Journal of Formalized Mathematics
Volume 3, 1991
University of Bialystok
Copyright (c) 1991 Association of Mizar Users

The abstract of the Mizar article:

Monotonic and Continuous Real Function

by
Jaroslaw Kotowicz

Received January 10, 1991

MML identifier: FCONT_3
[ Mizar article, MML identifier index ]


environ

 vocabulary SEQ_1, PARTFUN1, SUBSET_1, PRE_TOPC, RELAT_1, SEQ_2, ORDINAL2,
      BOOLE, LIMFUNC1, FUNCT_1, SEQM_3, PROB_1, ARYTM, RCOMP_1, ARYTM_1,
      ABSVALUE, ARYTM_3, FCONT_1, RFUNCT_2, SQUARE_1;
 notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
      REAL_1, NAT_1, FUNCT_1, SEQ_1, RELSET_1, SEQ_2, SEQM_3, ABSVALUE,
      PARTFUN1, SQUARE_1, PARTFUN2, RCOMP_1, RFUNCT_2, FCONT_1, LIMFUNC1;
 constructors REAL_1, NAT_1, SEQ_2, SEQM_3, ABSVALUE, PROB_1, PARTFUN1,
      PARTFUN2, RCOMP_1, RFUNCT_2, FCONT_1, LIMFUNC1, MEMBERED, XBOOLE_0;
 clusters RELSET_1, PARTFUN2, RFUNCT_2, XREAL_0, SEQ_1, ARYTM_3, MEMBERED,
      ZFMISC_1, XBOOLE_0, ORDINAL2;
 requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;


begin

 reserve x,X for set;
 reserve x0,r,r1,r2,g,g1,g2,p,s for Real;
 reserve n,m for Nat;
 reserve a,b,d for Real_Sequence;
 reserve f for PartFunc of REAL,REAL;

theorem :: FCONT_3:1
[#] REAL is closed;

theorem :: FCONT_3:2
  {} REAL is open;

theorem :: FCONT_3:3
{} REAL is closed;

theorem :: FCONT_3:4
[#] REAL is open;

theorem :: FCONT_3:5
right_closed_halfline(r) is closed;

theorem :: FCONT_3:6
left_closed_halfline(r) is closed;

theorem :: FCONT_3:7
right_open_halfline(r) is open;

theorem :: FCONT_3:8
left_open_halfline(r) is open;

definition let r;
 cluster right_open_halfline(r) -> open;
 cluster halfline(r) -> open;
end;

definition let p,g be real number;
 cluster ].p,g.[ -> open;
end;

theorem :: FCONT_3:9
0 < r & g in ].x0 - r,x0 + r.[ iff ex r1 st g = x0 + r1 & abs(r1) < r;

theorem :: FCONT_3:10
  0 < r & g in ].x0 - r,x0 + r.[ iff g - x0 in ].-r,r.[;

theorem :: FCONT_3:11
left_closed_halfline(p) = {p} \/ left_open_halfline(p);

theorem :: FCONT_3:12
right_closed_halfline(p) = {p} \/ right_open_halfline(p);

theorem :: FCONT_3:13
for x0 be real number holds
(for n holds a.n = x0 - p/(n+1)) implies a is convergent & lim a = x0;

theorem :: FCONT_3:14
for x0 be real number holds
(for n holds a.n = x0 + p/(n+1)) implies a is convergent & lim a = x0;

theorem :: FCONT_3:15
  f is_continuous_in x0 & f.x0 <> r &
(ex N be Neighbourhood of x0 st N c= dom f) implies
ex N be Neighbourhood of x0 st N c= dom f & for g st g in N holds f.g <> r;

theorem :: FCONT_3:16
  f is_increasing_on X or f is_decreasing_on X implies f|X is one-to-one;

theorem :: FCONT_3:17
for f be one-to-one PartFunc of REAL,REAL st f is_increasing_on X holds
 (f|X)" is_increasing_on f.:X;

