environ vocabulary FUNCT_2, MARGREL1, ZF_LANG, BVFUNC_1, PARTIT1; notation XBOOLE_0, SUBSET_1, MARGREL1, VALUAT_1, FRAENKEL, BINARITH, BVFUNC_1; constructors BINARITH, BVFUNC_1; clusters MARGREL1, VALUAT_1, BINARITH, FRAENKEL; begin ::Chap. 1 Propositional Calculus reserve Y for non empty set; theorem :: BVFUNC10:1 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a '&' b) 'or' (b '&' c) 'or' (c '&' a)= (a 'or' b) '&' (b 'or' c) '&' (c 'or' a); theorem :: BVFUNC10:2 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a '&' 'not' b) 'or' (b '&' 'not' c) 'or' (c '&' 'not' a)= (b '&' 'not' a) 'or' (c '&' 'not' b) 'or' (a '&' 'not' c); theorem :: BVFUNC10:3 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'or' 'not' b) '&' (b 'or' 'not' c) '&' (c 'or' 'not' a)= (b 'or' 'not' a) '&' (c 'or' 'not' b) '&' (a 'or' 'not' c); theorem :: BVFUNC10:4 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (c 'imp' a)=I_el(Y) & (c 'imp' b)=I_el(Y) implies c 'imp' (a 'or' b)=I_el(Y); theorem :: BVFUNC10:5 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' c)=I_el(Y) & (b 'imp' c)=I_el(Y) implies (a '&' b) 'imp' c = I_el(Y); theorem :: BVFUNC10:6 for a1,a2,b1,b2,c1,c2 being Element of Funcs(Y,BOOLEAN) holds (a1 'imp' a2) '&' (b1 'imp' b2) '&' (c1 'imp' c2) '&' (a1 'or' b1 'or' c1) '<' (a2 'or' b2 'or' c2); theorem :: BVFUNC10:7 for a1,a2,b1,b2 being Element of Funcs(Y,BOOLEAN) holds (a1 'imp' b1) '&' (a2 'imp' b2) '&' (a1 'or' a2) '&' 'not'( b1 '&' b2)= (b1 'imp' a1) '&' (b2 'imp' a2) '&' (b1 'or' b2) '&' 'not'( a1 '&' a2); theorem :: BVFUNC10:8 for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds (a 'or' b) '&' (c 'or' d) = (a '&' c) 'or' (a '&' d) 'or' (b '&' c) 'or' (b '&' d); theorem :: BVFUNC10:9 for a1,a2,b1,b2,b3 being Element of Funcs(Y,BOOLEAN) holds (a1 '&' a2) 'or' (b1 '&' b2 '&' b3)= (a1 'or' b1) '&' (a1 'or' b2) '&' (a1 'or' b3) '&' (a2 'or' b1) '&' (a2 'or' b2) '&' (a2 'or' b3); theorem :: BVFUNC10:10 for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '&' (c 'imp' d)= (a 'imp' (b '&' c '&' d)) '&' (b 'imp' (c '&' d)) '&' (c 'imp' d); theorem :: BVFUNC10:11 for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds (a 'imp' c) '&' (b 'imp' d) '&' (a 'or' b) '<' (c 'or' d); theorem :: BVFUNC10:12 for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a '&' b) 'imp' 'not' c) '&' a '&' c '<' 'not' b; theorem :: BVFUNC10:13 for a1,a2,a3,b1,b2,b3 being Element of Funcs(Y,BOOLEAN) holds (a1 '&' a2 '&' a3) 'imp' (b1 'or' b2 'or' b3)= ('not' b1 '&' 'not' b2 '&' a3) 'imp' ('not' a1 'or' 'not' a2 'or' b3); theorem :: BVFUNC10:14 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '&' (c 'imp' a) = (a '&' b '&' c) 'or' ('not' a '&' 'not' b '&' 'not' c); theorem :: BVFUNC10:15 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '&' (c 'imp' a) '&' (a 'or' b 'or' c)= (a '&' b '&' c); theorem :: BVFUNC10:16 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'or' b) '&' (b 'or' c) '&' (c 'or' a) '&' 'not'( a '&' b '&' c)= ('not' a '&' b '&' c) 'or' (a '&' 'not' b '&' c) 'or' (a '&' b '&' 'not' c); theorem :: BVFUNC10:17 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' (b '&' c)); theorem :: BVFUNC10:18 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' ((a 'or' b) 'imp' c); theorem :: BVFUNC10:19 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' (b 'or' c)); theorem :: BVFUNC10:20 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' (b 'or' 'not' c)); theorem :: BVFUNC10:21 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (b 'imp' (c 'or' a)); theorem :: BVFUNC10:22 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (b 'imp' (c 'or' 'not' a)); theorem :: BVFUNC10:23 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' b) '&' (b 'imp' (c 'or' a)); theorem :: BVFUNC10:24 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' (b 'or' 'not' c)) '&' (b 'imp' c); theorem :: BVFUNC10:25 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' (b 'or' c)) '&' (b 'imp' (c 'or' a)); theorem :: BVFUNC10:26 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' (b 'or' 'not' c)) '&' (b 'imp' (c 'or' a)); theorem :: BVFUNC10:27 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) '&' (b 'imp' c) '<' (a 'imp' (b 'or' 'not' c)) '&' (b 'imp' (c 'or' 'not' a));