The Mizar article:

Propositional Calculus for Boolean Valued Functions. Part VII

by
Shunichi Kobayashi

Received February 6, 2003

Copyright (c) 2003 Association of Mizar Users

MML identifier: BVFUNC25
[ MML identifier index ]


environ

 vocabulary FUNCT_2, MARGREL1, PARTIT1, ZF_LANG, BVFUNC_1, BINARITH;
 notation XBOOLE_0, MARGREL1, VALUAT_1, FRAENKEL, BVFUNC_1;
 constructors BVFUNC_1;
 clusters MARGREL1, VALUAT_1, FRAENKEL;
 theorems BVFUNC_1, BVFUNC_4, BVFUNC_5, BVFUNC_6, BVFUNC_7, BVFUNC_8, BVFUNC_9;

begin

 reserve Y for non empty set,
         a,b,c,d for Element of Funcs(Y,BOOLEAN);

theorem
  'not' (a 'imp' b) = a '&' 'not' b
proof
  thus 'not' (a 'imp' b)='not' ('not' a 'or' b) by BVFUNC_4:8
  .='not' 'not' a '&' 'not' b by BVFUNC_1:16
  .=a '&' 'not' b by BVFUNC_1:4;
end;

theorem Th2:
('not' b 'imp' 'not' a) 'imp' (a 'imp' b)=I_el(Y)
proof
     ('not' b 'imp' 'not' a) 'imp' (a 'imp' b)
  ='not' ('not' b 'imp' 'not' a) 'or' (a 'imp' b) by BVFUNC_4:8
 .='not' ('not' 'not' b 'or' 'not' a) 'or' (a 'imp' b) by BVFUNC_4:8
 .='not' (b 'or' 'not' a) 'or' (a 'imp' b) by BVFUNC_1:4
 .=('not' b '&' 'not' 'not' a) 'or' (a 'imp' b) by BVFUNC_1:16
 .=('not' b '&' a) 'or' (a 'imp' b) by BVFUNC_1:4
 .=('not' b '&' a) 'or' ('not' a 'or' b) by BVFUNC_4:8
 .=(('not' b '&' a) 'or' 'not' a) 'or' b by BVFUNC_1:11
 .=(('not' b 'or' 'not' a) '&' (a 'or' 'not' a)) 'or' b by BVFUNC_1:14
 .=(('not' b 'or' 'not' a) '&' I_el(Y)) 'or' b by BVFUNC_4:6
 .=('not' b 'or' 'not' a) 'or' b by BVFUNC_1:9
 .='not' a 'or' ('not' b 'or' b) by BVFUNC_1:11
 .='not' a 'or' I_el(Y) by BVFUNC_4:6;
  hence thesis by BVFUNC_1:13;
end;

theorem Th3:
a 'imp' b = 'not' b 'imp' 'not' a
proof
    ('not' b 'imp' 'not' a) 'imp' (a 'imp' b)=I_el(Y) by Th2;
  then A1:('not' b 'imp' 'not' a) '<' (a 'imp' b) by BVFUNC_1:19;
    (a 'imp' b) 'imp' ('not' b 'imp' 'not' a)=I_el(Y) by BVFUNC_5:33;
  then a 'imp' b '<' 'not' b 'imp' 'not' a by BVFUNC_1:19;
  hence thesis by A1,BVFUNC_1:18;
end;

theorem
  a 'eqv' b = 'not' a 'eqv' 'not' b
proof
  thus 'not' a 'eqv' 'not' b
   =('not' a 'imp' 'not' b) '&' ('not' b 'imp' 'not' a) by BVFUNC_4:7
  .=(b 'imp' a) '&' ('not' b 'imp' 'not' a) by Th3
  .=(b 'imp' a) '&' (a 'imp' b) by Th3
  .=a 'eqv' b by BVFUNC_4:7;
end;

theorem Th5:
a 'imp' b = a 'imp' (a '&' b)
proof
      a 'imp' (a '&' b)='not' a 'or' (a '&' b) by BVFUNC_4:8
  .=('not' a 'or' a) '&' ('not' a 'or' b) by BVFUNC_1:14
  .=I_el(Y) '&' ('not' a 'or' b) by BVFUNC_4:6
  .='not' a 'or' b by BVFUNC_1:9;
   hence thesis by BVFUNC_4:8;
end;

theorem
  a 'eqv' b = (a 'or' b) 'imp' (a '&' b)
proof
  thus (a 'or' b) 'imp' (a '&' b)
  =(a 'imp' (a '&' b)) '&' (b 'imp' (a '&' b)) by BVFUNC_7:5
 .=(a 'imp' b) '&' (b 'imp' (a '&' b)) by Th5
 .=(a 'imp' b) '&' (b 'imp' a) by Th5
 .=a 'eqv' b by BVFUNC_4:7;
end;

theorem
  a 'eqv' 'not' a = O_el(Y)
proof
  thus a 'eqv' 'not' a
  =(a 'imp' 'not' a) '&' ('not' a 'imp' a) by BVFUNC_4:7
 .=('not' a 'or' 'not' a) '&' ('not' a 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' 'not' a) '&' ('not' 'not' a 'or' a) by BVFUNC_4:8
 .='not' a '&' ('not' 'not' a 'or' a) by BVFUNC_1:10
 .='not' a '&' (a 'or' a) by BVFUNC_1:4
 .='not' a '&' a by BVFUNC_1:10
 .=O_el(Y) by BVFUNC_4:5;
end;

theorem
  a 'imp' (b 'imp' c) = b 'imp' (a 'imp' c)
proof
  thus a 'imp' (b 'imp' c)
  ='not' a 'or' (b 'imp' c) by BVFUNC_4:8
 .='not' a 'or' ('not' b 'or' c) by BVFUNC_4:8
 .='not' b 'or' ('not' a 'or' c) by BVFUNC_1:11
 .='not' b 'or' (a 'imp' c) by BVFUNC_4:8
 .=b 'imp' (a 'imp' c) by BVFUNC_4:8;
end;

theorem
  a 'imp' (b 'imp' c) = (a 'imp' b) 'imp' (a 'imp' c)
proof
  thus (a 'imp' b) 'imp' (a 'imp' c)
  =(a 'imp' b) 'imp' ('not' a 'or' c) by BVFUNC_4:8
 .='not' (a 'imp' b) 'or' ('not' a 'or' c) by BVFUNC_4:8
 .='not' ('not' a 'or' b) 'or' ('not' a 'or' c) by BVFUNC_4:8
 .=('not' 'not' a '&' 'not' b) 'or' ('not' a 'or' c) by BVFUNC_1:16
 .=(a '&' 'not' b) 'or' ('not' a 'or' c) by BVFUNC_1:4
 .=((a '&' 'not' b) 'or' 'not' a) 'or' c by BVFUNC_1:11
 .=((a 'or' 'not' a) '&' ('not' b 'or' 'not' a)) 'or' c by BVFUNC_1:14
 .=(I_el(Y) '&' ('not' b 'or' 'not' a)) 'or' c by BVFUNC_4:6
 .=('not' a 'or' 'not' b) 'or' c by BVFUNC_1:9
 .='not' a 'or' ('not' b 'or' c) by BVFUNC_1:11
 .='not' a 'or' (b 'imp' c) by BVFUNC_4:8
 .=a 'imp' (b 'imp' c) by BVFUNC_4:8;
end;

theorem
  a 'eqv' b = a 'xor' 'not' b
proof
    'not' (a 'xor' b) = 'not' 'not' ( a 'eqv' b) by BVFUNC_8:12;
  then 'not' (a 'xor' b) = (a 'eqv' b) by BVFUNC_1:4;
  hence thesis by BVFUNC_8:17;
end;