theorem :: FCONT_3:18
for f be one-to-one PartFunc of REAL,REAL st f is_decreasing_on X holds
 (f|X)" is_decreasing_on f.:X;

theorem :: FCONT_3:19
X c= dom f & f is_monotone_on X & (ex p st f.:
X = left_open_halfline(p)) implies
f is_continuous_on X;

theorem :: FCONT_3:20
X c= dom f & f is_monotone_on X &
(ex p st f.:X = right_open_halfline(p)) implies f is_continuous_on X;

theorem :: FCONT_3:21
X c= dom f & f is_monotone_on X & (ex p st f.:
X=left_closed_halfline(p)) implies
f is_continuous_on X;

theorem :: FCONT_3:22
X c= dom f & f is_monotone_on X &
(ex p st f.:X = right_closed_halfline(p)) implies f is_continuous_on X;

theorem :: FCONT_3:23
X c= dom f & f is_monotone_on X & (ex p,g st f.:X = ].p,g.[) implies
f is_continuous_on X;

theorem :: FCONT_3:24
X c= dom f & f is_monotone_on X & f.:X = REAL implies
f is_continuous_on X;

theorem :: FCONT_3:25
for f be one-to-one PartFunc of REAL,REAL st
(f is_increasing_on ].p,g.[ or f is_decreasing_on ].p,g.[) &
].p,g.[ c= dom f holds (f|].p,g.[)" is_continuous_on f.:].p,g.[;

theorem :: FCONT_3:26
  for f be one-to-one PartFunc of REAL,REAL st
 (f is_increasing_on left_open_halfline(p) or
  f is_decreasing_on left_open_halfline(p)) &
  left_open_halfline(p) c= dom f holds
(f|left_open_halfline(p))" is_continuous_on f.:left_open_halfline(p);

theorem :: FCONT_3:27
  for f be one-to-one PartFunc of REAL,REAL st
(f is_increasing_on right_open_halfline(p) or
f is_decreasing_on right_open_halfline(p)) &
right_open_halfline(p) c= dom f holds
(f|right_open_halfline(p))" is_continuous_on f.:right_open_halfline(p);

theorem :: FCONT_3:28
  for f be one-to-one PartFunc of REAL,REAL st
(f is_increasing_on left_closed_halfline(p) or
f is_decreasing_on left_closed_halfline(p)) &
left_closed_halfline(p) c= dom f holds
(f|left_closed_halfline(p))" is_continuous_on f.:left_closed_halfline(p);

theorem :: FCONT_3:29
  for f be one-to-one PartFunc of REAL,REAL st
(f is_increasing_on right_closed_halfline(p) or
f is_decreasing_on right_closed_halfline(p)) &
right_closed_halfline(p) c= dom f holds
(f|right_closed_halfline(p))" is_continuous_on f.:right_closed_halfline(p);

theorem :: FCONT_3:30
  for f be one-to-one PartFunc of REAL,REAL st
(f is_increasing_on [#](REAL) or f is_decreasing_on [#]
(REAL)) & f is total holds
f" is_continuous_on rng f;

theorem :: FCONT_3:31
  f is_continuous_on ].p,g.[ &
(f is_increasing_on ].p,g.[ or f is_decreasing_on ].p,g.[) implies
rng (f|].p,g.[) is open;

theorem :: FCONT_3:32
  f is_continuous_on left_open_halfline(p) &
(f is_increasing_on left_open_halfline(p) or
f is_decreasing_on left_open_halfline(p)) implies
rng (f|left_open_halfline(p)) is open;

theorem :: FCONT_3:33
  f is_continuous_on right_open_halfline(p) &
(f is_increasing_on right_open_halfline(p) or
f is_decreasing_on right_open_halfline(p)) implies
rng (f|right_open_halfline(p)) is open;

theorem :: FCONT_3:34
  f is_continuous_on [#](REAL) &
(f is_increasing_on [#](REAL) or f is_decreasing_on [#](REAL)) implies
rng f is open;

Back to top