Journal of Formalized Mathematics
Volume 4, 1992
University of Bialystok
Copyright (c) 1992 Association of Mizar Users

Opposite Rings, Modules and Their Morphisms


Michal Muzalewski
Warsaw University, Bialystok

Summary.

Let $\Bbb K = \langle S; K, 0, 1, +, \cdot \rangle$ be a ring. The structure ${}^{\rm op}\Bbb K = \langle S; K, 0, 1, +, \bullet \rangle$ is called anti-ring, if $\alpha \bullet \beta = \beta \cdot \alpha$ for elements $\alpha$, $\beta$ of $K$ [8, pages 5-7]. It is easily seen that ${}^{\rm op}\Bbb K$ is also a ring. If $V$ is a left module over $\Bbb K$, then $V$ is a right module over ${}^{\rm op}\Bbb K$. If $W$ is a right module over $\Bbb K$, then $W$ is a left module over ${}^{\rm op}\Bbb K$. Let $K, L$ be rings. A morphism $J: K \longrightarrow L$ is called anti-homomorphism, if $J(\alpha\cdot\beta) = J(\beta)\cdot J(\alpha)$ for elements $\alpha$, $\beta$ of $K$. If $J:K \longrightarrow L$ is a homomorphism, then $J:K \longrightarrow {}^{\rm op}L$ is an anti-homomorphism. Let $K, L$ be rings, $V, W$ left modules over $K, L$ respectively and $J:K \longrightarrow L$ an anti-monomorphism. A map $f:V \longrightarrow W$ is called $J$ - semilinear, if $f(x+y) = f(x)+f(y)$ and $f(\alpha\cdot x) = J(\alpha)\cdot f(x)$ for vectors $x, y$ of $V$ and a scalar $\alpha$ of $K$.

MML Identifier: MOD_4

The terminology and notation used in this paper have been introduced in the following articles [4] [12] [13] [2] [3] [1] [11] [6] [7] [9] [5] [10]

Contents (PDF format)

  1. Opposite functions
  2. Opposite rings
  3. Opposite modules
  4. Morphisms of rings
  5. Opposite morphisms to morphisms of rings
  6. Morphisms of groups
  7. Semilinear morphisms

Bibliography

[1] Czeslaw Bylinski. Binary operations. Journal of Formalized Mathematics, 1, 1989.
[2] Czeslaw Bylinski. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989.
[3] Czeslaw Bylinski. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989.
[4] Czeslaw Bylinski. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989.
[5] Czeslaw Bylinski. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990.
[6] Eugeniusz Kusak, Wojciech Leonczuk, and Michal Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989.
[7] Michal Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Journal of Formalized Mathematics, 2, 1990.
[8] Michal Muzalewski. \em Foundations of Metric-Affine Geometry. Dzial Wydawnictw Filii UW w Bialymstoku, Filia UW w Bialymstoku, 1990.
[9] Michal Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991.
[10] Michal Muzalewski. Category of rings. Journal of Formalized Mathematics, 3, 1991.
[11] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989.
[12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.
[13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989.

Received June 22, 1992


[ Download a postscript version, MML identifier index, Mizar home page]