theorem
  a '&' (b 'xor' c) = a '&' b 'xor' a '&' c
proof
   A1:a '&' (b 'xor' c)
  =a '&' (('not' b '&' c) 'or' (b '&' 'not' c)) by BVFUNC_4:9
 .=(a '&' ('not' b '&' c)) 'or' (a '&' (b '&' 'not' c)) by BVFUNC_1:15
 .=((a '&' c) '&' 'not' b) 'or' (a '&' (b '&' 'not' c)) by BVFUNC_1:7
 .=((a '&' c) '&' 'not' b) 'or' ((a '&' b) '&' 'not' c) by BVFUNC_1:7;
   A2:a '&' b 'xor' a '&' c
  =('not' (a '&' b) '&' (a '&' c)) 'or' ((a '&' b) '&' 'not' (a '&' c))
   by BVFUNC_4:9
 .=(('not' a 'or' 'not' b) '&' (a '&' c)) 'or'
   ((a '&' b) '&' 'not' (a '&' c)) by BVFUNC_1:17
 .=((a '&' c) '&' ('not' a 'or' 'not' b)) 'or'
   ((a '&' b) '&' ('not' a 'or' 'not' c)) by BVFUNC_1:17
 .=(((a '&' c) '&' 'not' a) 'or' ((a '&' c) '&' 'not' b)) 'or'
   ((a '&' b) '&' ('not' a 'or' 'not' c)) by BVFUNC_1:15
 .=(((a '&' c) '&' 'not' a) 'or' ((a '&' c) '&' 'not' b)) 'or'
   (((a '&' b) '&' 'not' a) 'or' ((a '&' b) '&' 'not' c)) by BVFUNC_1:15
 .=((a '&' c) '&' 'not' a) 'or' (((a '&' c) '&' 'not' b) 'or'
   (((a '&' b) '&' 'not' c) 'or' ((a '&' b) '&' 'not' a))) by BVFUNC_1:11
 .=((a '&' c) '&' 'not' a) 'or' ((((a '&' c) '&' 'not' b) 'or'
   ((a '&' b) '&' 'not' c)) 'or' ((a '&' b) '&' 'not' a)) by BVFUNC_1:11
 .=(((a '&' c) '&' 'not' a) 'or' ((a '&' b) '&' 'not' a)) 'or'
   (((a '&' c) '&' 'not' b) 'or' ((a '&' b) '&' 'not' c)) by BVFUNC_1:11;
     ((c '&' a) '&' 'not' a) 'or' ((b '&' a) '&' 'not' a)
  =(c '&' (a '&' 'not' a)) 'or' ((b '&' a) '&' 'not' a) by BVFUNC_1:7
 .=(c '&' (a '&' 'not' a)) 'or' (b '&' (a '&' 'not' a)) by BVFUNC_1:7
 .=(c '&' O_el(Y)) 'or' (b '&' (a '&' 'not' a)) by BVFUNC_4:5
 .=(c '&' O_el(Y)) 'or' (b '&' O_el(Y)) by BVFUNC_4:5
 .=O_el(Y) 'or' (b '&' O_el(Y)) by BVFUNC_1:8
 .=O_el(Y) 'or' O_el(Y) by BVFUNC_1:8
 .=O_el(Y) by BVFUNC_1:10;
  hence thesis by A1,A2,BVFUNC_1:12;
end;

theorem
  a 'eqv' b = 'not' (a 'xor' b)
proof
    'not' (a 'xor' b) = 'not' 'not' (a 'eqv' b) by BVFUNC_8:12;
  hence thesis by BVFUNC_1:4;
end;

theorem
  a 'xor' a = O_el(Y)
proof
  thus a 'xor' a =('not' a '&' a) 'or' (a '&' 'not' a) by BVFUNC_4:9
 .=O_el(Y) 'or' (a '&' 'not' a) by BVFUNC_4:5
 .=O_el(Y) 'or' O_el(Y) by BVFUNC_4:5
 .=O_el(Y) by BVFUNC_1:10;
end;

theorem
  a 'xor' 'not' a = I_el(Y)
proof
 thus a 'xor' 'not' a
  =('not' a '&' 'not' a) 'or' (a '&' 'not' 'not' a) by BVFUNC_4:9
 .=('not' a '&' 'not' a) 'or' (a '&' a) by BVFUNC_1:4
 .=('not' a) 'or' (a '&' a) by BVFUNC_1:6
 .='not' a 'or' a by BVFUNC_1:6
 .=I_el(Y) by BVFUNC_4:6;
end;

theorem
  (a 'imp' b) 'imp' (b 'imp' a) = b 'imp' a
proof
     (a 'imp' b) 'imp' (b 'imp' a)
  =('not' a 'or' b) 'imp' (b 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' b) 'imp' ('not' b 'or' a) by BVFUNC_4:8
 .='not' ('not' a 'or' b) 'or' ('not' b 'or' a) by BVFUNC_4:8
 .=('not' 'not' a '&' 'not' b) 'or' ('not' b 'or' a) by BVFUNC_1:16
 .=(a '&' 'not' b) 'or' ('not' b 'or' a) by BVFUNC_1:4
 .=((a '&' 'not' b) 'or' 'not' b) 'or' a by BVFUNC_1:11
 .=((a 'or' 'not' b) '&' ('not' b 'or' 'not' b)) 'or' a by BVFUNC_1:14
 .=((a 'or' 'not' b) '&' 'not' b) 'or' a by BVFUNC_1:10
 .=((a 'or' 'not' b) 'or' a) '&' ('not' b 'or' a) by BVFUNC_1:14
 .=('not' b 'or' (a 'or' a)) '&' ('not' b 'or' a) by BVFUNC_1:11
 .=('not' b 'or' a) '&' ('not' b 'or' a) by BVFUNC_1:10
 .=('not' b 'or' a) by BVFUNC_1:6;
  hence thesis by BVFUNC_4:8;
end;

theorem Th16:
(a 'or' b) '&' ('not' a 'or' 'not' b) = ('not' a '&' b) 'or' (a '&' 'not' b)
proof
    a 'xor' b = ('not' a '&' b) 'or' (a '&' 'not' b) by BVFUNC_4:9;
  hence thesis by BVFUNC_8:13;
end;

theorem Th17:
(a '&' b) 'or' ('not' a '&' 'not' b) = ('not' a 'or' b) '&' (a 'or' 'not' b)
proof
 thus (a '&' b) 'or' ('not' a '&' 'not' b)
 =('not' 'not' a '&' b) 'or' ('not' a '&' 'not' b) by BVFUNC_1:4
.=('not' a 'or' b) '&' ('not' 'not' a 'or' 'not' b) by Th16
.=('not' a 'or' b) '&' (a 'or' 'not' b) by BVFUNC_1:4;
end;

