Copyright (c) 1991 Association of Mizar Users
environ vocabulary SEQ_1, PARTFUN1, SUBSET_1, PRE_TOPC, RELAT_1, SEQ_2, ORDINAL2, BOOLE, LIMFUNC1, FUNCT_1, SEQM_3, PROB_1, ARYTM, RCOMP_1, ARYTM_1, ABSVALUE, ARYTM_3, FCONT_1, RFUNCT_2, SQUARE_1; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, SEQ_1, RELSET_1, SEQ_2, SEQM_3, ABSVALUE, PARTFUN1, SQUARE_1, PARTFUN2, RCOMP_1, RFUNCT_2, FCONT_1, LIMFUNC1; constructors REAL_1, NAT_1, SEQ_2, SEQM_3, ABSVALUE, PROB_1, PARTFUN1, PARTFUN2, RCOMP_1, RFUNCT_2, FCONT_1, LIMFUNC1, MEMBERED, XBOOLE_0; clusters RELSET_1, PARTFUN2, RFUNCT_2, XREAL_0, SEQ_1, ARYTM_3, MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; definitions TARSKI, RCOMP_1, XBOOLE_0; theorems AXIOMS, REAL_1, FUNCT_1, NAT_1, SEQ_1, SEQ_2, SEQM_3, SEQ_4, ABSVALUE, SQUARE_1, PARTFUN1, PROB_1, PARTFUN2, RCOMP_1, RFUNCT_2, FCONT_1, SUBSET_1, REAL_2, LIMFUNC1, FCONT_2, TARSKI, FUNCT_2, RELAT_1, XREAL_0, XBOOLE_0, XBOOLE_1, XCMPLX_1; schemes SEQ_1, RCOMP_1; begin reserve x,X for set; reserve x0,r,r1,r2,g,g1,g2,p,s for Real; reserve n,m for Nat; reserve a,b,d for Real_Sequence; reserve f for PartFunc of REAL,REAL; theorem Th1: [#] REAL is closed proof let a such that rng a c= [#] REAL & a is convergent; lim a in REAL; hence thesis by SUBSET_1:def 4; end; theorem {} REAL is open proof ({} REAL)` = [#] REAL by SUBSET_1:22; hence thesis by Th1,RCOMP_1:def 5; end; theorem Th3: {} REAL is closed proof let a; assume rng a c= {} REAL & a is convergent; then rng a = {} by XBOOLE_1:3; then dom a = {} by RELAT_1:65; hence thesis by FUNCT_2:def 1; end; theorem Th4: [#] REAL is open proof ([#] REAL)` = {} REAL by SUBSET_1:21; hence thesis by Th3,RCOMP_1:def 5; end; theorem Th5: right_closed_halfline(r) is closed proof let a such that A1: rng a c= right_closed_halfline(r) & a is convergent; deffunc F(Nat) = r; consider b such that A2: for n holds b.n = F(n) from ExRealSeq; now let n; b.n = r & b.(n+1) = r by A2; hence b.n = b.(n+1); end; then A3: b is constant by SEQM_3:16; then A4: b is convergent by SEQ_4:39; A5: lim b = b.0 by A3,SEQ_4:41 .= r by A2; now let n; a.n in rng a by RFUNCT_2:10; then a.n in right_closed_halfline(r) by A1; then a.n in {g: r <= g} by LIMFUNC1:def 2; then ex r1 st a.n = r1 & r <= r1; hence b.n <= a.n by A2; end; then r <= lim a by A1,A4,A5,SEQ_2:32; then (lim a) in {g1: r <= g1}; hence thesis by LIMFUNC1:def 2; end; theorem Th6: left_closed_halfline(r) is closed proof let a such that A1: rng a c= left_closed_halfline(r) & a is convergent; deffunc F(Nat) = r; consider b such that A2: for n holds b.n = F(n) from ExRealSeq; now let n; b.n = r & b.(n+1) = r by A2; hence b.n = b.(n+1); end; then A3: b is constant by SEQM_3:16; then A4: b is convergent by SEQ_4:39; A5: lim b = b.0 by A3,SEQ_4:41 .= r by A2; now let n; a.n in rng a by RFUNCT_2:10; then a.n in left_closed_halfline(r) by A1; then a.n in {g: g <= r} by LIMFUNC1:def 1; then ex r1 st a.n = r1 & r1 <= r; hence a.n <= b.n by A2; end; then lim a <= r by A1,A4,A5,SEQ_2:32; then (lim a) in {g1: g1 <= r}; hence thesis by LIMFUNC1:def 1; end; theorem Th7: right_open_halfline(r) is open proof A1: (right_open_halfline(r))` = REAL \ right_open_halfline(r) by SUBSET_1:def 5 .= left_closed_halfline(r) by LIMFUNC1:24; left_closed_halfline(r) is closed by Th6; hence thesis by A1,RCOMP_1:def 5; end; theorem Th8: left_open_halfline(r) is open proof A1: (left_open_halfline(r))` = REAL \ left_open_halfline(r) by SUBSET_1:def 5 .= right_closed_halfline(r) by LIMFUNC1:24; right_closed_halfline(r) is closed by Th5; hence thesis by A1,RCOMP_1:def 5; end; definition let r; cluster right_open_halfline(r) -> open; coherence by Th7; cluster halfline(r) -> open; coherence by Th8; end; definition let p,g be real number; cluster ].p,g.[ -> open; coherence by RCOMP_1:25; end; theorem Th9: 0 < r & g in ].x0 - r,x0 + r.[ iff ex r1 st g = x0 + r1 & abs(r1) < r proof thus 0 < r & g in ].x0 - r,x0 + r.[ implies ex r1 st g = x0 + r1 & abs(r1) < r proof assume 0 < r & g in ].x0 - r,x0 + r.[; then g in {g1: x0 - r < g1 & g1 < x0 + r} by RCOMP_1:def 2; then A1: ex g1 st g1 = g & x0 - r < g1 & g1 < x0 + r; take r1 = g - x0; thus x0 + r1 = g by XCMPLX_1:27; now per cases; suppose x0 <= g; then 0 <= g - x0 by SQUARE_1:12; then A2: abs(g - x0) = g - x0 by ABSVALUE:def 1; g - x0 < x0 + r - x0 by A1,REAL_1:92; hence thesis by A2,XCMPLX_1:26; suppose g <= x0; then 0 <= x0 - g by SQUARE_1:12; then A3: x0 - g = abs(x0 - g) by ABSVALUE:def 1 .= abs(- (g - x0)) by XCMPLX_1:143 .= abs(g - x0) by ABSVALUE:17; x0 - g < x0 - (x0 - r) by A1,REAL_1:92; hence thesis by A3,XCMPLX_1:18; end; hence thesis; end; given r1 such that A4: g = x0 + r1 & abs(r1) < r; thus 0 < r by A4,ABSVALUE:5; abs(g - x0) < r by A4,XCMPLX_1:26; hence thesis by RCOMP_1:8; end; theorem 0 < r & g in ].x0 - r,x0 + r.[ iff g - x0 in ].-r,r.[ proof thus 0 < r & g in ].x0 - r,x0 + r.[ implies g - x0 in ].-r,r.[ proof assume 0 < r & g in ].x0 - r,x0 + r.[; then consider r1 such that A1: g = x0 + r1 & abs(r1) < r by Th9; A2: g - x0 = r1 by A1,XCMPLX_1:26; abs(r1 - 0) < r by A1; then r1 in ].0 - r, 0 + r.[ by RCOMP_1:8; hence g - x0 in ].-r, r.[ by A2,XCMPLX_1:150; end; set r1 = g - x0; assume r1 in ].-r,r.[; then r1 in {g1: -r < g1 & g1 < r} by RCOMP_1:def 2; then ex g1 st g1 = r1 & -r < g1 & g1 < r; then A3: abs(r1) < r by SEQ_2:9; x0 + r1 = g by XCMPLX_1:27; hence thesis by A3,Th9; end; theorem Th11: left_closed_halfline(p) = {p} \/ left_open_halfline(p) proof thus left_closed_halfline(p) c= {p} \/ left_open_halfline(p) proof let x; assume x in left_closed_halfline(p); then x in {g1: g1 <= p} by LIMFUNC1:def 1; then consider g1 such that A1: g1 = x & g1 <= p; now per cases by A1,AXIOMS:21; suppose g1 < p; then x in {g2: g2 < p} by A1; then x in left_open_halfline(p) by PROB_1:def 15; hence thesis by XBOOLE_0:def 2; suppose g1 = p; then x in {p} by A1,TARSKI:def 1; hence thesis by XBOOLE_0:def 2; end; hence thesis; end; let x such that A2: x in {p} \/ left_open_halfline(p); now per cases by A2,XBOOLE_0:def 2; suppose x in {p}; then x = p by TARSKI:def 1; then x in {g: g <= p}; hence thesis by LIMFUNC1:def 1; suppose x in left_open_halfline(p); then x in {g: g < p} by PROB_1:def 15; then consider g1 such that A3: g1 = x & g1 < p; x in {g2: g2 <= p} by A3; hence thesis by LIMFUNC1:def 1; end; hence thesis; end; theorem Th12: right_closed_halfline(p) = {p} \/ right_open_halfline(p) proof thus right_closed_halfline(p) c= {p} \/ right_open_halfline(p) proof let x; assume x in right_closed_halfline(p); then x in {g1: p <= g1} by LIMFUNC1:def 2; then consider g1 such that A1: g1 = x & p <= g1; now per cases by A1,AXIOMS:21; suppose p < g1; then x in {g2: p < g2} by A1; then x in right_open_halfline(p) by LIMFUNC1:def 3; hence thesis by XBOOLE_0:def 2; suppose g1 = p; then x in {p} by A1,TARSKI:def 1; hence thesis by XBOOLE_0:def 2; end; hence thesis; end; let x such that A2: x in {p} \/ right_open_halfline(p); now per cases by A2,XBOOLE_0:def 2; suppose x in {p}; then x = p by TARSKI:def 1; then x in {g: p <= g}; hence thesis by LIMFUNC1:def 2; suppose x in right_open_halfline(p); then x in {g: p < g} by LIMFUNC1:def 3; then consider g1 such that A3: g1 = x & p < g1; x in {g2: p <= g2} by A3; hence thesis by LIMFUNC1:def 2; end; hence thesis; end; theorem Th13: for x0 be real number holds (for n holds a.n = x0 - p/(n+1)) implies a is convergent & lim a = x0 proof let x0 be real number; assume A1: for n holds a.n = x0 - p/(n+1); deffunc F(Nat) = x0; consider b such that A2: for n holds b.n = F(n) from ExRealSeq; deffunc F(Nat) = p/($1+1); consider d such that A3: for n holds d.n = F(n) from ExRealSeq; A4: d is convergent & lim d = 0 by A3,SEQ_4:46; now let n; b.n = x0 & b.(n+1) = x0 by A2; hence b.n = b.(n+1); end; then A5: b is constant by SEQM_3:16; then A6: b is convergent by SEQ_4:39; A7: lim b = b.0 by A5,SEQ_4:41 .= x0 by A2; now let n; thus (b - d).n = b.n - d.n by RFUNCT_2:6 .= x0 - d.n by A2 .= x0 - p/(n+1) by A3 .=a.n by A1; end; then A8: a = b - d by FUNCT_2:113; hence a is convergent by A4,A6,SEQ_2:25; thus lim a = x0 - 0 by A4,A6,A7,A8,SEQ_2:26 .= x0; end; theorem Th14: for x0 be real number holds (for n holds a.n = x0 + p/(n+1)) implies a is convergent & lim a = x0 proof let x0 be real number; assume A1: for n holds a.n = x0 + p/(n+1); deffunc F(Nat) = x0; consider b such that A2: for n holds b.n = F(n) from ExRealSeq; deffunc F(Nat) = p/($1+1); consider d such that A3: for n holds d.n = F(n) from ExRealSeq; A4: d is convergent & lim d = 0 by A3,SEQ_4:46; now let n; b.n = x0 & b.(n+1) = x0 by A2; hence b.n = b.(n+1); end; then A5: b is constant by SEQM_3:16; then A6: b is convergent by SEQ_4:39; A7: lim b = b.0 by A5,SEQ_4:41 .= x0 by A2; now let n; thus (b + d).n = b.n + d.n by SEQ_1:11 .= x0 + d.n by A2 .= x0 + p/(n+1) by A3 .=a.n by A1; end; then A8: a = b + d by FUNCT_2:113; hence a is convergent by A4,A6,SEQ_2:19; thus lim a = x0 + 0 by A4,A6,A7,A8,SEQ_2:20 .= x0; end; theorem f is_continuous_in x0 & f.x0 <> r & (ex N be Neighbourhood of x0 st N c= dom f) implies ex N be Neighbourhood of x0 st N c= dom f & for g st g in N holds f.g <> r proof assume A1: f is_continuous_in x0 & f.x0 <> r; given N be Neighbourhood of x0 such that A2: N c= dom f; assume A3: for N be Neighbourhood of x0 holds not N c= dom f or ex g st g in N & f.g = r; consider p be real number such that A4: 0 < p & N = ].x0 - p,x0 + p.[ by RCOMP_1:def 7; A5: p is Real by XREAL_0:def 1; deffunc F(Nat) = x0 - p/($1+1); consider a such that A6: for n holds a.n = F(n) from ExRealSeq; deffunc F(Nat) = x0 + p/($1+1); consider b such that A7: for n holds b.n = F(n) from ExRealSeq; defpred P[Nat,real number] means x0 - p/($1+1) < $2 & $2 < x0 + p/($1+1) & f.$2 = r & $2 in dom f; A8: for n ex g be real number st P[n,g] proof let n; A9: 0 <= n by NAT_1:18; then 0 < n + 1 by NAT_1:38; then 0 < p/(n+1) by A4,SEQ_2:6; then reconsider Nn = ].x0 - p/(n+1),x0 + p/(n+1).[ as Neighbourhood of x0 by RCOMP_1:def 7; A10: Nn c= dom f proof let x; assume x in Nn; then x in {g2: x0 - p/(n+1) < g2 & g2 < x0 + p/(n+1)} by RCOMP_1:def 2; then consider g2 such that A11: g2 = x & x0 - p/(n+1) < g2 & g2 < x0 + p/(n+1); 0 + 1 <= n + 1 by A9,REAL_1:55; then A12: p/(n+1) <= p/1 by A4,REAL_2:201; then x0 - p <= x0 - p/(n+1) by REAL_1:92; then A13: x0 - p < g2 by A11,AXIOMS:22; x0 + p/(n+1) <= x0 + p by A12,REAL_1:55; then g2 < x0 + p by A11,AXIOMS:22; then x in {r1: x0 - p < r1 & r1 < x0 + p} by A11,A13; then x in N by A4,RCOMP_1:def 2; hence thesis by A2; end; then consider g such that A14: g in Nn & f.g = r by A3; take g; g in {g1: x0 - p/(n+1) < g1 & g1 <x0 + p/(n+1)} by A14,RCOMP_1:def 2; then ex g1 st g1 = g & x0 - p/(n+1) < g1 & g1 <x0 + p/(n+1); hence x0 - p/(n+1) < g & g <x0 + p/(n+1); thus f.g = r by A14; thus thesis by A10,A14; end; consider d such that A15: for n holds P[n,d.n] from RealSeqChoice(A8); A16: a is convergent & lim a = x0 by A5,A6,Th13; A17: b is convergent & lim b = x0 by A5,A7,Th14; A18: now let n; x0 - p/(n+1) < d.n & d.n < x0 + p/(n+1) by A15; hence a.n <= d.n & d.n <= b.n by A6,A7; end; then A19: d is convergent by A16,A17,SEQ_2:33; A20: lim d = x0 by A16,A17,A18,SEQ_2:34; A21: rng d c= dom f proof let x; assume x in rng d; then ex n st x = d.n by RFUNCT_2:9; hence thesis by A15; end; then A22: f*d is convergent & f.x0 = lim (f*d) by A1,A19,A20,FCONT_1:def 1; now let r2 be real number such that A23: 0 < r2; take n = 0; let m such that n <= m; abs((f*d).m - r) = abs(f.