem a 'imp' (b 'imp' c) = (a 'imp' b) 'imp' (a 'imp' c) proof thus (a 'imp' b) 'imp' (a 'imp' c) =(a 'imp' b) 'imp' ('not' a 'or' c) by BVFUNC_4:8 .='not' (a 'imp' b) 'or' ('not' a 'or' c) by BVFUNC_4:8 .='not' ('not' a 'or' b) 'or' ('not' a 'or' c) by BVFUNC_4:8 .=('not' 'not' a '&' 'not' b) 'or' ('not' a 'or' c) by BVFUNC_1:16 .=(a '&' 'not' b) 'or' ('not' a 'or' c) by BVFUNC_1:4 .=((a '&' 'not' b) 'or' 'not' a) 'or' c by BVFUNC_1:11 .=((a 'or' 'not' a) '&' ('not' b 'or' 'not' a)) 'or' c by BVFUNC_1:14 .=(I_el(Y) '&' ('not' b 'or' 'not' a)) 'or' c by BVFUNC_4:6 .=('not' a 'or' 'not' b) 'or' c by BVFUNC_1:9 .='not' a 'or' ('not' b 'or' c) by BVFUNC_1:11 .='not' a 'or' (b 'imp' c) by BVFUNC_4:8 .=a 'imp' (b 'imp' c) by BVFUNC_4:8; end; theorem a 'eqv' b = a 'xor' 'not' b proof 'not' (a 'xor' b) = 'not' 'not' ( a 'eqv' b) by BVFUNC_8:12; then 'not' (a 'xor' b) = (a 'eqv' b) by BVFUNC_1:4; hence thesis by BVFUNC_8:17; end; theorem a '&' (b 'xor' c) = a '&' b 'xor' a '&' c proof A1:a '&' (b 'xor' c) =a '&' (('not' b '&' c) 'or' (b '&' 'not' c)) by BVFUNC_4:9 .=(a '&' ('not' b '&' c)) 'or' (a '&' (b '&' 'not' c)) by BVFUNC_1:15 .=((a '&' c) '&' 'not' b) 'or' (a '&' (b '&' 'not' c)) by BVFUNC_1:7 .=((a '&' c) '&' 'not' b) 'or' ((a '&' b) '&' 'not' c) by BVFUNC_1:7; A2:a '&' b 'xor' a '&' c =('not' (a '&' b) '&' (a '&' c)) 'or' ((a '&' b) '&' 'not' (a '&' c)) by BVFUNC_4:9 .=(('not' a 'or' 'not' b) '&' (a '&' c)) 'or' ((a '&' b) '&' 'not' (a '&' c)) by BVFUNC_1:17 .=((a '&' c) '&' ('not' a 'or' 'not' b)) 'or' ((a '&' b) '&' ('not' a 'or' 'not' c)) by BVFUNC_1:17 .=(((a '&' c) '&' 'not' a) 'or' ((a '&' c) '&' 'not' b)) 'or' ((a '&' b) '&' ('not' a 'or' 'not' c)) by BVFUNC_1:15 .=(((a '&' c) '&' 'not' a) 'or' ((a '&' c) '&' 'not' b)) 'or' (((a '&' b) '&' 'not' a) 'or' ((a '&' b) '&' 'not' c)) by BVFUNC_1:15 .=((a '&' c) '&' 'not' a) 'or' (((a '&' c) '&' 'not' b) 'or' (((a '&' b) '&' 'not' c) 'or' ((a '&' b) '&' 'not' a))) by BVFUNC_1:11 .=((a '&' c) '&' 'not' a) 'or' ((((a '&' c) '&' 'not' b) 'or' ((a '&' b) '&' 'not' c)) 'or' ((a '&' b) '&' 'not' a)) by BVFUNC_1:11 .=(((a '&' c) '&' 'not' a) 'or' ((a '&' b) '&' 'not' a)) 'or' (((a '&' c) '&' 'not' b) 'or' ((a '&' b) '&' 'not' c)) by BVFUNC_1:11; ((c '&' a) '&' 'not' a) 'or' ((b '&' a) '&' 'not' a) =(c '&' (a '&' 'not' a)) 'or' ((b '&' a) '&' 'not' a) by BVFUNC_1:7 .=(c '&' (a '&' 'not' a)) 'or' (b '&' (a '&' 'not' a)) by BVFUNC_1:7 .=(c '&' O_el(Y)) 'or' (b '&' (a '&' 'not' a)) by BVFUNC_4:5 .=(c '&' O_el(Y)) 'or' (b '&' O_el(Y)) by BVFUNC_4:5 .=O_el(Y) 'or' (b '&' O_el(Y)) by BVFUNC_1:8 .=O_el(Y) 'or' O_el(Y) by BVFUNC_1:8 .=O_el(Y) by BVFUNC_1:10; hence thesis by A1,A2,BVFUNC_1:12; end; theorem a 'eqv' b = 'not' (a 'xor' b) proof 'not' (a 'xor' b) = 'not' 'not' (a 'eqv' b) by BVFUNC_8:12; hence thesis by BVFUNC_1:4; end; theorem a 'xor' a = O_el(Y) proof thus a 'xor' a =('not' a '&' a) 'or' (a '&' 'not' a) by BVFUNC_4:9 .=O_el(Y) 'or' (a '&' 'not' a) by BVFUNC_4:5 .=O_el(Y) 'or' O_el(Y) by BVFUNC_4:5 .=O_el(Y) by BVFUNC_1:10; end; theorem a 'xor' 'not' a = I_el(Y) proof thus a 'xor' 'not' a =('not' a '&' 'not' a) 'or' (a '&' 'not' 'not' a) by BVFUNC_4:9 .=('not' a '&' 'not' a) 'or' (a '&' a) by BVFUNC_1:4 .=('not' a) 'or' (a '&' a) by BVFUNC_1:6 .='not' a 'or' a by BVFUNC_1:6 .=I_el(Y) by BVFUNC_4:6; end; theorem (a 'imp' b) 'imp' (b 'imp' a) = b 'imp' a proof (a 'imp' b) 'imp' (b 'imp' a) =('not' a 'or' b) 'imp' (b 'imp' a) by BVFUNC_4:8 .=('not' a 'or' b) 'imp' ('not' b 'or' a) by BVFUNC_4:8 .='not' ('not' a 'or' b) 'or' ('not' b 'or' a) by BVFUNC_4:8 .=('not' 'not' a '&' 'not' b) 'or' ('not' b 'or' a) by BVFUNC_1:16 .=(a '&' 'not' b) 'or' ('not' b 'or' a) by BVFUNC_1:4 .=((a '&' 'not' b) 'or' 'not' b) 'or' a by BVFUNC_1:11 .=((a 'or' 'not' b) '&' ('not' b 'or' 'not' b)) 'or' a by BVFUNC_1:14 .=((a 'or' 'not' b) '&' 'not' b) 'or' a by BVFUNC_1:10 .=((a 'or' 'not' b) 'or' a) '&' ('not' b 'or' a) by BVFUNC_1:14 .=('not' b 'or' (a 'or' a)) '&' ('not' b 'or' a) by BVFUNC_1:11 .=('not' b 'or' a) '&' ('not' b 'or' a) by BVFUNC_1:10 .=('not' b 'or' a) by BVFUNC_1:6; hence thesis by BVFUNC_4:8; end; theorem Th16: (a 'or' b) '&' ('not' a 'or' 'not' b) = ('not' a '&' b) 'or' (a '&' 'not' b) proof a 'xor' b = ('not' a '&' b) 'or' (a '&' 'not' b) by BVFUNC_4:9; hence thesis by BVFUNC_8:13; end; theorem Th17: (a '&' b) 'or' ('not' a '&' 'not' b) = ('not' a 'or' b) '&' (a 'or' 'not' b) proof thus (a '&' b) 'or' ('not' a '&' 'not' b) =('not' 'not' a '&' b) 'or' ('not' a '&' 'not' b) by BVFUNC_1:4 .