theorem
  a 'xor' (b 'xor' c) = (a 'xor' b) 'xor' c
proof
A1:a 'xor' (b 'xor' c)
  =('not' a '&' (b 'xor' c)) 'or' (a '&' 'not' (b 'xor' c)) by BVFUNC_4:9
 .=('not' a '&' (('not' b '&' c) 'or' (b '&' 'not' c))) 'or'
   (a '&' 'not' (b 'xor' c)) by BVFUNC_4:9
 .=('not' a '&' (('not' b '&' c) 'or' (b '&' 'not' c))) 'or'
   (a '&' 'not' (('not' b '&' c) 'or' (b '&' 'not' c))) by BVFUNC_4:9
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   (a '&' 'not' (('not' b '&' c) 'or' (b '&' 'not' c))) by BVFUNC_1:15
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   (a '&' (('not' ('not' b '&' c)) '&' ('not' (b '&' 'not' c))))
  by BVFUNC_1:16
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   (a '&' ((('not' 'not' b 'or' 'not' c)) '&' ('not' (b '&' 'not' c))))
  by BVFUNC_1:17
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   (a '&' ((b 'or' 'not' c) '&' ('not' (b '&' 'not' c)))) by BVFUNC_1:4
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   (a '&' ((b 'or' 'not' c) '&' (('not' b 'or' 'not' 'not' c))))
  by BVFUNC_1:17
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   (a '&' ((b 'or' 'not' c) '&' (('not' b 'or' c))))
  by BVFUNC_1:4
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   (a '&' ((b '&' c) 'or' ('not' b '&' 'not' c)))
  by Th17
 .=(('not' a '&' ('not' b '&' c)) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   ((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:15
 .=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' (b '&' 'not' c))) 'or'
   ((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7
 .=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' b '&' 'not' c)) 'or'
   ((a '&' (b '&' c)) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7
 .=(('not' a '&' 'not' b '&' c) 'or' ('not' a '&' b '&' 'not' c)) 'or'
   ((a '&' b '&' c) 'or' (a '&' ('not' b '&' 'not' c))) by BVFUNC_1:7
 .=((a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c)) 'or'
   (('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c))
   by BVFUNC_1:7
 .=(a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c) 'or'
   ('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c)
   by BVFUNC_1:11;
     (a 'xor' b) 'xor' c
  =(('not' a '&' b) 'or' (a '&' 'not' b)) 'xor' c by BVFUNC_4:9
 .=('not' (('not' a '&' b) 'or' (a '&' 'not' b)) '&' c) 'or'
   ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_4:9
 .=(('not' ('not' a '&' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or'
   ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:16
 .=((('not' 'not' a 'or' 'not' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or'
   ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:17
 .=(((a 'or' 'not' b) '&' 'not' (a '&' 'not' b)) '&' c) 'or'
   ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:4
 .=(((a 'or' 'not' b) '&' ('not' a 'or' 'not' 'not' b)) '&' c) 'or'
   ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:17
 .=(((a 'or' 'not' b) '&' ('not' a 'or' b)) '&' c) 'or'
   ((('not' a '&' b) 'or' (a '&' 'not' b)) '&' 'not' c) by BVFUNC_1:4
 .=(((a 'or' 'not' b) '&' ('not' a 'or' b)) '&' c) 'or'
   (('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c))
   by BVFUNC_1:15
 .=(((a '&' b) 'or' ('not' a '&' 'not' b)) '&' c) 'or'
   (('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c)) by Th17
 .=((a '&' b '&' c) 'or' ('not' a '&' 'not' b '&' c)) 'or'
   (('not' a '&' b '&' 'not' c) 'or' (a '&' 'not' b '&' 'not' c))
  by BVFUNC_1:15
 .=(a '&' b '&' c) 'or' ((a '&' 'not' b '&' 'not' c) 'or'
   ('not' a '&' b '&' 'not' c)) 'or' ('not' a '&' 'not' b '&' c)
  by BVFUNC_1:11
 .=(a '&' b '&' c) 'or' (a '&' 'not' b '&' 'not' c) 'or'
   ('not' a '&' b '&' 'not' c) 'or' ('not' a '&' 'not' b '&' c)
  by BVFUNC_1:11;
  hence thesis by A1;
end;

theorem
  a 'eqv' (b 'eqv' c) = (a 'eqv' b) 'eqv' c
proof
A1:a 'eqv' (b 'eqv' c)
  =(a 'imp' (b 'eqv' c)) '&' ((b 'eqv' c) 'imp' a) by BVFUNC_4:7
 .=(a 'imp' ((b 'imp' c) '&' (c 'imp' b))) '&' ((b 'eqv' c) 'imp' a)
  by BVFUNC_4:7
 .=(a 'imp' ((b 'imp' c) '&' (c 'imp' b))) '&'
   (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:7
 .=('not' a 'or' ((b 'imp' c) '&' (c 'imp' b))) '&'
   (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' (('not' b 'or' c) '&' (c 'imp' b))) '&'
   (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   (((b 'imp' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   ((('not' b 'or' c) '&' (c 'imp' b)) 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   ((('not' b 'or' c) '&' ('not' c 'or' b)) 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   ('not' (('not' b 'or' c) '&' ('not' c 'or' b)) 'or' a) by BVFUNC_4:8
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   (('not' ('not' b 'or' c)) 'or' ('not' ('not' c 'or' b)) 'or' a)
  by BVFUNC_1:17
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   ((('not' 'not' b '&' 'not' c)) 'or' ('not' ('not' c 'or' b)) 'or' a)
  by BVFUNC_1:16
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   (((b '&' 'not' c)) 'or' ('not' ('not' c 'or' b)) 'or' a) by BVFUNC_1:4
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   (((b '&' 'not' c)) 'or' (('not' 'not' c '&' 'not' b)) 'or' a) by BVFUNC_1:16
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   (((b '&' 'not' c) 'or' (c '&' 'not' b)) 'or' a) by BVFUNC_1:4
 .=('not' a 'or' (('not' b 'or' c) '&' ('not' c 'or' b))) '&'
   (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by Th16
 .=(('not' a 'or' ('not' b 'or' c)) '&' ('not' a 'or' ('not' c 'or' b))) '&'
   (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:14
 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' (b 'or' 'not' c))) '&'
   (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:11
 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
   (((b 'or' c) '&' ('not' b 'or' 'not' c)) 'or' a) by BVFUNC_1:11
 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
   ((a 'or' (b 'or' c)) '&' (a 'or' ('not' b 'or' 'not' c))) by BVFUNC_1:14
 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
   ((a 'or' b 'or' c) '&' (a 'or' ('not' b 'or' 'not' c))) by BVFUNC_1:11
 .=(('not' a 'or' 'not' b 'or' c) '&' ('not' a 'or' b 'or' 'not' c)) '&'
   ((a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c)) by BVFUNC_1:11
 .=((a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c)) '&'
   ('not' a 'or' b 'or' 'not' c) '&' ('not' a 'or' 'not' b 'or' c)
  by BVFUNC_1:7;
     (a 'eqv' b) 'eqv' c
  =((a 'eqv' b) 'imp' c) '&' (c 'imp' (a 'eqv' b)) by BVFUNC_4:7
 .=(((a 'imp' b) '&' (b 'imp' a)) 'imp' c) '&' (c 'imp' (a 'eqv' b))
  by BVFUNC_4:7
 .=(((a 'imp' b) '&' (b 'imp' a)) 'imp' c) '&'
   (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:7
 .=((('not' a 'or' b) '&' (b 'imp' a)) 'imp' c) '&'
   (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
 .=((('not' a 'or' b) '&' ('not' b 'or' a)) 'imp' c) '&'
   (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
   (c 'imp' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
   ('not' c 'or' ((a 'imp' b) '&' (b 'imp' a))) by BVFUNC_4:8
 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' (b 'imp' a))) by BVFUNC_4:8
 .=('not' (('not' a 'or' b) '&' ('not' b 'or' a)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_4:8
 .=(('not' ('not' a 'or' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:17
 .=((('not' 'not' a '&' 'not' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:16
 .=(((a '&' 'not' b) 'or' 'not' ('not' b 'or' a)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:4
 .=(((a '&' 'not' b) 'or' ('not' 'not' b '&' 'not' a)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:16
 .=(((a '&' 'not' b) 'or' (b '&' 'not' a)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:4
 .=(((a 'or' b) '&' ('not' a 'or' 'not' b)) 'or' c) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by Th16
 .=(((a 'or' b) 'or' c) '&' (('not' a 'or' 'not' b) 'or' c)) '&'
   ('not' c 'or' (('not' a 'or' b) '&' ('not' b 'or' a))) by BVFUNC_1:14
 .=((a 'or' b 'or' c) '&' ('not' a 'or' 'not' b 'or' c)) '&'
   ((a 'or' 'not' b 'or' 'not' c) '&' ('not' a 'or' b 'or' 'not' c))
  by BVFUNC_1:14
 .=(a 'or' b 'or' c) '&' ((a 'or' 'not' b 'or' 'not' c) '&'
   ('not' a 'or' b 'or' 'not' c)) '&' ('not' a 'or' 'not' b 'or' c)
  by BVFUNC_1:7
 .=(a 'or' b 'or' c) '&' (a 'or' 'not' b 'or' 'not' c) '&'
   ('not' a 'or' b 'or' 'not' c) '&' ('not' a 'or' 'not' b 'or' c)
  by BVFUNC_1:7;
  hence thesis by A1;
end;