(d.m) - r) by A21,RFUNCT_2:21 .= abs(r - r) by A15 .= abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:7; hence abs((f*d).m - r) < r2 by A23; end; hence contradiction by A1,A22,SEQ_2:def 7; end; theorem f is_increasing_on X or f is_decreasing_on X implies f|X is one-to-one proof assume A1: f is_increasing_on X or f is_decreasing_on X; now per cases by A1; suppose A2: f is_increasing_on X; now given r1,r2 such that A3: r1 in dom (f|X) & r2 in dom (f|X) & (f|X).r1 = (f|X).r2 and A4: r1 <> r2; A5: r1 in X /\ dom f & r2 in X /\ dom f by A3,FUNCT_1:68; now per cases by A4,REAL_1:def 5; suppose r1 < r2; then f.r1 < f.r2 by A2,A5,RFUNCT_2:def 2; then (f|X).r1 < f.r2 by A3,FUNCT_1:68; hence contradiction by A3,FUNCT_1:68; suppose r2 < r1; then f.r2 < f.r1 by A2,A5,RFUNCT_2:def 2; then (f|X).r2 < f.r1 by A3,FUNCT_1:68; hence contradiction by A3,FUNCT_1:68; end; hence contradiction; end; hence thesis by PARTFUN1:38; suppose A6: f is_decreasing_on X; now given r1,r2 such that A7: r1 in dom (f|X) & r2 in dom (f|X) & (f|X).r1 = (f|X).r2 and A8: r1 <> r2; A9: r1 in X /\ dom f & r2 in X /\ dom f by A7,FUNCT_1:68; now per cases by A8,REAL_1:def 5; suppose r1 < r2; then f.r2 < f.r1 by A6,A9,RFUNCT_2:def 3; then (f|X).r2 < f.r1 by A7,FUNCT_1:68; hence contradiction by A7,FUNCT_1:68; suppose r2 < r1; then f.r1 < f.r2 by A6,A9,RFUNCT_2:def 3; then (f|X).r1 < f.r2 by A7,FUNCT_1:68; hence contradiction by A7,FUNCT_1:68; end; hence contradiction; end; hence thesis by PARTFUN1:38; end; hence thesis; end; theorem Th17: for f be one-to-one PartFunc of REAL,REAL st f is_increasing_on X holds (f|X)" is_increasing_on f.:X proof let f be one-to-one PartFunc of REAL,REAL; assume that A1: f is_increasing_on X and A2: not (f|X)" is_increasing_on f.:X; consider r1,r2 such that A3: r1 in f.:X /\ dom ((f|X)") & r2 in f.:X /\ dom((f|X)") & r1 < r2 & ((f|X)").r1 >= ((f|X)").r2 by A2,RFUNCT_2:def 2; f.:X = rng (f|X) by RELAT_1:148; then A4: r1 in rng (f|X) & r2 in rng (f|X) by A3,XBOOLE_0:def 3; A5: f|X is_increasing_on X by A1,RFUNCT_2:50; now per cases; suppose ((f|X)").r1 = ((f|X)").r2; then r1 = (f|X).(((f|X)").r2) by A4,FUNCT_1:57 .= r2 by A4,FUNCT_1:57; hence contradiction by A3; suppose ((f|X)").r1 <> ((f|X)").r2; then A6: ((f|X)").r2 < ((f|X)").r1 by A3,REAL_1:def 5; A7: ((f|X)").r2 in dom (f|X) & ((f|X)").r1 in dom (f|X) by A4,PARTFUN2:79; dom (f|X) = dom ((f|X)|X) by RELAT_1:101 .= X /\ dom (f|X) by RELAT_1:90; then (f|X).(((f|X)").r2) < (f|X).(((f|X)").r1) by A5,A6,A7,RFUNCT_2:def 2; then r2 < (f|X).(((f|X)").r1) by A4,FUNCT_1:57; hence contradiction by A3,A4,FUNCT_1:57; end; hence contradiction; end; theorem Th18: for f be one-to-one PartFunc of REAL,REAL st f is_decreasing_on X holds (f|X)" is_decreasing_on f.:X proof let f be one-to-one PartFunc of REAL,REAL; assume that A1: f is_decreasing_on X and A2: not (f|X)" is_decreasing_on f.:X; consider r1,r2 such that A3: r1 in f.:X /\ dom ((f|X)") & r2 in f.:X /\ dom((f|X)") & r1 < r2 & ((f|X)").r1 <= ((f|X)").r2 by A2,RFUNCT_2:def 3; f.:X = rng (f|X) by RELAT_1:148; then A4: r1 in rng (f|X) & r2 in rng (f|X) by A3,XBOOLE_0:def 3; A5: f|X is_decreasing_on X by A1,RFUNCT_2:51; now per cases; suppose ((f|X)").r1 = ((f|X)").r2; then r1 = (f|X).(((f|X)").r2) by A4,FUNCT_1:57 .= r2 by A4,FUNCT_1:57; hence contradiction by A3; suppose ((f|X)").r1 <> ((f|X)").r2; then A6: ((f|X)").r2 > ((f|X)").r1 by A3,REAL_1:def 5; A7: ((f|X)").r2 in dom (f|X) & ((f|X)").r1 in dom (f|X) by A4,PARTFUN2:79; dom (f|X) = dom ((f|X)|X) by RELAT_1:101 .= X /\ dom (f|X) by RELAT_1:90; then (f|X).(((f|X)").r2) < (f|X).(((f|X)").r1) by A5,A6,A7,RFUNCT_2:def 3; then r2 < (f|X).(((f|X)").r1) by A4,FUNCT_1:57; hence contradiction by A3,A4,FUNCT_1:57; end; hence contradiction; end; theorem Th19: X c= dom f & f is_monotone_on X & (ex p st f.: X = left_open_halfline(p)) implies f is_continuous_on X proof assume A1: X c= dom f & f is_monotone_on X; given p such that A2: f.:X = left_open_halfline(p); set L = left_open_halfline(p); now per cases by A1,RFUNCT_2:def 6; suppose f is_non_decreasing_on X; then A3: f|X is_non_decreasing_on X by RFUNCT_2:52; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A4: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A5: x0 in dom (f|X) by RELAT_1:90; then A6: (f|X).x0 in (f|X).:X by A4,FUNCT_1:def 12; A7: x0 is Real by XREAL_0:def 1; A8: (f|X).:X = f.:X by RFUNCT_2:5; A9: (f|X).x0 in L by A2,A6,RFUNCT_2:5; now let N1 be Neighbourhood of (f|X).x0; consider N2 being Neighbourhood of (f|X).x0 such that A10: N2 c= L by A9,RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A11: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A12: r>0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A13: r/2 > 0 by A12,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A14: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A15: (f|X).x0 < (f|X).x0 + r/2 by A13,REAL_1:69; then A16: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A17: (f|X).x0 < (f|X).x0 + r by A12,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A16,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A14 ; then A18: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A13,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A19: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A17,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A15,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A19 ; then A20: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A21: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A18,RCOMP_1:17; M1 in N2 by A11,A12,A18; then consider r1 such that A22: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A8,A10,PARTFUN2:78; M2 in N2 by A11,A12,A20; then consider r2 such that A23: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A8,A10,PARTFUN2:78; set R = min(x0 - r1,r2 - x0); A24: (f|X).x0 < (f|X).x0 + r/2 by A13,REAL_1:69; then A25: M1 < (f|X).x0 by REAL_1:84; A26: r1 <> x0 by A22,A24,REAL_1:84; now assume A27: x0 < r1; A28: x0 in X /\ dom( f|X) by A4,A5,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A22,XBOOLE_0:def 3; hence contradiction by A3,A7,A22,A25,A27,A28,RFUNCT_2:def 4; end; then r1 < x0 by A26,REAL_1:def 5; then A29: x0 - r1 > 0 by SQUARE_1:11; A30: M2 > (f|X).x0 by A13,REAL_1:69; A31: x0 <> r2 by A13,A23,REAL_1:69; now assume A32: r2 < x0; A33: x0 in X /\ dom(f|X) by A4,A5,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; hence contradiction by A3,A7,A23,A30,A32,A33,RFUNCT_2:def 4; end; then x0 < r2 by A31,REAL_1:def 5; then r2 - x0 > 0 by SQUARE_1:11; then R > 0 by A29,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A34: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A35: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54 ; then A36: x0 - x < R by XCMPLX_1:26; R <= x0 - r1 by SQUARE_1:35; then x0 - x < x0 - r1 by A36,AXIOMS:22; then -(x0 - x) > -(x0 - r1) by REAL_1:50; then x - x0 > -(x0 - r1) by XCMPLX_1:143; then x - x0 > r1 - x0 by XCMPLX_1:143; then x - x0 + x0 > r1 - x0 + x0 by REAL_1:53; then x > r1 - x0 + x0 by XCMPLX_1:27; then A37: x > r1 by XCMPLX_1:27; A38: x is Real by XREAL_0:def 1; A39: x - x0 < R by A35,REAL_1:84; R <= r2 - x0 by SQUARE_1:35; then x - x0 < r2 - x0 by A39,AXIOMS:22; then x - x0 + x0 < r2 - x0 + x0 by REAL_1:53; then x < r2 - x0 + x0 by XCMPLX_1:27; then A40: x < r2 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A41: x in X /\ dom (f|X) by A34,XBOOLE_1:28; r2 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; then A42: (f|X).x <= (f|X).r2 by A3,A38,A40,A41,RFUNCT_2:def 4; r1 in X /\ dom (f|X) by A22,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A3,A37,A38,A41,RFUNCT_2:def 4; then (f|X).x in {s: M1<=s & s<=M2} by A22,A23,A42; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A12,A21; hence (f|X).x in N1 by A11; end; hence thesis by A5,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; suppose f is_non_increasing_on X; then A43: f|X is_non_increasing_on X by RFUNCT_2:53; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A44: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A45: x0 in dom(f|X) by RELAT_1:90; then A46: (f|X).x0 in (f|X).:X by A44,FUNCT_1:def 12; A47: x0 is Real by XREAL_0:def 1; A48: (f|X).:X = f.:X by RFUNCT_2:5; A49: (f|X).x0 in L by A2,A46,RFUNCT_2:5; now let N1 be Neighbourhood of (f|X).x0; consider N2 being Neighbourhood of (f|X).x0 such that A50: N2 c= L by A49,RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A51: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A52: r > 0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A53: r/2 > 0 by A52,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A54: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A55: (f|X).x0 < (f|X).x0 + r/2 by A53,REAL_1:69; then A56: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A57: (f|X).x0 < (f|X).x0 + r by A52,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A56,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A54 ; then A58: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A53,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A59: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A57,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A55,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A59 ; then A60: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A61: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A58,RCOMP_1:17; M1 in N2 by A51,A52,A58; then consider r1 such that A62: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A48,A50,PARTFUN2:78; M2 in N2 by A51,A52,A60; then consider r2 such that A63: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A48,A50,PARTFUN2:78; set R = min(r1 - x0,x0 - r2); A64: (f|X).x0 < (f|X).x0 + r/2 by A53,REAL_1:69; then A65: M1 < (f|X).x0 by REAL_1:84; A66: r1 <> x0 by A62,A64,REAL_1:84; now assume A67: x0 > r1; A68: x0 in X /\ dom (f|X) by A44,A45,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A62,XBOOLE_0:def 3; hence contradiction by A43,A47,A62,A65,A67,A68,RFUNCT_2:def 5; end; then r1 > x0 by A66,REAL_1:def 5; then A69: r1 - x0 > 0 by SQUARE_1:11; A70: M2 > (f|X).x0 by A53,REAL_1:69; A71: x0 <> r2 by A53,A63,REAL_1:69; now assume A72: r2 > x0; A73: x0 in X /\ dom (f|X) by A44,A45,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A63,XBOOLE_0:def 3; hence contradiction by A43,A47,A63,A70,A72,A73,RFUNCT_2:def 5; end; then x0 > r2 by A71,REAL_1:def 5; then x0 - r2 > 0 by SQUARE_1:11; then R > 0 by A69,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A74: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A75: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54 ; then A76: x0 - x < R by XCMPLX_1:26; R <= x0 - r2 by SQUARE_1:35; then x0 - x < x0 - r2 by A76,AXIOMS:22; then -(x0 - x) > -(x0 - r2) by REAL_1:50; then x - x0 > - (x0 - r2) by XCMPLX_1:143; then x - x0 > r2 - x0 by XCMPLX_1:143; then x - x0 + x0 > r2 - x0 + x0 by REAL_1:53; then x > r2 - x0 + x0 by