=('not' a 'or' b) '&' ('not' 'not' a 'or' 'not' b) by Th16 .=('not' a 'or' b) '&' (a 'or' 'not' b) by BVFUNC_1:4; end; theorem a 'xor' (b 'xor' c) = (a 'xor' b) 'xor' c proof A1:a 'xor' (b 'xor' c) =('not' a '&' (b 'xor' c)) 'or' (a '&' 'not' (b 'xor' c)) by BVFUNC_4:9 .=('not' a '&' (('not' b '&' c) 'or' (b '&' 'not' c))) 'or' (a '&' 'not' (b 'xor' c)) by BVFUNC_4:9 .=('not' a '&' (('not' b '&' c) 'or' (b '&' 'not' c))) 'or' (a '&' 'not' (('not' b '&' c) 'or' (b '&' 'not' c))) by BVFUNC_4:9 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' (a '&' 'not' (('not' b '&' c) 'or' (b '&' 'not' c))) by BVFUNC_1:15 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' (a '&' (('not' ('not' b '&' c)) '&' ('not' (b '&' 'not' c)))) by BVFUNC_1:16 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' (a '&' ((('not' 'not' b 'or' 'not' c)) '&' ('not' (b '&' 'not' c)))) by BVFUNC_1:17 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' (a '&' ((b 'or' 'not' c) '&' ('not' (b '&' 'not' c)))) by BVFUNC_1:4 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' (a '&' ((b 'or' 'not' c) '&' (('not' b 'or' 'not' 'not' c)))) by BVFUNC_1:17 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' (a '&' ((b 'or' 'not' c) '&' (('not' b 'or' c)))) by BVFUNC_1:4 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' (a '&' ((b '&' c) 'or' ('not' b '&' 'not' c))) by Th17 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or' ((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:15 .=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' (b '&' 'not' c))) 'or' ((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7 .=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' b '&' 'not' c)) 'or' ((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7 .=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' b '&' 'not' c)) 'or' ((a '&' b '&' c) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7 .=((a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c)) 'or' (('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c)) by BVFUNC_1:7 .=(a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c) 'or' ('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c) by BVFUNC_1:11; (a 'xor' b) 'xor' c =(('not' a '&' b) 'or' (a '&' 'not' b)) 'xor' c by BVFUNC_4:9 .=('not' (('not' a '&' b) 'or' (a '&' 'not' b)) '&' c) 'or' ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_4:9 .=(('not' ('not' a '&' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or' ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:16 .=((('not' 'not' a 'or' 'not' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or' ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:17 .=(((a 'or' 'not' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or' ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:4 .=(((a 'or' 'not' b) '&' ('not' a 'or' 'not' 'not' b)) '&' c) 'or' ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:17 .=(((a 'or' 'not' b) '&' ('not' a 'or' b)) '&' c) 'or' ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:4 .=(((a 'or' 'not' b) '&' ('not' a 'or' b)) '&' c) 'or' (('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c)) by BVFUNC_1:15 .=(((a '&' b) 'or' ('not' a '&' 'not' b)) '&' c) 'or' (('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c)) by Th17 .=((a '&' b '&' c) 'or' ('not' a '&' 'not' b '&' c)) 'or' (('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c)) by BVFUNC_1:15 .=(a '&' b '&' c) 'or' ((a '&' 'not' b '&' 'not' c) 'or' ('not' a '&' b '&' 'not' c)) 'or' ('not' a '&' 'not' b '&' c) by BVFUNC_1:11 .=(a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c) 'or' ('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c) by BVFUNC_1:11; hence thesis by A1; end; theorem a 'eqv' (b 'eqv' c) = (a 'eqv' b) 'eqv' c proof A1:a 'eqv' (b 'eqv' c) =(a 'imp' (b 'eqv' c)) '&' ((b 'eqv' c) 'imp' a) by BVFUNC_4:7 .=(a 'imp' ((b 'imp' c) '&' (c 'imp' b))) '&' ((b 'eqv' c) 'imp' a) by BVFUNC_4:7 .=(a 'imp' ((b 'imp' c) '&' (c 'imp' b))) '&' (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:7 .=('not' a 'or' ((b 'imp' c) '&' (c 'imp' b))) '&' (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8 .