theorem
  'not' 'not' a 'imp' a = I_el(Y)
proof
    'not' 'not' a = a by BVFUNC_1:4;
  hence thesis by BVFUNC_5:8;
end;

theorem
  ((a 'imp' b) '&' a) 'imp' b = I_el(Y)
proof
    ((a 'imp' b) '&' a) 'imp' b = (a '&' b) 'imp' b by BVFUNC_7:10;
  hence thesis by BVFUNC_6:41;
end;

theorem Th22:
a 'imp' ('not' a 'imp' a) = I_el(Y)
proof
     a 'imp' ('not' a 'imp' a)
  ='not' a 'or' ('not' a 'imp' a) by BVFUNC_4:8
 .='not' a 'or' ('not' 'not' a 'or' a) by BVFUNC_4:8
 .='not' a 'or' (a 'or' a) by BVFUNC_1:4
 .='not' a 'or' a by BVFUNC_1:10;
  hence thesis by BVFUNC_4:6;
end;

theorem
  ('not' a 'imp' a) 'eqv' a = I_el(Y)
proof
    ('not' a 'imp' a) 'eqv' a
  = (('not' a 'imp' a) 'imp' a) '&' (a 'imp' ('not' a 'imp' a)) by BVFUNC_4:7
 .= I_el(Y) '&' (a 'imp' ('not' a 'imp' a)) by BVFUNC_5:12
 .= (a 'imp' ('not' a 'imp' a)) by BVFUNC_1:9;
  hence thesis by Th22;
end;

theorem
  a 'or' (a 'imp' b) = I_el(Y)
proof
     a 'or' (a 'imp' b)
  =a 'or' ('not' a 'or' b) by BVFUNC_4:8
 .=(a 'or' 'not' a) 'or' b by BVFUNC_1:11
 .=I_el(Y) 'or' b by BVFUNC_4:6;
  hence thesis by BVFUNC_1:13;
end;

theorem
  (a 'imp' b) 'or' (c 'imp' a) = I_el(Y)
proof
     (a 'imp' b) 'or' (c 'imp' a)
  =('not' a 'or' b) 'or' (c 'imp' a) by BVFUNC_4:8
 .=('not' a 'or' b) 'or' ('not' c 'or' a) by BVFUNC_4:8
 .='not' c 'or' (a 'or' ('not' a 'or' b)) by BVFUNC_1:11
 .='not' c 'or' ((a 'or' 'not' a) 'or' b) by BVFUNC_1:11
 .='not' c 'or' (I_el(Y) 'or' b) by BVFUNC_4:6
 .='not' c 'or' I_el(Y) by BVFUNC_1:13;
  hence thesis by BVFUNC_1:13;
end;

theorem
  (a 'imp' b) 'or' ('not' a 'imp' b) = I_el(Y)
proof
     (a 'imp' b) 'or' ('not' a 'imp' b)
  =('not' a 'or' b) 'or' ('not' a 'imp' b) by BVFUNC_4:8
 .=('not' a 'or' b) 'or' ('not' 'not' a 'or' b) by BVFUNC_4:8
 .=('not' a 'or' b) 'or' (a 'or' b) by BVFUNC_1:4
 .=b 'or' ('not' a 'or' (a 'or' b)) by BVFUNC_1:11
 .=b 'or' (('not' a 'or' a) 'or' b) by BVFUNC_1:11
 .=b 'or' (I_el(Y) 'or' b) by BVFUNC_4:6
 .=b 'or' I_el(Y) by BVFUNC_1:13;
  hence thesis by BVFUNC_1:13;
end;

theorem
  (a 'imp' b) 'or' (a 'imp' 'not' b) = I_el(Y)
proof
     (a 'imp' b) 'or' (a 'imp' 'not' b)
  =('not' a 'or' b) 'or' (a 'imp' 'not' b) by BVFUNC_4:8
 .=('not' a 'or' b) 'or' ('not' a 'or' 'not' b) by BVFUNC_4:8
 .='not' a 'or' (b 'or' ('not' b 'or' 'not' a)) by BVFUNC_1:11
 .='not' a 'or' ((b 'or' 'not' b) 'or' 'not' a) by BVFUNC_1:11
 .='not' a 'or' (I_el(Y) 'or' 'not' a) by BVFUNC_4:6
 .='not' a 'or' I_el(Y) by BVFUNC_1:13;
  hence thesis by BVFUNC_1:13;
end;

theorem
  'not' a 'imp' ('not' b 'eqv' (b 'imp' a)) = I_el(Y)
proof
     'not' a 'imp' ('not' b 'eqv' (b 'imp' a))
  ='not' 'not' a 'or' ('not' b 'eqv' (b 'imp' a)) by BVFUNC_4:8
 .='not' 'not' a 'or' (('not' b 'imp' (b 'imp' a)) '&'
   ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:7
 .=a 'or' (('not' b 'imp' (b 'imp' a)) '&'
   ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:4
 .=a 'or' (('not' 'not' b 'or' (b 'imp' a)) '&'
   ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:8
 .=a 'or' ((b 'or' (b 'imp' a)) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:4
 .=a 'or' ((b 'or' ('not' b 'or' a)) '&' ((b 'imp' a) 'imp' 'not' b))
  by BVFUNC_4:8
 .=a 'or' (((b 'or' 'not' b) 'or' a) '&' ((b 'imp' a) 'imp' 'not' b))
  by BVFUNC_1:11
 .=a 'or' ((I_el(Y) 'or' a) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_4:6
 .=a 'or' (I_el(Y) '&' ((b 'imp' a) 'imp' 'not' b)) by BVFUNC_1:13
 .=a 'or' ((b 'imp' a) 'imp' 'not' b) by BVFUNC_1:9
 .=a 'or' (('not' b 'or' a) 'imp' 'not' b) by BVFUNC_4:8
 .=a 'or' ('not' ('not' b 'or' a) 'or' 'not' b) by BVFUNC_4:8
 .=a 'or' (('not' 'not' b '&' 'not' a) 'or' 'not' b) by BVFUNC_1:16
 .=a 'or' ((b '&' 'not' a) 'or' 'not' b) by BVFUNC_1:4
 .=a 'or' ((b 'or' 'not' b) '&' ('not' a 'or' 'not' b)) by BVFUNC_1:14
 .=a 'or' (I_el(Y) '&' ('not' a 'or' 'not' b)) by BVFUNC_4:6
 .=a 'or' ('not' a 'or' 'not' b) by BVFUNC_1:9
 .=(a 'or' 'not' a) 'or' 'not' b by BVFUNC_1:11
 .=I_el(Y) 'or' 'not' b by BVFUNC_4:6;
  hence thesis by BVFUNC_1:13;
end;