XCMPLX_1:27; then A77: x > r2 by XCMPLX_1:27; A78: x is Real by XREAL_0:def 1; A79: x - x0 < R by A75,REAL_1:84; R <= r1 - x0 by SQUARE_1:35; then x - x0 < r1-x0 by A79,AXIOMS:22; then x - x0 + x0 < r1 - x0 + x0 by REAL_1:53; then x < r1 - x0 + x0 by XCMPLX_1:27; then A80: x < r1 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A81: x in X /\ dom(f|X) by A74,XBOOLE_1:28; r2 in X /\ dom(f|X) by A63,XBOOLE_0:def 3; then A82: (f|X).x <= (f|X).r2 by A43,A77,A78,A81,RFUNCT_2:def 5; r1 in X /\ dom(f|X) by A62,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A43,A78,A80,A81,RFUNCT_2:def 5; then (f|X).x in {s: M1 <= s & s <= M2} by A62,A63,A82; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A52,A61; hence (f|X).x in N1 by A51; end; hence thesis by A45,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; end; hence thesis; end; theorem Th20: X c= dom f & f is_monotone_on X & (ex p st f.:X = right_open_halfline(p)) implies f is_continuous_on X proof assume A1: X c= dom f & f is_monotone_on X; given p such that A2: f.:X = right_open_halfline(p); set L = right_open_halfline(p); now per cases by A1,RFUNCT_2:def 6; suppose f is_non_decreasing_on X; then A3: f|X is_non_decreasing_on X by RFUNCT_2:52; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A4: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A5: x0 in dom (f|X) by RELAT_1:90; then A6: (f|X).x0 in (f|X).:X by A4,FUNCT_1:def 12; A7: x0 is Real by XREAL_0:def 1; A8: (f|X).:X = f.:X by RFUNCT_2:5; A9: (f|X).x0 in L by A2,A6,RFUNCT_2:5; now let N1 be Neighbourhood of (f|X).x0; consider N2 being Neighbourhood of (f|X).x0 such that A10: N2 c= L by A9,RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A11: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A12: r>0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A13: r/2 > 0 by A12,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A14: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A15: (f|X).x0 < (f|X).x0 + r/2 by A13,REAL_1:69; then A16: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A17: (f|X).x0 < (f|X).x0 + r by A12,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A16,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A14 ; then A18: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A13,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A19: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A17,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A15,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A19 ; then A20: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A21: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A18,RCOMP_1:17; M1 in N2 by A11,A12,A18; then consider r1 such that A22: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A8,A10,PARTFUN2:78; M2 in N2 by A11,A12,A20; then consider r2 such that A23: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A8,A10,PARTFUN2:78; set R = min(x0 - r1,r2 - x0); A24: (f|X).x0 < (f|X).x0 + r/2 by A13,REAL_1:69; then A25: M1 < (f|X).x0 by REAL_1:84; A26: r1 <> x0 by A22,A24,REAL_1:84; now assume A27: x0 < r1; A28: x0 in X /\ dom( f|X) by A4,A5,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A22,XBOOLE_0:def 3; hence contradiction by A3,A7,A22,A25,A27,A28,RFUNCT_2:def 4; end; then r1 < x0 by A26,REAL_1:def 5; then A29: x0 - r1 > 0 by SQUARE_1:11; A30: M2 > (f|X).x0 by A13,REAL_1:69; A31: x0 <> r2 by A13,A23,REAL_1:69; now assume A32: r2 < x0; A33: x0 in X /\ dom(f|X) by A4,A5,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; hence contradiction by A3,A7,A23,A30,A32,A33,RFUNCT_2:def 4; end; then x0 < r2 by A31,REAL_1:def 5; then r2 - x0 > 0 by SQUARE_1:11; then R > 0 by A29,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A34: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A35: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54 ; then A36: x0 - x < R by XCMPLX_1:26; R <= x0 - r1 by SQUARE_1:35; then x0 - x < x0 - r1 by A36,AXIOMS:22; then -(x0 - x) > -(x0 - r1) by REAL_1:50; then x - x0 > -(x0 - r1) by XCMPLX_1:143; then x - x0 > r1 - x0 by XCMPLX_1:143; then x - x0 + x0 > r1 - x0 + x0 by REAL_1:53; then x > r1 - x0 + x0 by XCMPLX_1:27; then A37: x > r1 by XCMPLX_1:27; A38: x is Real by XREAL_0:def 1; A39: x - x0 < R by A35,REAL_1:84; R <= r2 - x0 by SQUARE_1:35; then x - x0 < r2 - x0 by A39,AXIOMS:22; then x - x0 + x0 < r2 - x0 + x0 by REAL_1:53; then x < r2 - x0 + x0 by XCMPLX_1:27; then A40: x < r2 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A41: x in X /\ dom (f|X) by A34,XBOOLE_1:28; r2 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; then A42: (f|X).x <= (f|X).r2 by A3,A38,A40,A41,RFUNCT_2:def 4; r1 in X /\ dom (f|X) by A22,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A3,A37,A38,A41,RFUNCT_2:def 4; then (f|X).x in {s: M1<=s & s<=M2} by A22,A23,A42; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A12,A21; hence (f|X).x in N1 by A11; end; hence thesis by A5,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; suppose f is_non_increasing_on X; then A43: f|X is_non_increasing_on X by RFUNCT_2:53; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A44: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A45: x0 in dom(f|X) by RELAT_1:90; then A46: (f|X).x0 in (f|X).:X by A44,FUNCT_1:def 12; A47: (f|X).:X = f.:X by RFUNCT_2:5; A48: x0 is Real by XREAL_0:def 1; A49: (f|X).x0 in L by A2,A46,RFUNCT_2:5; now let N1 be Neighbourhood of (f|X).x0; consider N2 being Neighbourhood of (f|X).x0 such that A50: N2 c= L by A49,RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A51: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A52: r > 0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A53: r/2 > 0 by A52,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A54: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A55: (f|X).x0 < (f|X).x0 + r/2 by A53,REAL_1:69; then A56: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A57: (f|X).x0 < (f|X).x0 + r by A52,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A56,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A54 ; then A58: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A53,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A59: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A57,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A55,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A59 ; then A60: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A61: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A58,RCOMP_1:17; M1 in N2 by A51,A52,A58; then consider r1 such that A62: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A47,A50,PARTFUN2:78; M2 in N2 by A51,A52,A60; then consider r2 such that A63: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A47,A50,PARTFUN2:78; set R = min(r1 - x0,x0 - r2); A64: (f|X).x0 < (f|X).x0 + r/2 by A53,REAL_1:69; then A65: M1 < (f|X).x0 by REAL_1:84; A66: r1 <> x0 by A62,A64,REAL_1:84; now assume A67: x0 > r1; A68: x0 in X /\ dom (f|X) by A44,A45,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A62,XBOOLE_0:def 3; hence contradiction by A43,A48,A62,A65,A67,A68,RFUNCT_2:def 5; end; then r1 > x0 by A66,REAL_1:def 5; then A69: r1 - x0 > 0 by SQUARE_1:11; A70: M2 > (f|X).x0 by A53,REAL_1:69; A71: x0 <> r2 by A53,A63,REAL_1:69; now assume A72: r2 > x0; A73: x0 in X /\ dom (f|X) by A44,A45,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A63,XBOOLE_0:def 3; hence contradiction by A43,A48,A63,A70,A72,A73,RFUNCT_2:def 5; end; then x0 > r2 by A71,REAL_1:def 5; then x0 - r2 > 0 by SQUARE_1:11; then R > 0 by A69,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A74: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A75: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54 ; then A76: x0 - x < R by XCMPLX_1:26; R <= x0 - r2 by SQUARE_1:35; then x0 - x < x0 - r2 by A76,AXIOMS:22; then -(x0 - x) > -(x0 - r2) by REAL_1:50; then x - x0 > - (x0 - r2) by XCMPLX_1:143; then x - x0 > r2 - x0 by XCMPLX_1:143; then x - x0 + x0 > r2 - x0 + x0 by REAL_1:53; then x > r2 - x0 + x0 by XCMPLX_1:27; then A77: x > r2 by XCMPLX_1:27; A78: x is Real by XREAL_0:def 1; A79: x - x0 < R by A75,REAL_1:84; R <= r1 - x0 by SQUARE_1:35; then x - x0 < r1-x0 by A79,AXIOMS:22; then x - x0 + x0 < r1 - x0 + x0 by REAL_1:53; then x < r1 - x0 + x0 by XCMPLX_1:27; then A80: x < r1 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A81: x in X /\ dom(f|X) by A74,XBOOLE_1:28; r2 in X /\ dom(f|X) by A63,XBOOLE_0:def 3; then A82: (f|X).x <= (f|X).r2 by A43,A77,A78,A81,RFUNCT_2:def 5; r1 in X /\ dom(f|X) by A62,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A43,A78,A80,A81,RFUNCT_2:def 5; then (f|X).x in {s: M1 <= s & s <= M2} by A62,A63,A82; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A52,A61; hence (f|X).x in N1 by A51; end; hence thesis by A45,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; end; hence thesis; end; theorem Th21: X c= dom f & f is_monotone_on X & (ex p st f.: X=left_closed_halfline(p)) implies f is_continuous_on X proof assume A1: X c= dom f & f is_monotone_on X; given p such that A2: f.:X = left_closed_halfline(p); set l = left_closed_halfline(p); set L = left_open_halfline(p); for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A3: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A4: x0 in dom (f|X) by RELAT_1:90; then A5: (f|X).x0 in (f|X).:X by A3,FUNCT_1:def 12; A6: (f|X).:X = f.:X by RFUNCT_2:5; then (f|X).x0 in {p} \/ L by A2,A5,Th11; then A7: (f|X).x0 in {p} or (f|X).x0 in L by XBOOLE_0:def 2; A8: L c= l by LIMFUNC1:15; A9: x0 is Real by XREAL_0:def 1; now let N1 be Neighbourhood of (f|X).x0; now per cases by A1,RFUNCT_2:def 6; suppose f is_non_decreasing_on X; then A10: f|X is_non_decreasing_on X by RFUNCT_2:52; now per cases by A7,TARSKI:def 1; suppose (f|X).x0 in L; then consider N2 being Neighbourhood of (f|X).x0 such that A11: N2 c= L by RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A12: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A13: r>0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A14: r/2 > 0 by A13,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A15: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A16: (f|X).x0 < (f|X).x0 + r/2 by A14,REAL_1:69; then A17: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A18: (f|X).x0 < (f|X).x0 + r by A13,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A17,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A15; then A19: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A14,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A20: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A18,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A16,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A20; then A21: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A22: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A19,RCOMP_1: 17; M1 in N2 by A12,A13,A19; then M1 in L by A11; then consider r1 such that A23: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A6,A8,PARTFUN2:78; M2 in N2 by A12,A13,A21; then M2 in L by A11; then consider r2 such that A24: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A6,A8,PARTFUN2:78; set R = min(x0 - r1,r2 - x0); A25: (f|X).x0 < (f|X).x0 + r/2 by A14,REAL_1:69; then A26: M1 < (f|X).x0 by REAL_1:84; A27: r1 <> x0 by A23,A25,REAL_1:84; now assume A28: x0 < r1; A29: x0 in X /\ dom( f|X) by A3,A4,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A23,XBOOLE_0:def 3; hence contradiction by A9,A10,A23,A26,A28,A29,RFUNCT_2:def 4; end; then r1 < x0 by A27,REAL_1:def 5; then A30: x0 - r1 > 0 by SQUARE_1:11; A31: M2 > (f|X).x0 by A14,REAL_1:69; A32: x0 <> r2 by A14,A24,REAL_1:69; now assume A33: r2 < x0; A34: x0 in X /\ dom(f|X) by A3,A4,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A24,XBOOLE_0:def 3; hence contradiction by A9,A10,A24,A31,A33,A34,RFUNCT_2:def 4; end; then x0 < r2 by A32,REAL_1:def 5; then r2 - x0 > 0 by SQUARE_1:11; then R > 0 by A30,SQUARE_1:38; then reconsider N = ].x0 - R,x0+ R.