=('not' a 'or' (('not' b 'or' c) '&' (c 'imp' b))) '&' (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' ((('not' b 'or' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' ((('not' b 'or' c) '&' ('not' c 'or' b)) 'imp' a) by BVFUNC_4:8 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' ('not' (('not' b 'or' c) '&' ('not' c 'or' b)) 'or' a) by BVFUNC_4:8 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' (('not' ('not' b 'or' c)) 'or' ('not' ('not' c 'or' b)) 'or' a) by BVFUNC_1:17 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' ((('not' 'not' b '&' 'not' c)) 'or' ('not' ('not' c 'or' b)) 'or' a) by BVFUNC_1:16 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' (((b '&' 'not' c)) 'or' ('not' ('not' c 'or' b)) 'or' a) by BVFUNC_1:4 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' (((b '&' 'not' c)) 'or' (('not' 'not' c '&' 'not' b)) 'or' a) by BVFUNC_1:16 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' (((b '&' 'not' c) 'or' (c '&' 'not' b)) 'or' a) by BVFUNC_1:4 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&' (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by Th16 .=(('not' a 'or' ('not' b 'or' c)) '&' ('not' a 'or' ('not' c 'or' b))) '&' (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:14 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' (b 'or' 'not' c))) '&' (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:11 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&' (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:11 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&' ((a 'or' (b 'or' c)) '&' (a 'or' ('not' b 'or' 'not' c))) by BVFUNC_1:14 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&' ((a 'or' b 'or' c) '&' (a 'or' ('not' b 'or' 'not' c))) by BVFUNC_1:11 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&' ((a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c)) by BVFUNC_1:11 .=((a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c)) '&' ('not' a 'or' b 'or' 'not' c) '&' ('not' a 'or' 'not' b 'or' c) by BVFUNC_1:7; (a 'eqv' b) 'eqv' c =((a 'eqv' b) 'imp' c) '&' (c 'imp' (a 'eqv' b)) by BVFUNC_4:7 .=(((a 'imp' b) '&' (b 'imp' a)) 'imp' c) '&' (c 'imp' (a 'eqv' b)) by BVFUNC_4:7 .=(((a 'imp' b) '&' (b 'imp' a)) 'imp' c) '&' (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:7 .=((('not' a 'or' b) '&' (b 'imp' a)) 'imp' c) '&' (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8 .=((('not' a 'or' b) '&' ('not' b 'or' a)) 'imp' c) '&' (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&' (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&' ('not' c 'or' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' (b 'imp' a))) by BVFUNC_4:8 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_4:8 .=(('not' ('not' a 'or' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:17 .=((('not' 'not' a '&' 'not' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:16 .=(((a '&' 'not' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:4 .=(((a '&' 'not' b) 'or' ('not' 'not' b '&' 'not' a)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:16 .=(((a '&' 'not' b) 'or' (b '&' 'not' a)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:4 .=(((a 'or' b) '&' ('not' a 'or' 'not' b)) 'or' c) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by Th16 .=(((a 'or' b) 'or' c) '&' (('not' a 'or' 'not' b) 'or' c)) '&' ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:14 .=((a 'or' b 'or' c) '&' ('not' a 'or' 'not' b 'or' c)) '&' ((a 'or' 'not' b 'or' 'not' c) '&' ('not' a 'or' b 'or' 'not' c)) by BVFUNC_1:14 .=(a 'or' b 'or' c) '&' ((a 'or' 'not' b 'or' 'not' c) '&' ('not' a 'or' b 'or' 'not' c)) '&' ('not' a 'or' 'not' b 'or' c) by BVFUNC_1:7 .=(a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c) '&' ('not' a 'or' b 'or' 'not' c) '&' ('not' a 'or' 'not' b 'or' c) by BVFUNC_1:7; hence thesis by A1; end; theorem 'not' 'not' a 'imp' a = I_el(Y) proof 'not' 'not' a = a by BVFUNC_1:4; hence thesis by BVFUNC_5:8; end; theorem ((a 'imp' b) '&' a) 'imp' b = I_el(Y) proof ((a 'imp' b) '&' a) 'imp' b = (a '&' b) 'imp' b by BVFUNC_7:10; hence thesis by BVFUNC_6:41; end; theorem Th22: a 'imp' ('not' a 'imp' a) = I_el(Y) proof a 'imp' ('not' a 'imp' a) ='not' a 'or' ('not' a 'imp' a) by BVFUNC_4:8 .='not' a 'or' ('not' 'not' a 'or' a) by BVFUNC_4:8 .='not' a 'or' (a 'or' a) by BVFUNC_1:4 .='not' a 'or' a by BVFUNC_1:10; hence thesis by BVFUNC_4:6; end; theorem ('not' a 'imp' a) 'eqv' a = I_el(Y) proof ('not' a 'imp' a) 'eqv' a = (('not' a 'imp' a) 'imp' a) '&' (a 'imp' ('not' a 'imp' a)) by BVFUNC_4:7 .= I_el(Y) '&' (a 'imp' ('not' a 'imp' a)) by BVFUNC_5:12 .= (a 'imp' ('not' a 'imp' a)) by BVFUNC_1:9; hence thesis by Th22; end; theorem a 'or' (a 'imp' b) = I_el(Y) proof a 'or' (a 'imp' b) =a 'or' ('not' a 'or' b) by BVFUNC_4:8 .=(a 'or' 'not' a) 'or' b by BVFUNC_1:11 .