theorem
  (a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b) = I_el(Y)
proof
     (a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b)
  ='not' (a 'imp' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_4:8
 .='not' ('not' a 'or' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_4:8
 .=('not' 'not' a '&' 'not' b) 'or'
   (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_1:16
 .=(a '&' 'not' b) 'or' (((a 'imp' c) 'imp' b) 'imp' b) by BVFUNC_1:4
 .=(a '&' 'not' b) 'or' ('not' ((a 'imp' c) 'imp' b) 'or' b) by BVFUNC_4:8
 .=(a '&' 'not' b) 'or' ('not' (('not' a 'or' c) 'imp' b) 'or' b)
  by BVFUNC_4:8
 .=(a '&' 'not' b) 'or' ('not' ('not' ('not' a 'or' c) 'or' b) 'or' b)
  by BVFUNC_4:8
 .=(a '&' 'not' b) 'or' ('not' (('not' 'not' a '&' 'not' c) 'or' b) 'or' b)
  by BVFUNC_1:16
 .=(a '&' 'not' b) 'or' ('not' ((a '&' 'not' c) 'or' b) 'or' b)
  by BVFUNC_1:4
 .=(a '&' 'not' b) 'or' (('not' (a '&' 'not' c) '&' 'not' b) 'or' b)
  by BVFUNC_1:16
 .=(a '&' 'not' b) 'or' ((('not' a 'or' 'not' 'not' c) '&' 'not' b) 'or' b)
  by BVFUNC_1:17
 .=(a '&' 'not' b) 'or' ((('not' a 'or' c) '&' 'not' b) 'or' b)
  by BVFUNC_1:4
 .=(a '&' 'not' b) 'or' ((('not' a 'or' c) 'or' b) '&' ('not' b 'or' b))
  by BVFUNC_1:14
 .=(a '&' 'not' b) 'or' ((('not' a 'or' c) 'or' b) '&' I_el(Y)) by BVFUNC_4:6
 .=(a '&' 'not' b) 'or' (('not' a 'or' c) 'or' b) by BVFUNC_1:9
 .=((a '&' 'not' b) 'or' b) 'or' ('not' a 'or' c) by BVFUNC_1:11
 .=((a 'or' b) '&' ('not' b 'or' b)) 'or' ('not' a 'or' c) by BVFUNC_1:14
 .=((a 'or' b) '&' I_el(Y)) 'or' ('not' a 'or' c) by BVFUNC_4:6
 .=(a 'or' b) 'or' ('not' a 'or' c) by BVFUNC_1:9
 .=b 'or' (a 'or' ('not' a 'or' c)) by BVFUNC_1:11
 .=b 'or' ((a 'or' 'not' a) 'or' c) by BVFUNC_1:11
 .=b 'or' (I_el(Y) 'or' c) by BVFUNC_4:6
 .=b 'or' I_el(Y) by BVFUNC_1:13;
  hence thesis by BVFUNC_1:13;
end;

theorem
  a 'imp' b = a 'eqv' (a '&' b)
proof
      a 'eqv' (a '&' b)
   =(a 'imp' (a '&' b)) '&' ((a '&' b) 'imp' a) by BVFUNC_4:7
  .=('not' a 'or' (a '&' b)) '&' ((a '&' b) 'imp' a) by BVFUNC_4:8
  .=('not' a 'or' (a '&' b)) '&' ('not' (a '&' b) 'or' a) by BVFUNC_4:8
  .=(('not' a 'or' a) '&' ('not' a 'or' b)) '&'
    ('not' (a '&' b) 'or' a) by BVFUNC_1:14
  .=(I_el(Y) '&' ('not' a 'or' b)) '&' ('not' (a '&' b) 'or' a) by BVFUNC_4:6
  .=('not' a 'or' b) '&' ('not' (a '&' b) 'or' a) by BVFUNC_1:9
  .=('not' a 'or' b) '&' (('not' a 'or' 'not' b) 'or' a) by BVFUNC_1:17
  .=('not' a 'or' b) '&' ('not' b 'or' ('not' a 'or' a)) by BVFUNC_1:11
  .=('not' a 'or' b) '&' ('not' b 'or' I_el(Y)) by BVFUNC_4:6
  .=('not' a 'or' b) '&' I_el(Y) by BVFUNC_1:13
  .='not' a 'or' b by BVFUNC_1:9;
    hence thesis by BVFUNC_4:8;
end;

theorem
  a 'imp' b=I_el(Y) & b 'imp' a=I_el(Y) iff a=b
proof
    (a 'eqv' b)=I_el(Y) iff ((a 'imp' b)=I_el(Y) & (b 'imp' a)=I_el(Y))
  by BVFUNC_4:10;
  hence thesis by BVFUNC_1:20;
end;

theorem
  a = 'not' a 'imp' a
proof
    a 'imp' ('not' a 'imp' a) = I_el(Y) by Th22;
  then A1:a '<' ('not' a 'imp' a) by BVFUNC_1:19;
    ('not' a 'imp' a) 'imp' a = I_el(Y) by BVFUNC_5:12;
  then ('not' a 'imp' a) '<' a by BVFUNC_1:19;
  hence thesis by A1,BVFUNC_1:18;
end;

theorem Th33:
a 'imp' ((a 'imp' b) 'imp' a) = I_el(Y)
proof
  thus a 'imp' ((a 'imp' b) 'imp' a)
   ='not' a 'or' ((a 'imp' b) 'imp' a) by BVFUNC_4:8
  .='not' a 'or' ('not' (a 'imp' b) 'or' a) by BVFUNC_4:8
  .='not' a 'or' ('not' ('not' a 'or' b) 'or' a) by BVFUNC_4:8
  .='not' a 'or' (('not' 'not' a '&' 'not' b) 'or' a) by BVFUNC_1:16
  .='not' a 'or' ((a '&' 'not' b) 'or' a) by BVFUNC_1:4
  .='not' a 'or' ((a 'or' a) '&' ('not' b 'or' a)) by BVFUNC_1:14
  .='not' a 'or' (a '&' ('not' b 'or' a)) by BVFUNC_1:10
  .='not' a 'or' ((a '&' 'not' b) 'or' (a '&' a)) by BVFUNC_1:15
  .='not' a 'or' ((a '&' 'not' b) 'or' a) by BVFUNC_1:6
  .=('not' a 'or' a) 'or' (a '&' 'not' b) by BVFUNC_1:11
  .=I_el(Y) 'or' (a '&' 'not' b) by BVFUNC_4:6
  .=I_el(Y) by BVFUNC_1:13;
end;

theorem
  a = (a 'imp' b) 'imp' a
proof
    a 'imp' ((a 'imp' b) 'imp' a) = I_el(Y) by Th33;
  then A1:a '<' ((a 'imp' b) 'imp' a) by BVFUNC_1:19;
    ((a 'imp' b) 'imp' a) 'imp' a = I_el(Y) by BVFUNC_8:27;
  then ((a 'imp' b) 'imp' a) '<' a by BVFUNC_1:19;
  hence thesis by A1,BVFUNC_1:18;
end;

theorem
  a = (b 'imp' a) '&' ('not' b 'imp' a)
proof
    a=(a 'or' b) '&' (a 'or' 'not' b) by BVFUNC_8:7
 .=(a 'or' b) '&' (b 'imp' a) by BVFUNC_4:8
 .=(a 'or' 'not' 'not' b) '&' (b 'imp' a) by BVFUNC_1:4
 .=('not' b 'imp' a) '&' (b 'imp' a) by BVFUNC_4:8;
 hence thesis;
end;