[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number; assume A35: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A36: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54; then A37: x0 - x < R by XCMPLX_1:26; R <= x0 - r1 by SQUARE_1:35; then x0 - x < x0 - r1 by A37,AXIOMS:22; then -(x0 - x) > -(x0 - r1) by REAL_1:50; then x - x0 > -(x0 - r1) by XCMPLX_1:143; then x - x0 > r1 - x0 by XCMPLX_1:143; then x - x0 + x0 > r1 - x0 + x0 by REAL_1:53; then x > r1 - x0 + x0 by XCMPLX_1:27; then A38: x > r1 by XCMPLX_1:27; A39: x is Real by XREAL_0:def 1; A40: x - x0 < R by A36,REAL_1:84; R <= r2 - x0 by SQUARE_1:35; then x - x0 < r2 - x0 by A40,AXIOMS:22; then x - x0 + x0 < r2 - x0 + x0 by REAL_1:53; then x < r2 - x0 + x0 by XCMPLX_1:27; then A41: x < r2 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A42: x in X /\ dom (f|X) by A35,XBOOLE_1:28; r2 in X /\ dom (f|X) by A24,XBOOLE_0:def 3; then A43: (f|X).x <= (f|X).r2 by A10,A39,A41,A42,RFUNCT_2:def 4; r1 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A10,A38,A39,A42,RFUNCT_2:def 4; then (f|X).x in {s: M1 <= s & s <= M2} by A23,A24,A43; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A13,A22; hence (f|X).x in N1 by A12; suppose A44: (f|X).x0 = p; then consider r be real number such that A45: r > 0 & N1 = ].p - r,p + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set R = r/2; A46: 0 < R by A45,SEQ_2:3; A47: R < r by A45,SEQ_2:4; then A48: p + R < p + r by REAL_1:53; A49: p - r < p by A45,SQUARE_1:29; A50: p < p + R by A46,REAL_1:69; then p - r < p + R by A49,AXIOMS:22 ; then p + R in {s: p - r < s & s < p + r} by A48; then A51: p + R in ].p - r, p + r.[ by RCOMP_1:def 2; A52: p - R < p by A46,SQUARE_1:29; p < p + r by A45,REAL_1:69; then A53: p - R < p + r by A52,AXIOMS:22; p - r < p - R by A47,REAL_1:92; then p - R in {s: p - r < s & s < p + r} by A53; then p - R in ].p - r, p + r.[ by RCOMP_1:def 2; then A54: [.p - R, p + R.] c= N1 by A45,A51,RCOMP_1:17; p - R in {s : s < p} by A52; then p - R in L by PROB_1:def 15; then consider r1 such that A55: r1 in dom (f|X) & r1 in X & p - R = (f|X).r1 by A2,A6,A8,PARTFUN2:78; A56: r1 <> x0 by A44,A46,A55,SQUARE_1:29; now assume A57: x0 < r1; A58: x0 in X /\ dom (f|X) by A3,A4,XBOOLE_0:def 3; r1 in X /\ dom (f|X) by A55,XBOOLE_0:def 3; hence contradiction by A9,A10,A44,A52,A55,A57,A58,RFUNCT_2:def 4; end; then r1 < x0 by A56,REAL_1:def 5; then x0 - r1 > 0 by SQUARE_1:11; then reconsider N = ].x0 - (x0 - r1),x0 + (x0 - r1).[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number such that A59: x in dom(f|X) & x in N; A60: x is Real by XREAL_0:def 1; A61: dom (f|X) c= X by RELAT_1:87; then (f|X).x in l by A2,A6,A59,FUNCT_1:def 12; then (f|X).x in {s: s <= p} by LIMFUNC1:def 1; then ex s st s = (f|X).x & s <= p; then A62: (f|X).x <= p + R by A50,AXIOMS:22; A63: x in X /\ dom (f|X) by A59,A61,XBOOLE_0:def 3; A64: r1 in X /\ dom (f|X) by A55,XBOOLE_0:def 3; x in {s: x0 - (x0-r1) < s & s < x0 + (x0-r1)} by A59,RCOMP_1:def 2 ; then ex s st s = x & x0 - (x0-r1) < s & s < x0 + (x0-r1); then r1 < x by XCMPLX_1:18; then p - R <= (f|X).x by A10,A55,A60,A63,A64,RFUNCT_2:def 4; then (f|X).x in {s: p - R <= s & s <= p + R} by A62; then (f|X).x in [.p - R, p + R.] by RCOMP_1:def 1; hence (f|X).x in N1 by A54; end; hence ex N being Neighbourhood of x0 st for r1 be real number st r1 in dom(f|X) & r1 in N holds (f|X).r1 in N1; suppose f is_non_increasing_on X; then A65: f|X is_non_increasing_on X by RFUNCT_2:53; now per cases by A7,TARSKI:def 1; suppose (f|X).x0 in L; then consider N2 being Neighbourhood of (f|X).x0 such that A66: N2 c= L by RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A67: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A68: r > 0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A69: r/2 > 0 by A68,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A70: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A71: (f|X).x0 < (f|X).x0 + r/2 by A69,REAL_1:69; then A72: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A73: (f|X).x0 < (f|X).x0 + r by A68,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A72,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A70; then A74: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A69,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A75: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A73,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A71,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A75; then A76: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A77: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A74,RCOMP_1: 17; M1 in N2 by A67,A68,A74; then M1 in L by A66; then consider r1 such that A78: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A6,A8,PARTFUN2:78; M2 in N2 by A67,A68,A76; then M2 in L by A66; then consider r2 such that A79: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A6,A8,PARTFUN2:78; set R = min(r1 - x0,x0 - r2); A80: (f|X).x0 < (f|X).x0 + r/2 by A69,REAL_1:69; then A81: M1 < (f|X).x0 by REAL_1:84; A82: r1 <> x0 by A78,A80,REAL_1:84; now assume A83: x0 > r1; A84: x0 in X /\ dom (f|X) by A3,A4,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A78,XBOOLE_0:def 3; hence contradiction by A9,A65,A78,A81,A83,A84,RFUNCT_2:def 5; end; then r1 > x0 by A82,REAL_1:def 5; then A85: r1 - x0 > 0 by SQUARE_1:11; A86: M2 > (f|X).x0 by A69,REAL_1:69; A87: x0 <> r2 by A69,A79,REAL_1:69; now assume A88: r2 > x0; A89: x0 in X /\ dom (f|X) by A3,A4,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A79,XBOOLE_0:def 3; hence contradiction by A9,A65,A79,A86,A88,A89,RFUNCT_2:def 5; end; then x0 > r2 by A87,REAL_1:def 5; then x0 - r2 > 0 by SQUARE_1:11; then R > 0 by A85,SQUARE_1:38; then reconsider N =].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number; assume A90: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A91: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54; then A92: x0 - x < R by XCMPLX_1:26; R <= x0 - r2 by SQUARE_1:35; then x0 - x < x0 - r2 by A92,AXIOMS:22; then -(x0 - x) > -(x0 - r2) by REAL_1:50; then x - x0 > - (x0 - r2) by XCMPLX_1:143; then x - x0 > r2 - x0 by XCMPLX_1:143; then x - x0 + x0 > r2 - x0 + x0 by REAL_1:53; then x > r2 - x0 + x0 by XCMPLX_1:27; then A93: x > r2 by XCMPLX_1:27; A94: x - x0 < R by A91,REAL_1:84; R <= r1 - x0 by SQUARE_1:35; then x - x0 < r1-x0 by A94,AXIOMS:22; then x - x0 + x0 < r1 - x0 + x0 by REAL_1:53; then x < r1 - x0 + x0 by XCMPLX_1:27; then A95: x < r1 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A96: x in X /\ dom(f|X) by A90,XBOOLE_1:28; A97: x is Real by XREAL_0:def 1; r2 in X /\ dom(f|X) by A79,XBOOLE_0:def 3; then A98: (f|X).x <= (f|X).r2 by A65,A93,A96,A97,RFUNCT_2:def 5; r1 in X /\ dom(f|X) by A78,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A65,A95,A96,A97,RFUNCT_2:def 5; then (f|X).x in {s: M1 <= s & s <= M2} by A78,A79,A98; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A68,A77; hence (f|X).x in N1 by A67; suppose A99: (f|X).x0 = p; then consider r be real number such that A100: r > 0 & N1 = ].p - r,p + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set R = r/2; A101: 0 < R by A100,SEQ_2:3; A102: R < r by A100,SEQ_2:4; then A103: p + R < p + r by REAL_1:53; A104: p - r < p by A100,SQUARE_1:29; A105: p < p + R by A101,REAL_1:69; then p - r < p + R by A104,AXIOMS: 22; then p + R in {s: p - r < s & s < p + r} by A103; then A106: p + R in ].p - r, p + r.[ by RCOMP_1:def 2; A107: p - R < p by A101,SQUARE_1:29; p < p + r by A100,REAL_1:69 ; then A108: p - R < p + r by A107,AXIOMS:22; p - r < p - R by A102,REAL_1:92; then p - R in {s: p - r < s & s < p + r} by A108; then p - R in ].p - r, p + r.[ by RCOMP_1:def 2; then A109: [.p - R, p + R.] c= N1 by A100,A106,RCOMP_1:17; p - R in {s : s < p} by A107; then p - R in L by PROB_1:def 15; then consider r1 such that A110: r1 in dom (f|X) & r1 in X & p - R = (f|X).r1 by A2,A6,A8, PARTFUN2:78; A111: r1 <> x0 by A99,A101,A110,SQUARE_1:29; now assume A112: x0 > r1; A113: x0 in X /\ dom (f|X) by A3,A4,XBOOLE_0:def 3; r1 in X /\ dom (f|X) by A110,XBOOLE_0:def 3; hence contradiction by A9,A65,A99,A107,A110,A112,A113,RFUNCT_2:def 5; end; then r1 > x0 by A111,REAL_1:def 5; then r1 - x0 > 0 by SQUARE_1:11; then reconsider N = ].x0 - (r1 - x0),x0 + (r1 - x0).[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number such that A114: x in dom(f|X) & x in N; A115: x is Real by XREAL_0:def 1; A116: dom (f|X) c= X by RELAT_1:87; then (f|X).x in l by A2,A6,A114,FUNCT_1:def 12; then (f|X).x in {s: s <= p} by LIMFUNC1:def 1; then ex s st s = (f|X).x & s <= p; then A117: (f|X).x <= p + R by A105,AXIOMS:22; A118: x in X /\ dom (f|X) by A114,A116,XBOOLE_0:def 3; A119: r1 in X /\ dom (f|X) by A110,XBOOLE_0:def 3; x in {s: x0 - (r1-x0) < s & s < x0 + (r1-x0)} by A114,RCOMP_1:def 2 ; then ex s st s = x & x0 - (r1-x0) < s & s < x0 + (r1-x0); then r1 > x by XCMPLX_1:27; then p - R <= (f|X).x by A65,A110,A115,A118,A119,RFUNCT_2:def 5; then (f|X).x in {s: p - R <= s & s <= p + R} by A117; then (f|X).x in [.p - R, p + R.] by RCOMP_1:def 1; hence (f|X).x in N1 by A109; end; hence ex N being Neighbourhood of x0 st for r1 be real number st r1 in dom(f|X) & r1 in N holds (f|X).r1 in N1; end; hence ex N being Neighbourhood of x0 st for r1 be real number st r1 in dom(f|X) & r1 in N holds (f|X).r1 in N1; end; hence thesis by A4,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; end; theorem Th22: X c= dom f & f is_monotone_on X & (ex p st f.:X = right_closed_halfline(p)) implies f is_continuous_on X proof assume A1: X c= dom f & f is_monotone_on X; given p such that A2: f.:X = right_closed_halfline(p); set l = right_closed_halfline(p); set L = right_open_halfline(p); for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; A3: x0 is Real by XREAL_0:def 1; assume A4: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A5: x0 in dom (f|X) by RELAT_1:90; then A6: (f|X).x0 in (f|X).:X by A4,FUNCT_1:def 12; A7: (f|X).:X = f.:X by RFUNCT_2:5; then (f|X).x0 in {p} \/ L by A2,A6,Th12; then A8: (f|X).x0 in {p} or (f|X).x0 in L by XBOOLE_0:def 2; A9: L c= l by LIMFUNC1:10; now let N1 be Neighbourhood of (f|X).x0; now per cases by A1,RFUNCT_2:def 6; suppose f is_non_decreasing_on X; then A10: f|X is_non_decreasing_on X by RFUNCT_2:52; now per cases by A8,TARSKI:def 1; suppose (f|X).x0 in L; then consider N2 being Neighbourhood of (f|X).x0 such that A11: N2 c= L by RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A12: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A13: r>0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A14: r/2 > 0 by A13,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A15: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A16: (f|X).x0 < (f|X).x0 + r/2 by A14,REAL_1:69; then A17: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A18: (f|X).x0 < (f|X).x0 + r by A13,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A17,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A15 ; then A19: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A14,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A20: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A18,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A16,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A20 ; then A21: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A22: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A19,RCOMP_1: 17; M1 in N2 by A12,A13,A19; then M1 in L by A11; then consider r1 such that A23: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A7,A9,PARTFUN2:78; M2 in N2 by A12,A13,A21; then M2 in L by A11; then consider r2 such that A24: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A7,A9,PARTFUN2:78; set R = min(x0 - r1,r2 - x0); A25: (f|X).x0 < (f|X).x0 + r/2 by A14,REAL_1:69; then A26: M1 < (f|X).x0 by REAL_1:84; A27: r1 <> x0 by A23,A25,REAL_1:84; now assume A28: x0 < r1; A29: x0 in X /\ dom( f|X) by A4,A5,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A23,XBOOLE_0:def 3; hence contradiction by A3,A10,A23,A26,A28,A29,RFUNCT_2:def 4; end; then r1 < x0 by A27,REAL_1:def 5; then A30: x0 - r1 > 0 by SQUARE_1:11; A31: M2 > (f|X).x0 by A14,REAL_1:69; A32: x0 <> r2 by A14,A24,REAL_1:69; now assume A33: r2 < x0; A34: x0 in X /\ dom(f|X) by A4,A5,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A24,XBOOLE_0:def 3; hence contradiction by A3,A10,A24,A31,A33,A34,RFUNCT_2:def 4; end; then x0 < r2 by A32,REAL_1:def 5; then r2 - x0 > 0 by SQUARE_1:11; then R > 0 by A30,SQUARE_1:38; then reconsider N = ].x0 - R,x0+ R.[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number; assume A35: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A36: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54 ; then A37: x0 - x < R by XCMPLX_1:26; R <= x0 - r1 by SQUARE_1:35; then x0 - x < x0 - r1 by A37,AXIOMS:22; then -(x0 - x) > -(x0 - r1) by REAL_1:50; then x - x0 > -(x0 - r1) by XCMPLX_1:143; then x - x0 > r1 - x0 by XCMPLX_1:143; then x - x0 + x0 > r1 - x0 + x0 by REAL_1:53; then x > r1 - x0 + x0 by XCMPLX_1:27; then A38: x > r1 by XCMPLX_1:27; A39: x is Real by XREAL_0:def 1; A40: x - x0 < R by A36,REAL_1:84; R <= r2 - x0 by SQUARE_1:35; then x - x0 < r2 - x0 by A40,AXIOMS:22; then x - x0 + x0 < r2 - x0 + x0 by REAL_1:53; then x < r2 - x0 + x0 by XCMPLX_1:27; then A41: x < r2 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A42: x in X /\ dom (f|X) by A35,XBOOLE_1:28; r2 in X /\ dom (f|X) by A24,XBOOLE_0:def 3; then A43: (f|X).x <= (f|X).r2 by A10,A39,A41,A42,RFUNCT_2:def 4; r1 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A10,A38,A39,A42,RFUNCT_2:def 4; then (f|X).x in {s: M1 <= s & s <= M2} by A23,A24,A43; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A13,A22; hence (f|X).x in N1 by A12; suppose A44: (f|X).x0 = p; then consider r be real number such that A45: r > 0 & N1 = ].p - r,p + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set R = r/2; A46: 0 < R by A45,SEQ_2:3; A47: R < r by A45,SEQ_2:4; then A48: p + R < p + r by REAL_1:53; A49: p - r < p by A45,SQUARE_1:29; A50: p < p + R by A46,REAL_1:69; then p - r < p + R by A49,AXIOMS:22 ; then p + R in {s: p - r < s & s < p + r} by A48; then A51: p + R in ].p - r, p + r.[ by RCOMP_1:def 2; A52: p - R < p by A46,SQUARE_1:29; p < p + r by A45,REAL_1:69; then A53: p - R < p + r by A52,AXIOMS:22; p - r < p - R by A47,REAL_1:92; then p - R in {s: p - r < s & s < p + r} by A53; then p - R in ].p - r, p + r.[ by RCOMP_1:def 2; then A54: [.p - R, p + R.] c= N1 by A45,A51,RCOMP_1:17; p + R in {s : p < s} by A50; then p + R in L by LIMFUNC1:def 3; then consider r1 such that A55: r1 in dom (f|X) & r1 in X & p + R = (f|X).r1 by A2,A7,A9,PARTFUN2:78; A56: r1 <> x0 by A44,A46,A55,REAL_1:69; now assume A57: x0 > r1; A58: x0 in X /\ dom (f|X) by A4,A5,XBOOLE_0:def 3; r1 in X /\ dom (f|X) by A55,XBOOLE_0:def 3; hence contradiction by A3,A10,A44,A50,A55,A57,A58,RFUNCT_2:def 4; end; then r1 > x0 by A56,REAL_1:def 5; then r1 - x0 > 0 by SQUARE_1:11; then reconsider N = ].x0 - (r1 - x0),x0 + (r1 - x0).[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number such that A59: x in dom(f|X) & x in N; A60: dom (f|X) c= X by RELAT_1:87; then (f|X).x in l by A2,A7,A59,FUNCT_1:def 12; then (f|X).x in {s: p <= s} by LIMFUNC1:def 2; then ex s st s = (f|X).x & p <= s; then A61: p - R <= (f|X).x by A52,AXIOMS:22; A62: x in X /\ dom (f|X) by A59,A60,XBOOLE_0:def 3; A63: r1 in X /\ dom (f|X) by A55,XBOOLE_0:def 3; A64: x is Real by XREAL_0:def 1; x in {s: x0 - (r1-x0) < s & s < x0 + (r1-x0)} by A59,RCOMP_1:def 2; then ex s st s = x & x0 - (r1-x0) < s & s < x0 + (r1-x0); then r1 > x by XCMPLX_1:27; then p + R >= (f|X).x by A10,A55,A62,A63,A64,RFUNCT_2:def 4; then (f|X).x in {s: p - R <= s & s <= p + R} by A61; then (f|X).x in [.p - R, p + R.] by RCOMP_1:def 1; hence (f|X).x in N1 by A54; end; hence ex N being Neighbourhood of x0 st for r1 be real number st r1 in dom(f|X) & r1 in N holds (f|X).r1 in N1; suppose f is_non_increasing_on X; then A65: f|X is_non_increasing_on X by RFUNCT_2:53; now per cases by A8,TARSKI:def 1; suppose (f|X).x0 in L; then consider N2 being Neighbourhood of (f|X).x0 such that A66: N2 c= L by RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A67: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A68: r > 0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A69: r/2 > 0 by A68,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A70: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A71: (f|X).x0 < (f|X).x0 + r/2 by A69,REAL_1:69; then A72: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A73: (f|X).x0 < (f|X).x0 + r by A68,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A72,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A70 ; then A74: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A69,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A75: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A73,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A71,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A75 ; then A76: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A77: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A74,RCOMP_1: 17; M1 in N2 by A67,A68,A74; then M1 in L by A66; then consider r1 such that A78: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A7,A9,PARTFUN2:78; M2 in N2 by A67,A68,A76; then M2 in L by A66; then consider r2 such that A79: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A7,A9,PARTFUN2:78; set R = min(r1 - x0,x0 - r2); A80: (f|X).x0 < (f|X).x0 + r/2 by A69,REAL_1:69; then A81: M1 < (f|X).x0 by REAL_1:84; A82: r1 <> x0 by A78,A80,REAL_1:84; now assume A83: x0 > r1; A84: x0 in X /\ dom (f|X) by A4,A5,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A78,XBOOLE_0:def 3; hence contradiction by A3,A65,A78,A81,A83,A84,RFUNCT_2:def 5; end; then r1 > x0 by A82,REAL_1:def 5; then A85: r1 - x0 > 0 by SQUARE_1:11; A86: M2 > (f|X).x0 by A69,REAL_1:69; A87: x0 <> r2 by A69,A79,REAL_1:69; now assume A88: r2 > x0; A89: x0 in X /\ dom (f|X) by A4,A5,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A79,XBOOLE_0:def 3; hence contradiction by A3,A65,A79,A86,A88,A89,RFUNCT_2:def 5; end; then x0 > r2 by A87,REAL_1:def 5; then x0 - r2 > 0 by SQUARE_1:11; then R > 0 by A85,SQUARE_1:38; then reconsider N =].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number; assume A90: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A91: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54; then A92: x0 - x < R by XCMPLX_1:26; R <= x0 - r2 by SQUARE_1:35; then x0 - x < x0 - r2 by A92,AXIOMS:22; then -(x0 - x) > -(x0 - r2) by REAL_1:50; then x - x0 > - (x0 - r2) by XCMPLX_1:143; then x - x0 > r2 - x0 by XCMPLX_1:143; then x - x0 + x0 > r2 - x0 + x0 by REAL_1:53; then x > r2 - x0 + x0 by XCMPLX_1:27; then A93: x > r2 by XCMPLX_1:27; A94: x is Real by XREAL_0:def 1; A95: x - x0 < R by A91,REAL_1:84; R <= r1 - x0 by SQUARE_1:35; then x - x0 < r1-x0 by A95,AXIOMS:22; then x - x0 + x0 < r1 - x0 + x0 by REAL_1:53; then x < r1 - x0 + x0 by XCMPLX_1:27; then A96: x < r1 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A97: x in X /\ dom(f|X) by A90,XBOOLE_1:28; r2 in X /\ dom(f|X) by A79,XBOOLE_0:def 3; then A98: (f|X).x <= (f|X).r2 by A65,A93,A94,A97,RFUNCT_2:def 5; r1 in X /\ dom(f|X) by A78,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A65,A94,A96,A97,RFUNCT_2:def 5; then (f|X).x in {s: M1 <= s & s <= M2} by A78,A79,A98; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A68,A77; hence (f|X).x in N1 by A67; suppose A99: (f|X).x0 = p; then consider r be real number such that A100: r > 0 & N1 = ].p - r,p + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set R = r/2; A101: 0 < R by A100,SEQ_2:3; A102: R < r by A100,SEQ_2:4; then A103: p + R < p + r by REAL_1:53; A104: p - r < p by A100,SQUARE_1:29; A105: p < p + R by A101,REAL_1:69; then p - r < p + R by A104,AXIOMS: 22; then p + R in {s: p - r < s & s < p + r} by A103; then A106: p + R in ].p - r, p + r.[ by RCOMP_1:def 2; A107: p - R < p by A101,SQUARE_1:29; p < p + r by A100,REAL_1:69 ; then A108: p - R < p + r by A107,AXIOMS:22; p - r < p - R by A102,REAL_1:92; then p - R in {s: p - r < s & s < p + r} by A108; then p - R in ].p - r, p + r.[ by RCOMP_1:def 2; then A109: [.p - R, p + R.] c= N1 by A100,A106,RCOMP_1:17; p + R in {s : p < s} by A105; then p + R in L by LIMFUNC1:def 3; then consider r1 such that A110: r1 in dom (f|X) & r1 in X & p + R = (f|X).r1 by A2,A7,A9, PARTFUN2:78; A111: r1 <> x0 by A99,A101,A110,REAL_1:69; now assume A112: x0 < r1; A113: x0 in X /\ dom (f|X) by A4,A5,XBOOLE_0:def 3; r1 in X /\ dom (f|X) by A110,XBOOLE_0:def 3; hence contradiction by A3,A65,A99,A105,A110,A112,A113,RFUNCT_2:def 5; end; then r1 < x0 by A111,REAL_1:def 5; then x0 - r1 > 0 by SQUARE_1:11; then reconsider N = ].x0 - (x0 - r1),x0 + (x0 - r1).[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x be real number such that A114: x in dom(f|X) & x in N; A115: x is Real by XREAL_0:def 1; A116: dom (f|X) c= X by RELAT_1:87; then (f|X).x in l by A2,A7,A114,FUNCT_1:def 12; then (f|X).x in {s: p <= s} by LIMFUNC1:def 2; then ex s st s = (f|X).x & p <= s; then A117: p - R <= (f|X).x by A107,AXIOMS:22; A118: x in X /\ dom (f|X) by A114,A116,XBOOLE_0:def 3; A119: r1 in X /\ dom (f|X) by A110,XBOOLE_0:def 3; x in {s: x0 - (x0-r1) < s & s < x0 + (x0-r1)} by A114,RCOMP_1:def 2 ; then ex s st s = x & x0 - (x0-r1) < s & s < x0 + (x0-r1); then r1 < x by XCMPLX_1:18; then p + R >= (f|X).x by A65,A110,A115,A118,A119,RFUNCT_2:def 5; then (f|X).x in {s: p - R <= s & s <= p + R} by A117; then (f|X).x in [.p - R, p + R.] by RCOMP_1:def 1; hence (f|X).x in N1 by A109; end; hence ex N being Neighbourhood of x0 st for r1 be real number st r1 in dom(f|X) & r1 in N holds (f|X).r1 in N1; end; hence ex N being Neighbourhood of x0 st for r1 be real number st r1 in dom(f|X) & r1 in N holds (f|X).r1 in N1; end; hence thesis by A5,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; end; theorem Th23: X c= dom f & f is_monotone_on X & (ex p,g st f.:X = ].p,g.