=I_el(Y) 'or' b by BVFUNC_4:6; hence thesis by BVFUNC_1:13; end; theorem (a 'imp' b) 'or' (c 'imp' a) = I_el(Y) proof (a 'imp' b) 'or' (c 'imp' a) =('not' a 'or' b) 'or' (c 'imp' a) by BVFUNC_4:8 .=('not' a 'or' b) 'or' ('not' c 'or' a) by BVFUNC_4:8 .='not' c 'or' (a 'or' ('not' a 'or' b)) by BVFUNC_1:11 .='not' c 'or' ((a 'or' 'not' a) 'or' b) by BVFUNC_1:11 .='not' c 'or' (I_el(Y) 'or' b) by BVFUNC_4:6 .='not' c 'or' I_el(Y) by BVFUNC_1:13; hence thesis by BVFUNC_1:13; end; theorem (a 'imp' b) 'or' ('not' a 'imp' b) = I_el(Y) proof (a 'imp' b) 'or' ('not' a 'imp' b) =('not' a 'or' b) 'or' ('not' a 'imp' b) by BVFUNC_4:8 .=('not' a 'or' b) 'or' ('not' 'not' a 'or' b) by BVFUNC_4:8 .=('not' a 'or' b) 'or' (a 'or' b) by BVFUNC_1:4 .=b 'or' ('not' a 'or' (a 'or' b)) by BVFUNC_1:11 .=b 'or' (('not' a 'or' a) 'or' b) by BVFUNC_1:11 .=b 'or' (I_el(Y) 'or' b) by BVFUNC_4:6 .=b 'or' I_el(Y) by BVFUNC_1:13; hence thesis by BVFUNC_1:13; end; theorem (a 'imp' b) 'or' (a 'imp' 'not' b) = I_el(Y) proof (a 'imp' b) 'or' (a 'imp' 'not' b) =('not' a 'or' b) 'or' (a 'imp' 'not' b) by BVFUNC_4:8 .=('not' a 'or' b) 'or' ('not' a 'or' 'not' b) by BVFUNC_4:8 .='not' a 'or' (b 'or' ('not' b 'or' 'not' a)) by BVFUNC_1:11 .='not' a 'or' ((b 'or' 'not' b) 'or' 'not' a) by BVFUNC_1:11 .='not' a 'or' (I_el(Y) 'or' 'not' a) by BVFUNC_4:6 .='not' a 'or' I_el(Y) by BVFUNC_1:13; hence thesis by BVFUNC_1:13; end; theorem 'not' a 'imp' ('not' b 'eqv' (b 'imp' a)) = I_el(Y) proof 'not' a 'imp' ('not' b 'eqv' (b 'imp' a)) ='not' 'not' a 'or' ('not' b 'eqv' (b 'imp' a)) by BVFUNC_4:8 .='not' 'not' a 'or' (('not' b 'imp' (b 'imp' a)) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:7 .=a 'or' (('not' b 'imp' (b 'imp' a)) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:4 .=a 'or' (('not' 'not' b 'or' (b 'imp' a)) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:8 .=a 'or' ((b 'or' (b 'imp' a)) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:4 .=a 'or' ((b 'or' ('not' b 'or' a)) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:8 .=a 'or' (((b 'or' 'not' b) 'or' a) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:11 .=a 'or' ((I_el(Y) 'or' a) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:6 .=a 'or' (I_el(Y) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:13 .=a 'or' ((b 'imp' a) 'imp' 'not' b) by BVFUNC_1:9 .=a 'or' (('not' b 'or' a) 'imp' 'not' b) by BVFUNC_4:8 .=a 'or' ('not' ('not' b 'or' a) 'or' 'not' b) by BVFUNC_4:8 .=a 'or' (('not' 'not' b '&' 'not' a) 'or' 'not' b) by BVFUNC_1:16 .=a 'or' ((b '&' 'not' a) 'or' 'not' b) by BVFUNC_1:4 .=a 'or' ((b 'or' 'not' b) '&' ('not' a 'or' 'not' b)) by BVFUNC_1:14 .=a 'or' (I_el(Y) '&' ('not' a 'or' 'not' b)) by BVFUNC_4:6 .=a 'or' ('not' a 'or' 'not' b) by BVFUNC_1:9 .=(a 'or' 'not' a) 'or' 'not' b by BVFUNC_1:11 .=I_el(Y) 'or' 'not' b by BVFUNC_4:6; hence thesis by BVFUNC_1:13; end; theorem (a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b) = I_el(Y) proof (a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b) ='not' (a 'imp' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_4:8 .='not' ('not' a 'or' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_4:8 .=('not' 'not' a '&' 'not' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_1:16 .=(a '&' 'not' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_1:4 .=(a '&' 'not' b) 'or' ('not' ((a 'imp' c) 'imp' b) 'or' b) by BVFUNC_4:8 .=(a '&' 'not' b) 'or' ('not' (('not' a 'or' c) 'imp' b) 'or' b) by BVFUNC_4:8 .=(a '&' 'not' b) 'or' ('not' ('not' ('not' a 'or' c) 'or' b) 'or' b) by BVFUNC_4:8 .=(a '&' 'not' b) 'or' ('not' (('not' 'not' a '&' 'not' c) 'or' b) 'or' b) by BVFUNC_1:16 .=(a '&' 'not' b) 'or' ('not' ((a '&' 'not' c) 'or' b) 'or' b) by BVFUNC_1:4 .=(a '&' 'not' b) 'or' (('not' (a '&' 'not' c) '&' 'not' b) 'or' b) by BVFUNC_1:16 .=(a '&' 'not' b) 'or' ((('not' a 'or' 'not' 'not' c) '&' 'not' b) 'or' b) by BVFUNC_1:17 .=(a '&' 'not' b) 'or' ((('not' a 'or' c) '&' 'not' b) 'or' b) by BVFUNC_1:4 .=(a '&' 'not' b) 'or' ((('not' a 'or' c) 'or' b) '&' ('not' b 'or' b)) by BVFUNC_1:14 .=(a '&' 'not' b) 'or' ((('not' a 'or' c) 'or' b) '&' I_el(Y)) by BVFUNC_4:6 .=(a '&' 'not' b) 'or' (('not' a 'or' c) 'or' b) by BVFUNC_1:9 .=((a '&' 'not' b) 'or' b) 'or' ('not' a 'or' c) by BVFUNC_1:11 .=((a 'or' b) '&' ('not' b 'or' b)) 'or' ('not' a 'or' c) by BVFUNC_1:14 .=((a 'or' b) '&' I_el(Y)) 'or' ('not' a 'or' c) by BVFUNC_4:6 .=(a 'or' b) 'or' ('not' a 'or' c) by BVFUNC_1:9 .=b 'or' (a 'or' ('not' a 'or' c)) by BVFUNC_1:11 .