theorem
  a '&' b = 'not' (a 'imp' 'not' b)
proof
    (a '&' b) 'imp' 'not'( a 'imp' 'not' b)=I_el(Y) by BVFUNC_6:35;
  then A1:(a '&' b) '<' 'not'( a 'imp' 'not' b) by BVFUNC_1:19;
    'not'( a 'imp' 'not' b) 'imp' (a '&' b)=I_el(Y) by BVFUNC_6:36;
  then 'not'( a 'imp' 'not' b) '<' (a '&' b) by BVFUNC_1:19;
  hence thesis by A1,BVFUNC_1:18;
end;

theorem
  a 'or' b = 'not' a 'imp' b
proof
  thus 'not' a 'imp' b
  ='not' 'not' a 'or' b by BVFUNC_4:8
 .=a 'or' b by BVFUNC_1:4;
end;

theorem
  a 'or' b = (a 'imp' b) 'imp' b
proof
  thus (a 'imp' b) 'imp' b
  ='not' (a 'imp' b) 'or' b by BVFUNC_4:8
 .='not' ('not' a 'or' b) 'or' b by BVFUNC_4:8
 .=('not' 'not' a '&' 'not' b) 'or' b by BVFUNC_1:16
 .=(a '&' 'not' b) 'or' b by BVFUNC_1:4
 .=(a 'or' b) '&' ('not' b 'or' b) by BVFUNC_1:14
 .=(a 'or' b) '&' I_el(Y) by BVFUNC_4:6
 .= a 'or' b by BVFUNC_1:9;
end;

theorem
  (a 'imp' b) 'imp' (a 'imp' a) = I_el(Y)
proof
  thus (a 'imp' b) 'imp' (a 'imp' a)=(a 'imp' b) 'imp' I_el(Y) by BVFUNC_5:8
 .=I_el(Y) by BVFUNC_7:16;
end;

theorem
  (a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) = I_el(
Y
)
proof
  thus (a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c)))
  ='not' (a 'imp' (b 'imp' c)) 'or' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c)))
  by BVFUNC_4:8
 .='not' ('not' a 'or' (b 'imp' c)) 'or'
   ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
 .='not' ('not' a 'or' ('not' b 'or' c)) 'or'
   ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
 .='not' ('not' a 'or' ('not' b 'or' c)) 'or'
   ('not' (d 'imp' b) 'or' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
 .='not' ('not' a 'or' ('not' b 'or' c)) 'or'
   ('not' ('not' d 'or' b) 'or' (a 'imp' (d 'imp' c))) by BVFUNC_4:8
 .='not' ('not' a 'or' ('not' b 'or' c)) 'or'
   ('not' ('not' d 'or' b) 'or' ('not' a 'or' (d 'imp' c))) by BVFUNC_4:8
 .='not' ('not' a 'or' ('not' b 'or' c)) 'or'
   ('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_4:8
 .=('not' 'not' a '&' 'not' ('not' b 'or' c)) 'or'
   ('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c)))
   by BVFUNC_1:16
 .=('not' 'not' a '&' ('not' 'not' b '&' 'not' c)) 'or'
   ('not' ('not' d 'or' b) 'or' ('not' a 'or' ('not' d 'or' c)))
   by BVFUNC_1:16
 .=('not' 'not' a '&' ('not' 'not' b '&' 'not' c)) 'or'
   (('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c)))
   by BVFUNC_1:16
 .=(a '&' ('not' 'not' b '&' 'not' c)) 'or'
   (('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c)))
   by BVFUNC_1:4
 .=(a '&' (b '&' 'not' c)) 'or'
   (('not' 'not' d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c)))
   by BVFUNC_1:4
 .=(a '&' (b '&' 'not' c)) 'or'
   ((d '&' 'not' b) 'or' ('not' a 'or' ('not' d 'or' c))) by BVFUNC_1:4
 .=(a '&' (b '&' 'not' c)) 'or'
   (((d '&' 'not' b) 'or' 'not' a) 'or' ('not' d 'or' c)) by BVFUNC_1:11
 .=((a '&' (b '&' 'not' c)) 'or'
   ('not' a 'or' (d '&' 'not' b))) 'or' ('not' d 'or' c) by BVFUNC_1:11
 .=(((a '&' (b '&' 'not' c)) 'or' 'not' a) 'or'
   (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:11
 .=(((a 'or' 'not' a) '&' ((b '&' 'not' c) 'or' 'not' a)) 'or'
   (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:14
 .=((I_el(Y) '&' ((b '&' 'not' c) 'or' 'not' a)) 'or'
   (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_4:6
 .=(((b '&' 'not' c) 'or' 'not' a) 'or'
   (d '&' 'not' b)) 'or' ('not' d 'or' c) by BVFUNC_1:9
 .=((b '&' 'not' c) 'or' 'not' a) 'or'
   ((d '&' 'not' b) 'or' ('not' d 'or' c)) by BVFUNC_1:11
 .=((b '&' 'not' c) 'or' 'not' a) 'or'
   ((('not' b '&' d) 'or' 'not' d) 'or' c) by BVFUNC_1:11
 .=((b '&' 'not' c) 'or' 'not' a) 'or'
   ((('not' b 'or' 'not' d) '&' (d 'or' 'not' d)) 'or' c) by BVFUNC_1:14
 .=((b '&' 'not' c) 'or' 'not' a) 'or'
   ((('not' b 'or' 'not' d) '&' I_el(Y)) 'or' c) by BVFUNC_4:6
 .=((b '&' 'not' c) 'or' 'not' a) 'or'
   (('not' b 'or' 'not' d) 'or' c) by BVFUNC_1:9
 .='not' a 'or' (('not' c '&' b) 'or' (('not' b 'or' 'not' d) 'or' c))
  by BVFUNC_1:11
 .='not' a 'or' ((('not' c '&' b) 'or' ('not' b 'or' 'not' d)) 'or' c)
  by BVFUNC_1:11
 .='not' a 'or' (((('not' c '&' b) 'or' 'not' b) 'or' 'not' d) 'or' c)
  by BVFUNC_1:11
 .='not' a 'or' (((('not' c 'or' 'not' b) '&' (b 'or' 'not' b))
  'or' 'not' d) 'or' c) by BVFUNC_1:14
 .='not' a 'or' (((('not' c 'or' 'not' b) '&' I_el(Y))
  'or' 'not' d) 'or' c) by BVFUNC_4:6
 .='not' a 'or' ((('not' b 'or' 'not' c) 'or' 'not' d) 'or' c) by BVFUNC_1:9
 .='not' a 'or' (('not' b 'or' ('not' c 'or' 'not' d)) 'or' c) by BVFUNC_1:11
 .='not' a 'or' ('not' b 'or' (('not' d 'or' 'not' c) 'or' c)) by BVFUNC_1:11
 .='not' a 'or' ('not' b 'or' ('not' d 'or' ('not' c 'or' c))) by BVFUNC_1:11
 .='not' a 'or' ('not' b 'or' ('not' d 'or' I_el(Y))) by BVFUNC_4:6
 .='not' a 'or' ('not' b 'or' I_el(Y)) by BVFUNC_1:13
 .='not' a 'or' I_el(Y) by BVFUNC_1:13
 .=I_el(Y) by BVFUNC_1:13;
end;