[) implies f is_continuous_on X proof assume A1: X c= dom f & f is_monotone_on X; given p,g such that A2: f.:X = ].p,g.[; set L = ].p,g.[; now per cases by A1,RFUNCT_2:def 6; suppose f is_non_decreasing_on X; then A3: f|X is_non_decreasing_on X by RFUNCT_2:52; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A4: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A5: x0 in dom (f|X) by RELAT_1:90; then A6: (f|X).x0 in (f|X).:X by A4,FUNCT_1:def 12; A7: x0 is Real by XREAL_0:def 1; A8: (f|X).:X = f.:X by RFUNCT_2:5; A9: (f|X).x0 in L by A2,A6,RFUNCT_2:5; now let N1 be Neighbourhood of (f|X).x0; consider N2 being Neighbourhood of (f|X).x0 such that A10: N2 c= L by A9,RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A11: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A12: r>0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A13: r/2 > 0 by A12,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A14: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A15: (f|X).x0 < (f|X).x0 + r/2 by A13,REAL_1:69; then A16: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A17: (f|X).x0 < (f|X).x0 + r by A12,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A16,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A14 ; then A18: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A13,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A19: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A17,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A15,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A19 ; then A20: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A21: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A18,RCOMP_1:17; M1 in N2 by A11,A12,A18; then consider r1 such that A22: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A8,A10,PARTFUN2:78; M2 in N2 by A11,A12,A20; then consider r2 such that A23: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A8,A10,PARTFUN2:78; set R = min(x0 - r1,r2 - x0); A24: (f|X).x0 < (f|X).x0 + r/2 by A13,REAL_1:69; then A25: M1 < (f|X).x0 by REAL_1:84; A26: r1 <> x0 by A22,A24,REAL_1:84; now assume A27: x0 < r1; A28: x0 in X /\ dom( f|X) by A4,A5,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A22,XBOOLE_0:def 3; hence contradiction by A3,A7,A22,A25,A27,A28,RFUNCT_2:def 4; end; then r1 < x0 by A26,REAL_1:def 5; then A29: x0 - r1 > 0 by SQUARE_1:11; A30: M2 > (f|X).x0 by A13,REAL_1:69; A31: x0 <> r2 by A13,A23,REAL_1:69; now assume A32: r2 < x0; A33: x0 in X /\ dom(f|X) by A4,A5,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; hence contradiction by A3,A7,A23,A30,A32,A33,RFUNCT_2:def 4; end; then x0 < r2 by A31,REAL_1:def 5; then r2 - x0 > 0 by SQUARE_1:11; then R > 0 by A29,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A34: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A35: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84 ; then x0 - x < R + x - x by REAL_1:54 ; then A36: x0 - x < R by XCMPLX_1:26; R <= x0 - r1 by SQUARE_1:35; then x0 - x < x0 - r1 by A36,AXIOMS:22; then -(x0 - x) > -(x0 - r1) by REAL_1:50; then x - x0 > -(x0 - r1) by XCMPLX_1:143; then x - x0 > r1 - x0 by XCMPLX_1:143; then x - x0 + x0 > r1 - x0 + x0 by REAL_1:53; then x > r1 - x0 + x0 by XCMPLX_1:27; then A37: x > r1 by XCMPLX_1:27; A38: x is Real by XREAL_0:def 1; A39: x - x0 < R by A35,REAL_1:84; R <= r2 - x0 by SQUARE_1:35; then x - x0 < r2 - x0 by A39,AXIOMS:22; then x - x0 + x0 < r2 - x0 + x0 by REAL_1:53; then x < r2 - x0 + x0 by XCMPLX_1:27; then A40: x < r2 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A41: x in X /\ dom (f|X) by A34,XBOOLE_1:28; r2 in X /\ dom (f|X) by A23,XBOOLE_0:def 3; then A42: (f|X).x <= (f|X).r2 by A3,A38,A40,A41,RFUNCT_2:def 4; r1 in X /\ dom (f|X) by A22,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A3,A37,A38,A41,RFUNCT_2:def 4; then (f|X).x in {s: M1<=s & s<=M2} by A22,A23,A42; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A12,A21; hence (f|X).x in N1 by A11; end; hence thesis by A5,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; suppose f is_non_increasing_on X; then A43: f|X is_non_increasing_on X by RFUNCT_2:53; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A44: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A45: x0 in dom(f|X) by RELAT_1:90; then A46: (f|X).x0 in (f|X).:X by A44,FUNCT_1:def 12; A47: (f|X).:X = f.:X by RFUNCT_2:5; A48: x0 is Real by XREAL_0:def 1; A49: (f|X).x0 in L by A2,A46,RFUNCT_2:5; now let N1 be Neighbourhood of (f|X).x0; consider N2 being Neighbourhood of (f|X).x0 such that A50: N2 c= L by A49,RCOMP_1:39; consider N3 being Neighbourhood of (f|X).x0 such that A51: N3 c= N1 & N3 c= N2 by RCOMP_1:38; consider r be real number such that A52: r > 0 & N3 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A53: r/2 > 0 by A52,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A54: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A55: (f|X).x0 < (f|X).x0 + r/2 by A53,REAL_1:69; then A56: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A57: (f|X).x0 < (f|X).x0 + r by A52,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A56,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A54 ; then A58: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A53,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A59: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A57,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A55,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A59 ; then A60: M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A61: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A58,RCOMP_1:17; M1 in N2 by A51,A52,A58; then consider r1 such that A62: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A2,A47,A50,PARTFUN2:78; M2 in N2 by A51,A52,A60; then consider r2 such that A63: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A2,A47,A50,PARTFUN2:78; set R = min(r1 - x0,x0 - r2); A64: (f|X).x0 < (f|X).x0 + r/2 by A53,REAL_1:69; then A65: M1 < (f|X).x0 by REAL_1:84; A66: r1 <> x0 by A62,A64,REAL_1:84; now assume A67: x0 > r1; A68: x0 in X /\ dom (f|X) by A44,A45,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A62,XBOOLE_0:def 3; hence contradiction by A43,A48,A62,A65,A67,A68,RFUNCT_2:def 5; end; then r1 > x0 by A66,REAL_1:def 5; then A69: r1 - x0 > 0 by SQUARE_1:11; A70: M2 > (f|X).x0 by A53,REAL_1:69; A71: x0 <> r2 by A53,A63,REAL_1:69; now assume A72: r2 > x0; A73: x0 in X /\ dom (f|X) by A44,A45,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A63,XBOOLE_0:def 3; hence contradiction by A43,A48,A63,A70,A72,A73,RFUNCT_2:def 5; end; then x0 > r2 by A71,REAL_1:def 5; then x0 - r2 > 0 by SQUARE_1:11; then R > 0 by A69,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A74: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A75: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54 ; then A76: x0 - x < R by XCMPLX_1:26; R <= x0 - r2 by SQUARE_1:35; then x0 - x < x0 - r2 by A76,AXIOMS:22; then -(x0 - x) > -(x0 - r2) by REAL_1:50; then x - x0 > - (x0 - r2) by XCMPLX_1:143; then x - x0 > r2 - x0 by XCMPLX_1:143; then x - x0 + x0 > r2 - x0 + x0 by REAL_1:53; then x > r2 - x0 + x0 by XCMPLX_1:27; then A77: x > r2 by XCMPLX_1:27; A78: x is Real by XREAL_0:def 1; A79: x - x0 < R by A75,REAL_1:84; R <= r1 - x0 by SQUARE_1:35; then x - x0 < r1-x0 by A79,AXIOMS:22; then x - x0 + x0 < r1 - x0 + x0 by REAL_1:53; then x < r1 - x0 + x0 by XCMPLX_1:27; then A80: x < r1 by XCMPLX_1:27; dom (f|X) c= X by RELAT_1:87; then A81: x in X /\ dom(f|X) by A74,XBOOLE_1:28; r2 in X /\ dom(f|X) by A63,XBOOLE_0:def 3; then A82: (f|X).x <= (f|X).r2 by A43,A77,A78,A81,RFUNCT_2:def 5; r1 in X /\ dom(f|X) by A62,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A43,A78,A80,A81,RFUNCT_2:def 5; then (f|X).x in {s: M1 <= s & s <= M2} by A62,A63,A82; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; then (f|X).x in N3 by A52,A61; hence (f|X).x in N1 by A51; end; hence thesis by A45,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; end; hence thesis; end; theorem Th24: X c= dom f & f is_monotone_on X & f.:X = REAL implies f is_continuous_on X proof assume A1: X c= dom f & f is_monotone_on X & f.:X = REAL; now per cases by A1,RFUNCT_2:def 6; suppose f is_non_decreasing_on X; then A2: f|X is_non_decreasing_on X by RFUNCT_2:52; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A3: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A4: x0 in dom (f|X) by RELAT_1:90; A5: (f|X).:X = f.:X by RFUNCT_2:5; A6: x0 is Real by XREAL_0:def 1; now let N1 be Neighbourhood of (f|X).x0; consider r be real number such that A7: r>0 & N1 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A8: r/2 > 0 by A7,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A9: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A10: (f|X).x0 < (f|X).x0 + r/2 by A8,REAL_1:69; then A11: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A12: (f|X).x0 < (f|X).x0 + r by A7,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A11,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A9; then A13: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A8,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A14: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A12,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A10,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A14 ; then M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A15: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A13,RCOMP_1:17; consider r1 such that A16: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A1,A5,PARTFUN2:78; consider r2 such that A17: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A1,A5,PARTFUN2:78; set R = min(x0 - r1,r2 - x0); A18: (f|X).x0 < (f|X).x0 + r/2 by A8,REAL_1:69; then A19: M1 < (f|X).x0 by REAL_1:84; A20: r1 <> x0 by A16,A18,REAL_1:84; now assume A21: x0 < r1; A22: x0 in X /\ dom (f|X) by A3,A4,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A16,XBOOLE_0:def 3; hence contradiction by A2,A6,A16,A19,A21,A22,RFUNCT_2:def 4; end; then r1 < x0 by A20,REAL_1:def 5; then A23: x0 - r1 > 0 by SQUARE_1:11; A24: M2 > (f|X).x0 by A8,REAL_1:69; A25: x0 <> r2 by A8,A17,REAL_1:69; now assume A26: r2 < x0; A27: x0 in X /\ dom(f|X) by A3,A4,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A17,XBOOLE_0:def 3; hence contradiction by A2,A6,A17,A24,A26,A27,RFUNCT_2:def 4; end; then x0 < r2 by A25,REAL_1:def 5; then r2 - x0 > 0 by SQUARE_1:11; then R > 0 by A23,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A28: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A29: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84 ; then x0 - x < R + x - x by REAL_1:54 ; then A30: x0 - x < R by XCMPLX_1:26; R <= x0 - r1 by SQUARE_1:35; then x0 - x < x0 - r1 by A30,AXIOMS:22; then -(x0 - x) > -(x0 - r1) by REAL_1:50; then x - x0 > -(x0 - r1) by XCMPLX_1:143; then x - x0 > r1 - x0 by XCMPLX_1:143; then x - x0 + x0 > r1 - x0 + x0 by REAL_1:53; then x > r1 - x0 + x0 by XCMPLX_1:27; then A31: x > r1 by XCMPLX_1:27; A32: x - x0 < R by A29,REAL_1:84; R <= r2 - x0 by SQUARE_1:35; then x - x0 < r2 - x0 by A32,AXIOMS:22; then x - x0 + x0 < r2 - x0 + x0 by REAL_1:53; then x < r2 - x0 + x0 by XCMPLX_1:27; then A33: x < r2 by XCMPLX_1:27; A34: x is Real by XREAL_0:def 1; dom (f|X) c= X by RELAT_1:87; then A35: x in X /\ dom (f|X) by A28,XBOOLE_1:28; r2 in X /\ dom (f|X) by A17,XBOOLE_0:def 3; then A36: (f|X).x <= (f|X).r2 by A2,A33,A34,A35,RFUNCT_2:def 4; r1 in X /\ dom (f|X) by A16,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A2,A31,A34,A35,RFUNCT_2:def 4; then (f|X).x in {s: M1<=s & s<=M2} by A16,A17,A36; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; hence (f|X).x in N1 by A7,A15; end; hence thesis by A4,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; suppose f is_non_increasing_on X; then A37: f|X is_non_increasing_on X by RFUNCT_2:53; for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof let x0 be real number; assume A38: x0 in X; then x0 in dom f /\ X by A1,XBOOLE_0:def 3; then A39: x0 in dom (f|X) by RELAT_1:90; A40: (f|X).:X = f.:X by RFUNCT_2:5; A41: x0 is Real by XREAL_0:def 1; now let N1 be Neighbourhood of (f|X).x0; consider r be real number such that A42: r > 0 & N1 = ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; set M1 = (f|X).x0 - r/2; set M2 = (f|X).x0 + r/2; A43: r/2 > 0 by A42,SEQ_2:3; then (f|X).x0 - r < (f|X).x0 - r + r/2 by REAL_1:69; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2) + r/2 by XCMPLX_1:66; then (f|X).x0 - r < (f|X).x0 - (r/2 + r/2 - r/2) by XCMPLX_1:37; then A44: (f|X).x0 - r < (f|X).x0 - r/2 by XCMPLX_1:26; A45: (f|X).x0 < (f|X).x0 + r/2 by A43,REAL_1:69; then A46: (f|X).x0 - r/2 < (f|X).x0 by REAL_1:84; A47: (f|X).x0 < (f|X).x0 + r by A42,REAL_1:69; then (f|X).x0 - r/2 < (f|X).x0 + r by A46,AXIOMS:22; then (f|X).x0 - r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A44 ; then A48: M1 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; (f|X).x0 + r/2 < (f|X).x0 + r/2 + r/2 by A43,REAL_1:69; then (f|X).x0 + r/2 < (f|X).x0 + (r/2 + r/2) by XCMPLX_1:1; then A49: (f|X).x0 + r/2 < (f|X).x0 + r by XCMPLX_1:66; (f|X).x0 - r < (f|X).x0 + r - r by A47,REAL_1:54; then (f|X).x0 - r < (f|X).x0 by XCMPLX_1:26; then (f|X).x0 - r < (f|X).x0 + r/2 by A45,AXIOMS:22; then (f|X).x0 + r/2 in {s: (f|X).x0 - r < s & s < (f|X).x0 + r} by A49 ; then M2 in ].(f|X).x0 - r,(f|X).x0 + r.[ by RCOMP_1:def 2; then A50: [.M1,M2.] c= ].(f|X).x0 - r,(f|X).x0 + r.[ by A48,RCOMP_1:17; consider r1 such that A51: r1 in dom (f|X) & r1 in X & M1 = (f|X).r1 by A1,A40,PARTFUN2:78; consider r2 such that A52: r2 in dom (f|X) & r2 in X & M2 = (f|X).r2 by A1,A40,PARTFUN2:78; set R = min(r1 - x0,x0 - r2); A53: (f|X).x0 < (f|X).x0 + r/2 by A43,REAL_1:69; then A54: M1 < (f|X).x0 by REAL_1:84; A55: r1 <> x0 by A51,A53,REAL_1:84; now assume A56: x0 > r1; A57: x0 in X /\ dom (f|X) by A38,A39,XBOOLE_0:def 3; r1 in X /\ dom(f|X) by A51,XBOOLE_0:def 3; hence contradiction by A37,A41,A51,A54,A56,A57,RFUNCT_2:def 5; end; then r1 > x0 by A55,REAL_1:def 5; then A58: r1 - x0 > 0 by SQUARE_1:11; A59: M2 > (f|X).x0 by A43,REAL_1:69; A60: x0 <> r2 by A43,A52,REAL_1:69; now assume A61: r2 > x0; A62: x0 in X /\ dom (f|X) by A38,A39,XBOOLE_0:def 3; r2 in X /\ dom (f|X) by A52,XBOOLE_0:def 3; hence contradiction by A37,A41,A52,A59,A61,A62,RFUNCT_2:def 5; end; then x0 > r2 by A60,REAL_1:def 5; then x0 - r2 > 0 by SQUARE_1:11; then R > 0 by A58,SQUARE_1:38; then reconsider N = ].x0 - R,x0 + R.[ as Neighbourhood of x0 by RCOMP_1 :def 7; take N; let x be real number; assume A63: x in dom (f|X) & x in N; then x in {s: x0 - R < s & s < x0 + R} by RCOMP_1:def 2; then A64: ex s st s = x & x0 - R < s & s < x0 + R; then x0 < R + x by REAL_1:84; then x0 - x < R + x - x by REAL_1:54 ; then A65: x0 - x < R by XCMPLX_1:26; R <= x0 - r2 by SQUARE_1:35; then x0 - x < x0 - r2 by A65,AXIOMS:22; then -(x0 - x) > -(x0 - r2) by REAL_1:50; then x - x0 > - (x0 - r2) by XCMPLX_1:143; then x - x0 > r2 - x0 by XCMPLX_1:143; then x - x0 + x0 > r2 - x0 + x0 by REAL_1:53; then x > r2 - x0 + x0 by XCMPLX_1:27; then A66: x > r2 by XCMPLX_1:27; A67: x - x0 < R by A64,REAL_1:84; R <= r1 - x0 by SQUARE_1:35; then x - x0 < r1-x0 by A67,AXIOMS:22; then x - x0 + x0 < r1 - x0 + x0 by REAL_1:53; then x < r1 - x0 + x0 by XCMPLX_1:27; then A68: x < r1 by XCMPLX_1:27; A69: x is Real by XREAL_0:def 1; dom (f|X) c= X by RELAT_1:87; then A70: x in X /\ dom(f|X) by A63,XBOOLE_1:28; r2 in X /\ dom(f|X) by A52,XBOOLE_0:def 3; then A71: (f|X).x <= (f|X).r2 by A37,A66,A69,A70,RFUNCT_2:def 5; r1 in X /\ dom(f|X) by A51,XBOOLE_0:def 3; then (f|X).r1 <= (f|X).x by A37,A68,A69,A70,RFUNCT_2:def 5; then (f|X).x in {s: M1 <= s & s <= M2} by A51,A52,A71; then (f|X).x in [.M1,M2.] by RCOMP_1:def 1; hence (f|X).x in N1 by A42,A50; end; hence thesis by A39,FCONT_1:4; end; hence f is_continuous_on X by A1,FCONT_1:def 2; end; hence thesis; end; theorem for f be one-to-one PartFunc of REAL,REAL st (f is_increasing_on ].p,g.[ or f is_decreasing_on ].p,g.[) & ].p,g.[ c= dom f holds (f|].p,g.[)" is_continuous_on f.:].p,g.[ proof let f be one-to-one PartFunc of REAL,REAL; assume that A1: f is_increasing_on ].p,g.[ or f is_decreasing_on ].p,g.[ and A2: ].p,g.[ c= dom f; now per cases by A1; suppose f is_increasing_on ].p,g.[; then (f|].p,g.[)" is_increasing_on f.:].p,g.[ by Th17; then (f|].p,g.[)" is_non_decreasing_on f.:].p,g.[ by RFUNCT_2:55; then A3: (f|].p,g.[)" is_monotone_on f.:].p,g.[ by RFUNCT_2:def 6; now let r; assume r in f.:].p,g.[; then consider s such that A4: s in dom f & s in ].p,g.[ & r = f.s by PARTFUN2:78; s in dom f /\ ].p,g.[ & r = f.s by A4,XBOOLE_0:def 3; then s in dom (f|].p,g.[) & r = f.s by RELAT_1:90; then s in dom (f|].p,g.[) & r = (f|].p,g.[).s by FUNCT_1:68; then r in rng (f|].p,g.[) by FUNCT_1:def 5; hence r in dom ((f|].p,g.[)") by FUNCT_1:55; end; then A5: f.:].p,g.[ c= dom ((f|].p,g.[)") by SUBSET_1:7; ((f|].p,g.[)").:(f.:].p,g.[) = ((f|].p,g.[)").:(rng (f|].p,g.[)) by RELAT_1:148 .= ((f|].p,g.[)").:(dom ((f|].p,g.[)")) by FUNCT_1:55 .= rng ((f|].p,g.[)") by RELAT_1:146 .= dom (f|].p,g.[) by FUNCT_1:55 .= dom f /\ ].p,g.[ by RELAT_1:90 .= ].p,g.[ by A2,XBOOLE_1:28; hence thesis by A3,A5,Th23; suppose f is_decreasing_on ].p,g.[; then (f|].p,g.[)" is_decreasing_on f.:].p,g.[ by Th18; then (f|].p,g.[)" is_non_increasing_on f.:].p,g.[ by RFUNCT_2:56; then A6: (f|].p,g.[)" is_monotone_on f.:].p,g.[ by RFUNCT_2:def 6; now let r; assume r in f.:].p,g.[; then consider s such that A7: s in dom f & s in ].p,g.[ & r = f.s by PARTFUN2:78; s in dom f /\ ].p,g.[ by A7,XBOOLE_0:def 3; then s in dom (f|].p,g.[) by RELAT_1:90; then s in dom (f|].p,g.[) & r = (f|].p,g.[).s by A7,FUNCT_1:68; then r in rng (f|].p,g.[) by FUNCT_1:def 5; hence r in dom ((f|].p,g.[)") by FUNCT_1:55; end; then A8: f.:].p,g.[ c= dom ((f|].p,g.[)") by SUBSET_1:7; ((f|].p,g.[)").:(f.:].p,g.[) = ((f|].p,g.[)").:(rng (f|].p,g.[)) by RELAT_1:148 .= ((f|].p,g.[)").:(dom ((f|].p,g.[)")) by FUNCT_1:55 .= rng ((f|].p,g.[)") by RELAT_1:146 .= dom (f|].p,g.[) by FUNCT_1:55 .= dom f /\ ].p,g.[ by RELAT_1:90 .= ].p,g.[ by A2,XBOOLE_1:28; hence thesis by A6,A8,Th23; end; hence thesis; end; theorem for f be one-to-one PartFunc of REAL,REAL st (f is_increasing_on left_open_halfline(p) or f is_decreasing_on left_open_halfline(p)) & left_open_halfline(p) c= dom f holds (f|left_open_halfline(p))" is_continuous_on f.:left_open_halfline(p) proof let f be one-to-one PartFunc of REAL,REAL; set L = left_open_halfline(p);assume that A1: f is_increasing_on L or f is_decreasing_on L and A2: L c= dom f; now per cases by A1; suppose f is_increasing_on L; then (f|L)" is_increasing_on f.:L by Th17; then (f|L)" is_non_decreasing_on f.:L by RFUNCT_2:55; then A3: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A4: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L & r = f.s by A4,XBOOLE_0:def 3; then s in dom (f|L) & r = f.s by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A5: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A3,A5,Th19; suppose f is_decreasing_on L; then (f|L)" is_decreasing_on f.:L by Th18; then (f|L)" is_non_increasing_on f.:L by RFUNCT_2:56; then A6: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A7: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L by A7,XBOOLE_0:def 3; then s in dom (f|L) by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by A7,FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A8: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A6,A8,Th19; end; hence thesis; end; theorem for f be one-to-one PartFunc of REAL,REAL st (f is_increasing_on right_open_halfline(p) or f is_decreasing_on right_open_halfline(p)) & right_open_halfline(p) c= dom f holds (f|right_open_halfline(p))" is_continuous_on f.:right_open_halfline(p) proof let f be one-to-one PartFunc of REAL,REAL; set L = right_open_halfline(p); assume that A1: f is_increasing_on L or f is_decreasing_on L and A2: L c= dom f; now per cases by A1; suppose f is_increasing_on L; then (f|L)" is_increasing_on f.:L by Th17; then (f|L)" is_non_decreasing_on f.:L by RFUNCT_2:55; then A3: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A4: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L & r = f.s by A4,XBOOLE_0:def 3; then s in dom (f|L) & r = f.s by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A5: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A3,A5,Th20; suppose f is_decreasing_on L; then (f|L)" is_decreasing_on f.:L by Th18; then (f|L)" is_non_increasing_on f.:L by RFUNCT_2:56; then A6: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A7: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L by A7,XBOOLE_0:def 3; then s in dom (f|L) by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by A7,FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A8: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A6,A8,Th20; end; hence thesis; end; theorem for f be one-to-one PartFunc of REAL,REAL st (f is_increasing_on left_closed_halfline(p) or f is_decreasing_on left_closed_halfline(p)) & left_closed_halfline(p) c= dom f holds (f|left_closed_halfline(p))" is_continuous_on f.:left_closed_halfline(p) proof let f be one-to-one PartFunc of REAL,REAL; set L = left_closed_halfline(p);assume that A1: f is_increasing_on L or f is_decreasing_on L and A2: L c= dom f; now per cases by A1; suppose f is_increasing_on L; then (f|L)" is_increasing_on f.:L by Th17; then (f|L)" is_non_decreasing_on f.:L by RFUNCT_2:55; then A3: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A4: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L & r = f.s by A4,XBOOLE_0:def 3; then s in dom (f|L) & r = f.s by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A5: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A3,A5,Th21; suppose f is_decreasing_on L; then (f|L)" is_decreasing_on f.:L by Th18; then (f|L)" is_non_increasing_on f.:L by RFUNCT_2:56; then A6: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A7: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L by