=b 'or' ((a 'or' 'not' a) 'or' c) by BVFUNC_1:11 .=b 'or' (I_el(Y) 'or' c) by BVFUNC_4:6 .=b 'or' I_el(Y) by BVFUNC_1:13; hence thesis by BVFUNC_1:13; end; theorem a 'imp' b = a 'eqv' (a '&' b) proof a 'eqv' (a '&' b) =(a 'imp' (a '&' b)) '&' ((a '&' b) 'imp' a) by BVFUNC_4:7 .=('not' a 'or' (a '&' b)) '&' ((a '&' b) 'imp' a) by BVFUNC_4:8 .=('not' a 'or' (a '&' b)) '&' ('not' (a '&' b) 'or' a) by BVFUNC_4:8 .=(('not' a 'or' a) '&' ('not' a 'or' b)) '&' ('not' (a '&' b) 'or' a) by BVFUNC_1:14 .=(I_el(Y) '&' ('not' a 'or' b)) '&' ('not' (a '&' b) 'or' a) by BVFUNC_4:6 .=('not' a 'or' b) '&' ('not' (a '&' b) 'or' a) by BVFUNC_1:9 .=('not' a 'or' b) '&' (('not' a 'or' 'not' b) 'or' a) by BVFUNC_1:17 .=('not' a 'or' b) '&' ('not' b 'or' ('not' a 'or' a)) by BVFUNC_1:11 .=('not' a 'or' b) '&' ('not' b 'or' I_el(Y)) by BVFUNC_4:6 .=('not' a 'or' b) '&' I_el(Y) by BVFUNC_1:13 .='not' a 'or' b by BVFUNC_1:9; hence thesis by BVFUNC_4:8; end; theorem a 'imp' b=I_el(Y) & b 'imp' a=I_el(Y) iff a=b proof (a 'eqv' b)=I_el(Y) iff ((a 'imp' b)=I_el(Y) & (b 'imp' a)=I_el(Y)) by BVFUNC_4:10; hence thesis by BVFUNC_1:20; end; theorem a = 'not' a 'imp' a proof a 'imp' ('not' a 'imp' a) = I_el(Y) by Th22; then A1:a '<' ('not' a 'imp' a) by BVFUNC_1:19; ('not' a 'imp' a) 'imp' a = I_el(Y) by BVFUNC_5:12; then ('not' a 'imp' a) '<' a by BVFUNC_1:19; hence thesis by A1,BVFUNC_1:18; end; theorem Th33: a 'imp' ((a 'imp' b) 'imp' a) = I_el(Y) proof thus a 'imp' ((a 'imp' b) 'imp' a) ='not' a 'or' ((a 'imp' b) 'imp' a) by BVFUNC_4:8 .='not' a 'or' ('not' (a 'imp' b) 'or' a) by BVFUNC_4:8 .='not' a 'or' ('not' ('not' a 'or' b) 'or' a) by BVFUNC_4:8 .='not' a 'or' (('not' 'not' a '&' 'not' b) 'or' a) by BVFUNC_1:16 .='not' a 'or' ((a '&' 'not' b) 'or' a) by BVFUNC_1:4 .='not' a 'or' ((a 'or' a) '&' ('not' b 'or' a)) by BVFUNC_1:14 .='not' a 'or' (a '&' ('not' b 'or' a)) by BVFUNC_1:10 .='not' a 'or' ((a '&' 'not' b) 'or' (a '&' a)) by BVFUNC_1:15 .='not' a 'or' ((a '&' 'not' b) 'or' a) by BVFUNC_1:6 .=('not' a 'or' a) 'or' (a '&' 'not' b) by BVFUNC_1:11 .=I_el(Y) 'or' (a '&' 'not' b) by BVFUNC_4:6 .=I_el(Y) by BVFUNC_1:13; end; theorem a = (a 'imp' b) 'imp' a proof a 'imp' ((a 'imp' b) 'imp' a) = I_el(Y) by Th33; then A1:a '<' ((a 'imp' b) 'imp' a) by BVFUNC_1:19; ((a 'imp' b) 'imp' a) 'imp' a = I_el(Y) by BVFUNC_8:27; then ((a 'imp' b) 'imp' a) '<' a by BVFUNC_1:19; hence thesis by A1,BVFUNC_1:18; end; theorem a = (b 'imp' a) '&' ('not' b 'imp' a) proof a=(a 'or' b) '&' (a 'or' 'not' b) by BVFUNC_8:7 .=(a 'or' b) '&' (b 'imp' a) by BVFUNC_4:8 .=(a 'or' 'not' 'not' b) '&' (b 'imp' a) by BVFUNC_1:4 .=('not' b 'imp' a) '&' (b 'imp' a) by BVFUNC_4:8; hence thesis; end; theorem a '&' b = 'not' (a 'imp' 'not' b) proof (a '&' b) 'imp' 'not'( a 'imp' 'not' b)=I_el(Y) by BVFUNC_6:35; then A1:(a '&' b) '<' 'not'( a 'imp' 'not' b) by BVFUNC_1:19; 'not'( a 'imp' 'not' b) 'imp' (a '&' b)=I_el(Y) by BVFUNC_6:36; then 'not'( a 'imp' 'not' b) '<' (a '&' b) by BVFUNC_1:19; hence thesis by A1,BVFUNC_1:18; end; theorem a 'or' b = 'not' a 'imp' b proof thus 'not' a 'imp' b ='not' 'not' a 'or' b by BVFUNC_4:8 .=a 'or' b by BVFUNC_1:4; end; theorem a 'or' b = (a 'imp' b) 'imp' b proof thus (a 'imp' b) 'imp' b ='not' (a 'imp' b) 'or' b by BVFUNC_4:8 .='not' ('not' a 'or' b) 'or' b by BVFUNC_4:8 .=('not' 'not' a '&' 'not' b) 'or' b by BVFUNC_1:16 .=(a '&' 'not' b) 'or' b by BVFUNC_1:4 .=(a 'or' b) '&' ('not' b 'or' b) by BVFUNC_1:14 .=(a 'or' b) '&' I_el(Y) by BVFUNC_4:6 .= a 'or' b by BVFUNC_1:9; end; theorem (a 'imp' b) 'imp' (a 'imp' a) = I_el(Y) proof thus (a 'imp' b) 'imp' (a 'imp' a)=(a 'imp' b) 'imp' I_el(Y) by BVFUNC_5:8 .=I_el(Y) by BVFUNC_7:16; end; theorem (a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) = I_el( Y ) proof thus (a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) ='not' (a 'imp' (b 'imp' c)) 'or' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) by BVFUNC_4:8 .='not' ('not' a 'or' (b 'imp' c)) 'or' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) by BVFUNC_4:8 .='not' ('not' a 'or' ('not' b 'or' c)) 'or' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) by BVFUNC_4:8 .='not' ('not' a 'or' ('not' b 'or' c)) 'or' ('not' (d 'imp' b) 'or' (a 'imp' (d 'imp' c))) by BVFUNC_4:8 .='not' ('not' a 'or' ('not' b 'or' c)) 'or' ('not' ('not' d 'or' b) 'or' (a 'imp' (d 'imp' c))) by BVFUNC_4:8 .='not' ('not' a 'or' ('not' b 'or' c)) 'or' ('not' ('not' d 'or' b) 'or' ('not' a 'or' (d 'imp' c))) by BVFUNC_4:8 .