theorem
  (((a 'imp' b) '&' a) '&' c) 'imp' b = I_el(Y)
proof
  thus (((a 'imp' b) '&' a) '&' c) 'imp' b
  =((('not' a 'or' b) '&' a) '&' c) 'imp' b by BVFUNC_4:8
 .=((('not' a '&' a) 'or' (b '&' a)) '&' c) 'imp' b by BVFUNC_1:15
 .=((O_el(Y) 'or' (b '&' a)) '&' c) 'imp' b by BVFUNC_4:5
 .=((b '&' a) '&' c) 'imp' b by BVFUNC_1:12
 .='not' ((b '&' a) '&' c) 'or' b by BVFUNC_4:8
 .=('not' (b '&' a) 'or' 'not' c) 'or' b by BVFUNC_1:17
 .=(('not' b 'or' 'not' a) 'or' 'not' c) 'or' b by BVFUNC_1:17
 .=(b 'or' ('not' b 'or' 'not' a)) 'or' 'not' c by BVFUNC_1:11
 .=((b 'or' 'not' b) 'or' 'not' a) 'or' 'not' c by BVFUNC_1:11
 .=(I_el(Y) 'or' 'not' a) 'or' 'not' c by BVFUNC_4:6
 .=I_el(Y) 'or' 'not' c by BVFUNC_1:13
 .=I_el(Y)by BVFUNC_1:13;
end;

theorem
  (b 'imp' c) 'imp' ((a '&' b) 'imp' c) = I_el(Y)
proof
  thus (b 'imp' c) 'imp' ((a '&' b) 'imp' c)
  ='not' (b 'imp' c) 'or' ((a '&' b) 'imp' c) by BVFUNC_4:8
 .='not' ('not' b 'or' c) 'or' ((a '&' b) 'imp' c) by BVFUNC_4:8
 .='not' ('not' b 'or' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_4:8
 .=('not' 'not' b '&' 'not' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_1:16
 .=(b '&' 'not' c) 'or' ('not' (a '&' b) 'or' c) by BVFUNC_1:4
 .=(b '&' 'not' c) 'or' (('not' a 'or' 'not' b) 'or' c) by BVFUNC_1:17
 .=((b '&' 'not' c) 'or' c) 'or' ('not' a 'or' 'not' b) by BVFUNC_1:11
 .=((b 'or' c) '&' ('not' c 'or' c)) 'or' ('not' a 'or' 'not' b)
  by BVFUNC_1:14
 .=((b 'or' c) '&' I_el(Y)) 'or' ('not' a 'or' 'not' b) by BVFUNC_4:6
 .=('not' a 'or' 'not' b) 'or' (b 'or' c) by BVFUNC_1:9
 .=(('not' a 'or' 'not' b) 'or' b) 'or' c by BVFUNC_1:11
 .=('not' a 'or' ('not' b 'or' b)) 'or' c by BVFUNC_1:11
 .=('not' a 'or' I_el(Y)) 'or' c by BVFUNC_4:6
 .=I_el(Y) 'or' c by BVFUNC_1:13
 .=I_el(Y) by BVFUNC_1:13;
end;

theorem
  ((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b)) = I_el(Y)
proof
    ((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b))
  =('not' (a '&' b) 'or' c) 'imp' ((a '&' b) 'imp' (c '&' b)) by BVFUNC_4:8
 .='not' ('not' (a '&' b) 'or' c) 'or' ((a '&' b) 'imp' (c '&' b))
  by BVFUNC_4:8
 .='not' ('not' (a '&' b) 'or' c) 'or' ('not' (a '&' b) 'or' (c '&' b))
  by BVFUNC_4:8
 .=('not' 'not' (a '&' b) '&' 'not' c) 'or' ('not' (a '&' b) 'or' (c '&' b))
  by BVFUNC_1:16
 .=((a '&' b) '&' 'not' c) 'or' ('not' (a '&' b) 'or' (c '&' b))
  by BVFUNC_1:4
 .=((a '&' b) '&' 'not' c) 'or' (('not' a 'or' 'not' b) 'or' (c '&' b))
  by BVFUNC_1:17
 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' ('not' b 'or' (b '&' c)))
  by BVFUNC_1:11
 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or'
   (('not' b 'or' b) '&' ('not' b 'or' c))) by BVFUNC_1:14
 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or'
   (I_el(Y) '&' ('not' b 'or' c))) by BVFUNC_4:6
 .=((a '&' b) '&' 'not' c) 'or' ('not' a 'or' ('not' b 'or' c)) by BVFUNC_1:9
 .=(((a '&' b) '&' 'not' c) 'or' 'not' a) 'or' ('not' b 'or' c) by BVFUNC_1:11
 .=(((a '&' b) 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or'
   ('not' b 'or' c) by BVFUNC_1:14
 .=(((a 'or' 'not' a) '&' (b 'or' 'not' a)) '&' ('not' c 'or' 'not' a)) 'or'
   ('not' b 'or' c) by BVFUNC_1:14
 .=((I_el(Y) '&' (b 'or' 'not' a)) '&' ('not' c 'or' 'not' a)) 'or'
   ('not' b 'or' c) by BVFUNC_4:6
 .=((b 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or' ('not' b 'or' c)
  by BVFUNC_1:9
 .=(((b 'or' 'not' a) '&' ('not' c 'or' 'not' a)) 'or' c) 'or' 'not' b
  by BVFUNC_1:11
 .=(((b 'or' 'not' a) 'or' c) '&' (('not' c 'or' 'not' a) 'or' c))
  'or' 'not' b by BVFUNC_1:14
 .=(((b 'or' 'not' a) 'or' c) '&' ('not' a 'or' ('not' c 'or' c)))
  'or' 'not' b by BVFUNC_1:11
 .=(((b 'or' 'not' a) 'or' c) '&' ('not' a 'or' I_el(Y))) 'or' 'not' b
  by BVFUNC_4:6
 .=(((b 'or' 'not' a) 'or' c) '&' I_el(Y)) 'or' 'not' b by BVFUNC_1:13
 .=((b 'or' 'not' a) 'or' c) 'or' 'not' b by BVFUNC_1:9
 .=('not' b 'or' (b 'or' 'not' a)) 'or' c by BVFUNC_1:11
 .=(('not' b 'or' b) 'or' 'not' a) 'or' c by BVFUNC_1:11
 .=(I_el(Y) 'or' 'not' a) 'or' c by BVFUNC_4:6
 .=I_el(Y) 'or' c by BVFUNC_1:13;
  hence thesis by BVFUNC_1:13;
end;

theorem
  (a 'imp' b) 'imp' ((a '&' c) 'imp' (b '&' c)) = I_el(Y)
proof
    a 'imp' b '<' (a '&' c) 'imp' (b '&' c) by BVFUNC_9:10;
  hence thesis by BVFUNC_1:19;
end;

theorem
  (a 'imp' b) '&' (a '&' c) 'imp' (b '&' c) = I_el(Y)
proof
     (a 'imp' b) '&' (a '&' c) 'imp' (b '&' c)
  =((a 'imp' b) '&' a) '&' c 'imp' (b '&' c) by BVFUNC_1:7
 .=(a '&' b) '&' c 'imp' (b '&' c) by BVFUNC_7:10
 .=a '&' (b '&' c) 'imp' (b '&' c) by BVFUNC_1:7;
  hence thesis by BVFUNC_6:39;
end;

theorem
  a '&' (a 'imp' b) '&' (b 'imp' c) '<' c
proof
     (a '&' (a 'imp' b) '&' (b 'imp' c)) 'imp' c
  ='not' (a '&' (a 'imp' b) '&' (b 'imp' c)) 'or' c by BVFUNC_4:8
 .='not' (a '&' b '&' (b 'imp' c)) 'or' c by BVFUNC_7:10
 .='not' (a '&' (b '&' (b 'imp' c))) 'or' c by BVFUNC_1:7
 .='not' (a '&' (b '&' c)) 'or' c by BVFUNC_7:10
 .='not' ((a '&' b) '&' c) 'or' c by BVFUNC_1:7
 .=('not' (a '&' b) 'or' 'not' c) 'or' c by BVFUNC_1:17
 .='not' (a '&' b) 'or' ('not' c 'or' c) by BVFUNC_1:11
 .='not' (a '&' b) 'or' I_el(Y) by BVFUNC_4:6
 .= I_el(Y) by BVFUNC_1:13;
  hence thesis by BVFUNC_1:19;
end;

theorem
  (a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c) '<' ('not' a 'imp' (b 'or' c))
proof
     (a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c) 'imp' ('not' a 'imp' (b 'or' c)
)
  ='not' ((a 'or' b) '&' (a 'imp' c) '&' (b 'imp' c)) 'or'
   ('not' a 'imp' (b 'or' c)) by BVFUNC_4:8
 .='not' ((a 'or' b) '&' ('not' a 'or' c) '&' (b 'imp' c)) 'or'
   ('not' a 'imp' (b 'or' c)) by BVFUNC_4:8
 .='not' ((a 'or' b) '&' ('not' a 'or' c) '&' ('not' b 'or' c)) 'or'
   ('not' a 'imp' (b 'or' c)) by BVFUNC_4:8
 .='not' ((a 'or' b) '&' ('not' a 'or' c) '&' ('not' b 'or' c)) 'or'
   ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_4:8
 .=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' 'not' ('not' b 'or' c)) 'or'
   ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:17
 .=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' ('not' 'not' b '&' 'not' c))
   'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:16
 .=('not' ((a 'or' b) '&' ('not' a 'or' c)) 'or' (b '&' 'not' c))
   'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:4
 .=(('not' (a 'or' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c))
   'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:17
 .=((('not' a '&' 'not' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c))
   'or' ('not' 'not' a 'or' (b 'or' c)) by BVFUNC_1:16
 .=((('not' a '&' 'not' b) 'or' 'not' ('not' a 'or' c)) 'or' (b '&' 'not' c))
   'or' (a 'or' (b 'or' c)) by BVFUNC_1:4
 .=((('not' a '&' 'not' b) 'or' ('not' 'not' a '&' 'not' c)) 'or'
   (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:16
 .=((('not' a '&' 'not' b) 'or' (a '&' 'not' c)) 'or'
   (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:4
 .=((('not' a 'or' (a '&' 'not' c)) '&' ('not' b 'or' (a '&' 'not' c))) 'or'
   (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:14
 .=(((('not' a 'or' a) '&' ('not' a 'or' 'not' c)) '&'
   ('not' b 'or' (a '&' 'not' c))) 'or'
   (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:14
 .=(((I_el(Y) '&' ('not' a 'or' 'not' c)) '&' ('not' b 'or' (a '&' 'not' c)))
   'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_4:6
 .=((('not' a 'or' 'not' c) '&' ('not' b 'or' (a '&' 'not' c))) 'or'
   (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:9
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (('not' a 'or' 'not' c) '&'
   (a '&' 'not' c))) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c))
   by BVFUNC_1:15
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((('not' a 'or' 'not' c)
   '&' a) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c))
   by BVFUNC_1:7
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((('not' a '&' a) 'or'
   ('not' c '&' a)) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or'
   (a 'or' (b 'or' c)) by BVFUNC_1:15
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((O_el(Y) 'or'
   ('not' c '&' a)) '&' 'not' c)) 'or' (b '&' 'not' c)) 'or'
   (a 'or' (b 'or' c)) by BVFUNC_4:5
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (('not' c '&' a) '&' 'not' c))
   'or' (b '&' 'not' c)) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:12
 .=((('not' c '&' a) '&' 'not' c) 'or' ((('not' a 'or' 'not' c) '&' 'not' b)
   'or' (b '&' 'not' c))) 'or' (a 'or' (b 'or' c)) by BVFUNC_1:11
 .=((('not' c '&' a) '&' 'not' c) 'or' ((('not' a 'or' 'not' c) '&' 'not' b)
   'or' (b '&' 'not' c))) 'or' (c 'or' (a 'or' b)) by BVFUNC_1:11
 .=((((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   (('not' c '&' a) '&' 'not' c)) 'or' c) 'or' (a 'or' b) by BVFUNC_1:11
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   ((('not' c '&' a) '&' 'not' c) 'or' c)) 'or' (a 'or' b) by BVFUNC_1:11
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   ((('not' c '&' a) 'or' c) '&' ('not' c 'or' c))) 'or' (a 'or' b)
   by BVFUNC_1:14
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   ((('not' c '&' a) 'or' c) '&' I_el(Y))) 'or' (a 'or' b) by BVFUNC_4:6
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   ((('not' c '&' a) 'or' c))) 'or' (a 'or' b) by BVFUNC_1:9
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   ((('not' c 'or' c) '&' (a 'or' c)))) 'or' (a 'or' b) by BVFUNC_1:14
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   ((I_el(Y) '&' (a 'or' c)))) 'or' (a 'or' b) by BVFUNC_4:6
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b '&' 'not' c)) 'or'
   (a 'or' c)) 'or' (a 'or' b) by BVFUNC_1:9
 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((b '&' 'not' c) 'or'
   (c 'or' a))) 'or' (a 'or' b) by BVFUNC_1:11
 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b '&' 'not' c) 'or' c)
   'or' a)) 'or' (a 'or' b) by BVFUNC_1:11
 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b 'or' c) '&'
   ('not' c 'or' c)) 'or' a)) 'or' (a 'or' b) by BVFUNC_1:14
 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (((b 'or' c) '&' I_el(Y))
   'or' a)) 'or' (a 'or' b) by BVFUNC_4:6
 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' ((b 'or' c)'or' a))
   'or' (a 'or' b) by BVFUNC_1:9
 .=((('not' a 'or' 'not' c) '&' 'not' b) 'or' (b 'or' (c 'or' a)))
   'or' (a 'or' b) by BVFUNC_1:11
 .=(((('not' a 'or' 'not' c) '&' 'not' b) 'or' b) 'or' (c 'or' a))
   'or' (a 'or' b) by BVFUNC_1:11
 .=(((('not' a 'or' 'not' c) 'or' b) '&' ('not' b 'or' b)) 'or' (c 'or' a))
   'or' (a 'or' b) by BVFUNC_1:14
 .=(((('not' a 'or' 'not' c) 'or' b) '&' I_el(Y)) 'or' (c 'or' a))
   'or' (a 'or' b) by BVFUNC_4:6
 .=((('not' a 'or' 'not' c) 'or' b) 'or' (c 'or' a))
   'or' (a 'or' b) by BVFUNC_1:9
 .=(((('not' a 'or' 'not' c) 'or' b) 'or' c) 'or' a)
   'or' (a 'or' b) by BVFUNC_1:11
 .=(((('not' a 'or' 'not' c) 'or' c) 'or' b) 'or' a)
   'or' (a 'or' b) by BVFUNC_1:11
 .=((('not' a 'or' ('not' c 'or' c)) 'or' b) 'or' a)
   'or' (a 'or' b) by BVFUNC_1:11
 .=((('not' a 'or' I_el(Y)) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_4:6
 .=((I_el(Y) 'or' b) 'or' a) 'or' (a 'or' b) by BVFUNC_1:13
 .=(I_el(Y) 'or' a) 'or' (a 'or' b) by BVFUNC_1:13
 .=I_el(Y) 'or' (a 'or' b) by BVFUNC_1:13
 .= I_el(Y) by BVFUNC_1:13;
  hence thesis by BVFUNC_1:19;
end;


Back to top