='not' ('not' a 'or' ('not' b 'or' c)) 'or' ('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_4:8 .=('not' 'not' a '&' 'not' ('not' b 'or' c)) 'or' ('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:16 .=('not' 'not' a '&' ('not' 'not' b '&' 'not' c)) 'or' ('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:16 .=('not' 'not' a '&' ('not' 'not' b '&' 'not' c)) 'or' (('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:16 .=(a '&' ('not' 'not' b '&' 'not' c)) 'or' (('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:4 .=(a '&' (b '&' 'not' c)) 'or' (('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:4 .=(a '&' (b '&' 'not' c)) 'or' ((d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:4 .=(a '&' (b '&' 'not' c)) 'or' (((d '&' 'not' b) 'or' 'not' a) 'or' ('not' d 'or' c)) by BVFUNC_1:11 .=((a '&' (b '&' 'not' c)) 'or' ('not' a 'or' (d '&' 'not' b))) 'or' ('not' d 'or' c) by BVFUNC_1:11 .=(((a '&' (b '&' 'not' c)) 'or' 'not' a) 'or' (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:11 .=(((a 'or' 'not' a) '&' ((b '&' 'not' c) 'or' 'not' a)) 'or' (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:14 .=((I_el(Y) '&' ((b '&' 'not' c) 'or' 'not' a)) 'or' (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_4:6 .=(((b '&' 'not' c) 'or' 'not' a) 'or' (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:9 .=((b '&' 'not' c) 'or' 'not' a) 'or' ((d '&' 'not' b) 'or' ('not' d 'or' c)) by BVFUNC_1:11 .=((b '&' 'not' c) 'or' 'not' a) 'or' ((('not' b '&' d) 'or' 'not' d) 'or' c) by BVFUNC_1:11 .=((b '&' 'not' c) 'or' 'not' a) 'or' ((('not' b 'or' 'not' d) '&' (d 'or' 'not' d)) 'or' c) by BVFUNC_1:14 .=((b '&' 'not' c) 'or' 'not' a) 'or' ((('not' b 'or' 'not' d) '&' I_el(Y)) 'or' c) by BVFUNC_4:6 .=((b '&' 'not' c) 'or' 'not' a) 'or' (('not' b 'or' 'not' d) 'or' c) by BVFUNC_1:9 .='not' a 'or' (('not' c '&' b) 'or' (('not' b 'or' 'not' d) 'or' c)) by BVFUNC_1:11 .='not' a 'or' ((('not' c '&' b) 'or' ('not' b 'or' 'not' d)) 'or' c) by BVFUNC_1:11 .='not' a 'or' (((('not' c '&' b) 'or' 'not' b) 'or' 'not' d) 'or' c) by BVFUNC_1:11 .='not' a 'or' (((('not' c 'or' 'not' b) '&' (b 'or' 'not' b)) 'or' 'not' d) 'or' c) by BVFUNC_1:14 .='not' a 'or' (((('not' c 'or' 'not' b) '&' I_el(Y)) 'or' 'not' d) 'or' c) by BVFUNC_4:6 .='not' a 'or' ((('not' b 'or' 'not' c) 'or' 'not' d) 'or' c) by BVFUNC_1:9 .='not' a 'or' (('not' b 'or' ('not' c 'or' 'not' d)) 'or' c) by BVFUNC_1:11 .='not' a 'or' ('not' b 'or' (('not' d 'or' 'not' c) 'or' c)) by BVFUNC_1:11 .='not' a 'or' ('not' b 'or' ('not' d 'or' ('not' c 'or' c))) by BVFUNC_1:11 .='not' a 'or' ('not' b 'or' ('not' d 'or' I_el(Y))) by BVFUNC_4:6 .='not' a 'or' ('not' b 'or' I_el(Y)) by BVFUNC_1:13 .='not' a 'or' I_el(Y) by BVFUNC_1:13 .=I_el(Y) by BVFUNC_1:13; end; theorem (((a 'imp' b) '&' a) '&' c) 'imp' b = I_el(Y) proof thus (((a 'imp' b) '&' a) '&' c) 'imp' b =((('not' a 'or' b) '&' a) '&' c) 'imp' b by BVFUNC_4:8 .=((('not' a '&' a) 'or' (b '&' a)) '&' c) 'imp' b by BVFUNC_1:15 .=((O_el(Y) 'or' (b '&' a)) '&' c) 'imp' b by BVFUNC_4:5 .=((b '&' a) '&' c) 'imp' b by BVFUNC_1:12 .='not' ((b '&' a) '&' c) 'or' b by BVFUNC_4:8 .=('not' (b '&' a) 'or' 'not' c) 'or' b by BVFUNC_1:17 .=(('not' b 'or' 'not' a) 'or' 'not' c) 'or' b by BVFUNC_1:17 .=(b 'or' ('not' b 'or' 'not' a)) 'or' 'not' c by BVFUNC_1:11 .=((b 'or' 'not' b) 'or' 'not' a) 'or' 'not' c by BVFUNC_1:11 .=(I_el(Y) 'or' 'not' a) 'or' 'not' c by BVFUNC_4:6 .=I_el(Y) 'or' 'not' c by BVFUNC_1:13 .=I_el(Y)by BVFUNC_1:13; end; theorem (b 'imp' c) 'imp' ((a '&' b) 'imp' c) = I_el(Y) proof thus (b 'imp' c) 'imp' ((a '&' b) 'imp' c) ='not' (b 'imp' c) 'or' ((a '&' b) 'imp' c) by BVFUNC_4:8 .='not' ('not' b 'or' c) 'or' ((a '&' b) 'imp' c) by BVFUNC_4:8 .='not' ('not' b 'or' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_4:8 .=('not' 'not' b '&' 'not' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_1:16 .=(b '&' 'not' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_1:4 .=(b '&' 'not' c) 'or' (('not' a 'or' 'not' b) 'or' c) by BVFUNC_1:17 .=((b '&' 'not' c) 'or' c) 'or' ('not' a 'or' 'not' b) by BVFUNC_1:11 .=((b 'or' c) '&' ('not' c 'or' c)) 'or' ('not' a 'or' 'not' b) by BVFUNC_1:14 .=((b 'or' c) '&' I_el(Y)) 'or' ('not' a 'or' 'not' b) by BVFUNC_4:6 .=('not' a 'or' 'not' b) 'or' (b 'or' c) by BVFUNC_1:9 .=(('not' a 'or' 'not' b) 'or' b) 'or' c by BVFUNC_1:11 .=('not' a 'or' ('not' b 'or' b)) 'or' c by BVFUNC_1:11 .=('not' a 'or' I_el(Y)) 'or' c by BVFUNC_4:6 .=I_el(Y) 'or' c by BVFUNC_1:13 .=I_el(Y) by BVFUNC_1:13; end; theorem ((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b)) = I_el(Y) proof ((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b)) =('not' (a '&' b) 'or' c) 'imp' ((a '&' b) 'imp' (c '&' b)) by BVFUNC_4:8 .='not' ('not' (a '&' b) 'or' c) 'or' ((a '&' b) 'imp' (c '&' b)) by BVFUNC_4:8 .='not' ('not' (a '&' b) 'or' c) 'or' ('not' (a '&' b) 'or' (c '&' b)) by BVFUNC_4:8 .=('not' 'not' (a '&' b) '&' 'not' c) 'or' ('not' (a '&' b) 'or' (c '&' b)) by BVFUNC_1:16 .=((a '&' b) '&' 'not' c) 'or' ('not' (a '&' b) 'or' (c '&' b)) by BVFUNC_1:4 .=((a '&' b) '&' 'not' c) 'or' (('not' a 'or' 'not' b) 'or' (c '&' b)) by BVFUNC_1:17 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' ('not' b 'or' (b '&' c))) by BVFUNC_1:11 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' (('not' b 'or' b) '&' ('not' b 'or' c))) by BVFUNC_1:14 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' (I_el(Y) '&' ('not' b 'or' c))) by BVFUNC_4:6 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' ('not' b 'or' c)) by BVFUNC_1:9 .=(((a '&' b) '&' 'not' c) 'or' 'not' a) 'or' ('not' b 'or' c) by BVFUNC_1:11 .=(((a '&' b) 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or' ('not' b 'or' c) by BVFUNC_1:14 .=(((a 'or' 'not' a) '&' (b 'or' 'not' a)) '&' ('not' c 'or' 'not' a)) 'or' ('not' b 'or' c) by BVFUNC_1:14 .=((I_el(Y) '&' (b 'or' 'not' a)) '&' ('not' c 'or' 'not' a)) 'or' ('not' b 'or' c) by BVFUNC_4:6 .=((b 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or' ('not' b 'or' c) by BVFUNC_1:9 .=(((b 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or' c) 'or' 'not' b by BVFUNC_1:11 .=(((b 'or' 'not' a) 'or' c) '&' (('not' c 'or' 'not' a) 'or' c)) 'or' 'not' b by BVFUNC_1:14 .=(((b 'or' 'not' a) 'or' c) '&' ('not' a 'or' ('not' c 'or' c))) 'or' 'not' b by BVFUNC_1:11 .=(((b 'or' 'not' a) 'or' c) '&' ('not' a 'or' I_el(Y))) 'or' 'not' b by BVFUNC_4:6 .=(((b 'or' 'not' a) 'or' c) '&' I_el(Y)) 'or' 'not' b by BVFUNC_1:13 .=((b 'or' 'not' a) 'or' c) 'or' 'not' b by BVFUNC_1:9 .=('not' b 'or' (b 'or' 'not' a)) 'or' c by BVFUNC_1:11 .=(('not' b 'or' b) 'or' 'not' a) 'or' c by BVFUNC_1:11 .=(I_el(Y) 'or' 'not' a) 'or' c by BVFUNC_4:6 .=I_el(Y) 'or' c by BVFUNC_1:13; hence thesis by BVFUNC_1:13; end; theorem (a 'imp' b) 'imp' ((a '&' c) 'imp' (b '&' c)) = I_el(Y) proof a 'imp' b '<' (a '&' c) 'imp' (b '&' c) by BVFUNC_9:10; hence thesis by BVFUNC_1:19; end; theorem (a 'imp' b) '&' (a '&' c) 'imp' (b '&' c) = I_el(Y) proof (a 'imp' b) '&' (a '&' c) 'imp' (b '&' c) =((a 'imp' b) '&' a) '&' c 'imp' (b '&' c) by BVFUNC_1:7 .=(a '&' b) '&' c 'imp' (b '&' c) by BVFUNC_7:10 .=a '&' (b '&' c) 'imp' (b '&' c) by BVFUNC_1:7; hence thesis by BVFUNC_6:39; end; theorem a '&' (a 'imp' b) '&' (b 'imp' c) '<' c proof (a '&' (a 'imp' b) '&' (b 'imp' c)) 'imp' c ='not' (a '&' (a 'imp' b) '&' (b 'imp' c)) 'or' c by BVFUNC_4:8 .='not' (a '&' b '&' (b 'imp' c)) 'or' c by BVFUNC_7:10 .='not' (a '&' (b '&' (b 'imp' c))) 'or' c by BVFUNC_1:7 .='not' (a '&' (b '&' c)) 'or' c by BVFUNC_7:10 .='not' ((a '&' b) '&' c) 'or' c by BVFUNC_1:7 .=('not' (a '&' b) 'or' 'not' c) 'or' c by BVFUNC_1:17 .='not' (a '&' b) 'or' ('not' c 'or' c) by BVFUNC_1:11 .='not' (a '&' b) 'or' I_el(Y) by BVFUNC_4:6 .= I_el(Y) by BVFUNC_1:13; hence thesis by BVFUNC_1:19; end; theorem (a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c) '<' ('not' a 'imp' (b 'or' c)) proof (a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c) 'imp' ('not' a 'imp' (b 'or' c) ) ='not' ((a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c)) 'or' ('not' a 'imp' (b 'or' c)) by BVFUNC_4:8 .='not' ((a 'or' b) '&' ('not' a 'or' c) '&' (b 'imp' c)) 'or' ('not' a 'imp' (b 'or' c)) by BVFUNC_4:8 .='not' ((a 'or' b) '&' ('not' a 'or' c) '&' ('not' b 'or' c)) 'or' ('not' a 'imp' (b 'or' c)) by BVFUNC_4:8 .='not' ((a 'or' b) '&' ('not' a 'or' c) '&' ('not' b 'or' c)) 'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_4:8 .=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' 'not' ('not' b 'or' c)) 'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:17 .=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' ('not' 'not' b '&' 'not' c)) 'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:16 .=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' (b '&' 'not' c)) 'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:4 .=(('not' (a 'or' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c)) 'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:17 .=((('not' a '&' 'not' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c)) 'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:16 .=((('not' a '&' 'not' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:4 .=((('not' a '&' 'not' b) 'or' ('not' 'not' a '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:16 .=((('not' a '&' 'not' b) 'or' (a '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:4 .=((('not' a 'or' (a '&' 'not' c)) '&' ('not' b 'or' (a '&' 'not' c))) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:14 .=(((('not' a 'or' a) '&' ('not' a 'or' 'not' c)) '&' ('not' b 'or' (a '&' 'not' c))) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:14 .=(((I_el(Y) '&' ('not' a 'or' 'not' c)) '&' ('not' b 'or' (a '&' 'not' c))) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_4:6 .=((('not' a 'or' 'not' c) '&' ('not' b 'or' (a '&' 'not' c))) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:9 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (('not' a 'or' 'not' c) '&' (a '&' 'not' c))) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:15 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((('not' a 'or' 'not' c) '&' a) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:7 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((('not' a '&' a) 'or' ('not' c '&' a)) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:15 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((O_el(Y) 'or' ('not' c '&' a)) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_4:5 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (('not' c '&' a) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:12 .=((('not' c '&' a) '&' 'not' c) 'or' ((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c))) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:11 .=((('not' c '&' a) '&' 'not' c) 'or' ((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c))) 'or' (c 'or' (a 'or' b)) by BVFUNC_1:11 .=((((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' (('not' c '&' a) '&' 'not' c)) 'or' c) 'or' (a 'or' b) by BVFUNC_1:11 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' ((('not' c '&' a) '&' 'not' c) 'or' c)) 'or' (a 'or' b) by BVFUNC_1:11 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' ((('not' c '&' a) 'or' c) '&' ('not' c 'or' c))) 'or' (a 'or' b) by BVFUNC_1:14 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' ((('not' c '&' a) 'or' c) '&' I_el(Y))) 'or' (a 'or' b) by BVFUNC_4:6 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' ((('not' c '&' a) 'or' c))) 'or' (a 'or' b) by BVFUNC_1:9 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' ((('not' c 'or' c) '&' (a 'or' c)))) 'or' (a 'or' b) by BVFUNC_1:14 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' ((I_el(Y) '&' (a 'or' c)))) 'or' (a 'or' b) by BVFUNC_4:6 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or' (a 'or' c)) 'or' (a 'or' b) by BVFUNC_1:9 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((b '&' 'not' c) 'or' (c 'or' a))) 'or' (a 'or' b) by BVFUNC_1:11 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b '&' 'not' c) 'or' c) 'or' a)) 'or' (a 'or' b) by BVFUNC_1:11 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b 'or' c) '&' ('not' c 'or' c)) 'or' a)) 'or' (a 'or' b) by BVFUNC_1:14 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b 'or' c) '&' I_el(Y)) 'or' a)) 'or' (a 'or' b) by BVFUNC_4:6 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((b 'or' c)'or' a)) 'or' (a 'or' b) by BVFUNC_1:9 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b 'or' (c 'or' a))) 'or' (a 'or' b) by BVFUNC_1:11 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' b) 'or' (c 'or' a)) 'or' (a 'or' b) by BVFUNC_1:11 .=(((('not' a 'or' 'not' c) 'or' b) '&' ('not' b 'or' b)) 'or' (c 'or' a)) 'or' (a 'or' b) by BVFUNC_1:14 .=(((('not' a 'or' 'not' c) 'or' b) '&' I_el(Y)) 'or' (c 'or' a)) 'or' (a 'or' b) by BVFUNC_4:6 .=((('not' a 'or' 'not' c) 'or' b) 'or' (c 'or' a)) 'or' (a 'or' b) by BVFUNC_1:9 .=(((('not' a 'or' 'not' c) 'or' b) 'or' c) 'or' a) 'or' (a 'or' b) by BVFUNC_1:11 .=(((('not' a 'or' 'not' c) 'or' c) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_1:11 .=((('not' a 'or' ('not' c 'or' c)) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_1:11 .=((('not' a 'or' I_el(Y)) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_4:6 .=((I_el(Y) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_1:13 .=(I_el(Y) 'or' a) 'or' (a 'or' b) by BVFUNC_1:13 .=I_el(Y) 'or' (a 'or' b) by BVFUNC_1:13 .= I_el(Y) by BVFUNC_1:13; hence thesis by BVFUNC_1:19; end;