A7,XBOOLE_0:def 3; then s in dom (f|L) by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by A7,FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A8: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A6,A8,Th21; end; hence thesis; end; theorem for f be one-to-one PartFunc of REAL,REAL st (f is_increasing_on right_closed_halfline(p) or f is_decreasing_on right_closed_halfline(p)) & right_closed_halfline(p) c= dom f holds (f|right_closed_halfline(p))" is_continuous_on f.:right_closed_halfline(p) proof let f be one-to-one PartFunc of REAL,REAL; set L = right_closed_halfline(p); assume that A1: f is_increasing_on L or f is_decreasing_on L and A2: L c= dom f; now per cases by A1; suppose f is_increasing_on L; then (f|L)" is_increasing_on f.:L by Th17; then (f|L)" is_non_decreasing_on f.:L by RFUNCT_2:55; then A3: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A4: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L & r = f.s by A4,XBOOLE_0:def 3; then s in dom (f|L) & r = f.s by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A5: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A3,A5,Th22; suppose f is_decreasing_on L; then (f|L)" is_decreasing_on f.:L by Th18; then (f|L)" is_non_increasing_on f.:L by RFUNCT_2:56; then A6: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A7: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L by A7,XBOOLE_0:def 3; then s in dom (f|L) by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by A7,FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A8: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= L by A2,XBOOLE_1:28; hence thesis by A6,A8,Th22; end; hence thesis; end; theorem for f be one-to-one PartFunc of REAL,REAL st (f is_increasing_on [#](REAL) or f is_decreasing_on [#] (REAL)) & f is total holds f" is_continuous_on rng f proof let f be one-to-one PartFunc of REAL,REAL; set L = [#] REAL; assume that A1: f is_increasing_on [#](REAL) or f is_decreasing_on [#](REAL) and A2: f is total; A3: dom f = REAL by A2,PARTFUN1:def 4 .= [#] REAL by SUBSET_1:def 4; now per cases by A1; suppose f is_increasing_on L; then (f|L)" is_increasing_on f.:L by Th17; then (f|L)" is_non_decreasing_on f.:L by RFUNCT_2:55; then A4: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A5: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L & r = f.s by A5,XBOOLE_0:def 3; then s in dom (f|L) & r = f.s by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A6: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= REAL by A3,SUBSET_1:def 4; then (f|L)" is_continuous_on f.:L by A4,A6,Th24; then (f|L)" is_continuous_on rng f by A3,RELAT_1:146; hence thesis by A3,RELAT_1:97; suppose f is_decreasing_on L; then (f|L)" is_decreasing_on f.:L by Th18; then (f|L)" is_non_increasing_on f.:L by RFUNCT_2:56; then A7: (f|L)" is_monotone_on f.:L by RFUNCT_2:def 6; now let r; assume r in f.:L; then consider s such that A8: s in dom f & s in L & r = f.s by PARTFUN2:78; s in dom f /\ L by A8,XBOOLE_0:def 3; then s in dom (f|L) by RELAT_1:90; then s in dom (f|L) & r = (f|L).s by A8,FUNCT_1:68; then r in rng (f|L) by FUNCT_1:def 5; hence r in dom ((f|L)") by FUNCT_1:55; end; then A9: f.:L c= dom ((f|L)") by SUBSET_1:7; ((f|L)").:(f.:L) = ((f|L)").:(rng (f|L)) by RELAT_1:148 .= ((f|L)").:(dom ((f|L)")) by FUNCT_1:55 .= rng ((f|L)") by RELAT_1:146 .= dom (f|L) by FUNCT_1:55 .= dom f /\ L by RELAT_1:90 .= REAL by A3,SUBSET_1:def 4; then (f|L)" is_continuous_on f.:L by A7,A9,Th24; then (f|L)" is_continuous_on rng f by A3,RELAT_1:146; hence thesis by A3,RELAT_1:97; end; hence thesis; end; theorem f is_continuous_on ].p,g.[ & (f is_increasing_on ].p,g.[ or f is_decreasing_on ].p,g.[) implies rng (f|].p,g.[) is open proof assume that A1: f is_continuous_on ].p,g.[ and A2: f is_increasing_on ].p,g.[ or f is_decreasing_on ].p,g.[; now set f1 = f|].p,g.[; let r1 be real number; assume r1 in rng f1; then consider x0 such that A3: x0 in dom f1 & f1.x0 = r1 by PARTFUN1:26; A4: x0 in dom f /\ ].p,g.[ by A3,FUNCT_1:68; then x0 in dom f & x0 in ].p,g.[ by XBOOLE_0:def 3; then consider N be Neighbourhood of x0 such that A5: N c= ].p,g.[ by RCOMP_1:39; consider r be real number such that A6: 0 < r & N = ].x0 - r, x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; A7: f is_continuous_on N by A1,A5,FCONT_1:17; A8: r/2 < r by A6,SEQ_2:4; then A9: x0 - r < x0 - r/2 by REAL_1:92; A10: 0 < r/2 by A6,SEQ_2:3; then A11: x0 - r/2 < x0 - 0 by REAL_1:92; x0 < x0 + r by A6,REAL_2:174; then x0 - r/2 < x0 + r by A11,AXIOMS:22; then x0 - r/2 in {g1: x0 - r < g1 & g1 < x0 + r} by A9; then A12: x0 - r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; A13: x0 + r/2 < x0 + r by A8,REAL_1:67; A14: x0 - r < x0 by A6,REAL_2:174; A15: x0 < x0 + r/2 by A10,REAL_2:174; then x0 - r < x0 + r/2 by A14,AXIOMS:22; then x0 + r/2 in {g2: x0 - r < g2 & g2 < x0 + r} by A13; then A16: x0 + r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; then A17: [.x0 - r/2, x0 + r/2.] c= ].x0 - r, x0 + r.[ by A12,RCOMP_1:17; then A18: f is_continuous_on [.x0 - r/2, x0 + r/2.] by A6,A7,FCONT_1:17; set fm = f.(x0 - r/2); set fp = f.(x0 + r/2); A19: x0 - r/2 < x0 + r/2 by A11,A15,AXIOMS:22; A20: N c= dom f by A7,FCONT_1:def 2; then A21: x0 + r/2 in ].p,g.[ /\ dom f by A5,A6,A16,XBOOLE_0:def 3; A22: x0 - r/2 in ].p,g.[ /\ dom f by A5,A6,A12,A20,XBOOLE_0:def 3; A23: r1 = f.x0 by A3,FUNCT_1:68; now per cases by A2; suppose A24: f is_increasing_on ].p,g.[; then fm < fp by A19,A21,A22,RFUNCT_2:def 2; then [.fp,fm.] = {} by RCOMP_1:13; then A25: [.fm,fp.] \/ [.fp,fm.] = [.fm,fp.]; fm < f.x0 by A4,A11,A22,A24,RFUNCT_2:def 2; then A26: 0 < f.x0 - fm by SQUARE_1:11; set R = min(f.x0 - fm,fp - f.x0); f.x0 < fp by A4,A15,A21,A24,RFUNCT_2:def 2; then 0 < fp - f.x0 by SQUARE_1:11; then 0 < R by A26,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f1 proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A27: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A23; A28: R <= f.x0 - fm & R <= fp - f.x0 by SQUARE_1:35; then f.x0 - (f.x0 - fm) <= f.x0 - R by REAL_1:92; then fm <= f.x0 - R by XCMPLX_1:18; then A29: fm < r2 by A27,AXIOMS:22; f.x0 + R <= f.x0 + (fp - f.x0) by A28,REAL_1:55; then f.x0 + R <= fp by XCMPLX_1:27; then r2 < fp by A27,AXIOMS:22; then r2 in {g2: fm < g2 & g2 < fp} by A29; then A30: r2 in ].fm,fp.[ by RCOMP_1:def 2; ].fm,fp.[ c= [.fm,fp.] by RCOMP_1:15; then consider s such that A31: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A25,A27,A30, FCONT_2:16; s in N by A6,A17,A31; then s in dom f /\ ].p,g.[ by A5,A20,XBOOLE_0:def 3 ; then A32: s in dom f1 by FUNCT_1:68; then x = f1.s by A31,FUNCT_1:68; hence thesis by A32,FUNCT_1:def 5; end; suppose A33: f is_decreasing_on ].p,g.[; then fp < fm by A19,A21,A22,RFUNCT_2:def 3; then [.fm,fp.] = {} by RCOMP_1:13; then A34: [.fm,fp.] \/ [.fp,fm.] = [.fp,fm.]; f.x0 < fm by A4,A11,A22,A33,RFUNCT_2:def 3; then A35: 0 < fm - f.x0 by SQUARE_1:11; set R = min(fm - f.x0,f.x0 - fp); fp < f.x0 by A4,A15,A21,A33,RFUNCT_2:def 3; then 0 < f.x0 - fp by SQUARE_1:11; then 0 < R by A35,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f1 proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A36: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A23; A37: R <= fm - f.x0 & R <= f.x0 - fp by SQUARE_1:35; then f.x0 - (f.x0 - fp) <= f.x0 - R by REAL_1:92; then fp <= f.x0 - R by XCMPLX_1:18; then A38: fp < r2 by A36,AXIOMS:22; f.x0 + R <= f.x0 + (fm - f.x0) by A37,REAL_1:55; then f.x0 + R <= fm by XCMPLX_1:27; then r2 < fm by A36,AXIOMS:22; then r2 in {g2: fp < g2 & g2 < fm} by A38; then A39: r2 in ].fp,fm.[ by RCOMP_1:def 2; ].fp,fm.[ c= [.fp,fm.] by RCOMP_1:15; then consider s such that A40: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A34,A36,A39, FCONT_2:16; s in N by A6,A17,A40; then s in dom f /\ ].p,g.[ by A5,A20,XBOOLE_0:def 3 ; then A41: s in dom f1 by FUNCT_1:68; then x = f1.s by A40,FUNCT_1:68; hence thesis by A41,FUNCT_1:def 5; end; end; hence ex N be Neighbourhood of r1 st N c= rng f1; end; hence thesis by RCOMP_1:41; end; theorem f is_continuous_on left_open_halfline(p) & (f is_increasing_on left_open_halfline(p) or f is_decreasing_on left_open_halfline(p)) implies rng (f|left_open_halfline(p)) is open proof set L = left_open_halfline(p); assume that A1: f is_continuous_on L and A2: f is_increasing_on L or f is_decreasing_on L; now set f1 = f|L; let r1 be real number; assume r1 in rng f1; then consider x0 such that A3: x0 in dom f1 & f1.x0 = r1 by PARTFUN1:26; A4: x0 in dom f /\ L by A3,FUNCT_1:68; then x0 in dom f & x0 in L by XBOOLE_0:def 3; then consider N be Neighbourhood of x0 such that A5: N c= L by RCOMP_1:39; consider r be real number such that A6: 0 < r & N = ].x0 - r, x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; A7: f is_continuous_on N by A1,A5,FCONT_1:17; A8: r/2 < r by A6,SEQ_2:4; then A9: x0 - r < x0 - r/2 by REAL_1:92; A10: 0 < r/2 by A6,SEQ_2:3; then A11: x0 - r/2 < x0 - 0 by REAL_1:92; x0 < x0 + r by A6,REAL_2:174; then x0 - r/2 < x0 + r by A11,AXIOMS:22; then x0 - r/2 in {g1: x0 - r < g1 & g1 < x0 + r} by A9; then A12: x0 - r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; A13: x0 + r/2 < x0 + r by A8,REAL_1:67; A14: x0 - r < x0 by A6,REAL_2:174; A15: x0 < x0 + r/2 by A10,REAL_2:174; then x0 - r < x0 + r/2 by A14,AXIOMS:22; then x0 + r/2 in {g2: x0 - r < g2 & g2 < x0 + r} by A13; then A16: x0 + r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; then A17: [.x0 - r/2, x0 + r/2.] c= ].x0 - r, x0 + r.[ by A12,RCOMP_1:17; then A18: f is_continuous_on [.x0 - r/2, x0 + r/2.] by A6,A7,FCONT_1:17; set fm = f.(x0 - r/2); set fp = f.(x0 + r/2); A19: x0 - r/2 < x0 + r/2 by A11,A15,AXIOMS:22; A20: N c= dom f by A7,FCONT_1:def 2; then A21: x0 + r/2 in L /\ dom f by A5,A6,A16,XBOOLE_0:def 3; A22: x0 - r/2 in L /\ dom f by A5,A6,A12,A20,XBOOLE_0:def 3; A23: r1 = f.x0 by A3,FUNCT_1:68; now per cases by A2; suppose A24: f is_increasing_on L; then fm < fp by A19,A21,A22,RFUNCT_2:def 2; then [.fp,fm.] = {} by RCOMP_1:13; then A25: [.fm,fp.] \/ [.fp,fm.] = [.fm,fp.]; fm < f.x0 by A4,A11,A22,A24,RFUNCT_2:def 2; then A26: 0 < f.x0 - fm by SQUARE_1:11; set R = min(f.x0 - fm,fp - f.x0); f.x0 < fp by A4,A15,A21,A24,RFUNCT_2:def 2; then 0 < fp - f.x0 by SQUARE_1:11; then 0 < R by A26,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f1 proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A27: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A23; A28: R <= f.x0 - fm & R <= fp - f.x0 by SQUARE_1:35; then f.x0 - (f.x0 - fm) <= f.x0 - R by REAL_1:92; then fm <= f.x0 - R by XCMPLX_1:18; then A29: fm < r2 by A27,AXIOMS:22; f.x0 + R <= f.x0 + (fp - f.x0) by A28,REAL_1:55; then f.x0 + R <= fp by XCMPLX_1:27; then r2 < fp by A27,AXIOMS:22; then r2 in {g2: fm < g2 & g2 < fp} by A29; then A30: r2 in ].fm,fp.[ by RCOMP_1:def 2; ].fm,fp.[ c= [.fm,fp.] by RCOMP_1:15; then consider s such that A31: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A25,A27,A30, FCONT_2:16; s in N by A6,A17,A31; then s in dom f /\ L by A5,A20,XBOOLE_0:def 3; then A32: s in dom f1 by FUNCT_1:68; then x = f1.s by A31,FUNCT_1:68; hence thesis by A32,FUNCT_1:def 5; end; suppose A33: f is_decreasing_on L; then fp < fm by A19,A21,A22,RFUNCT_2:def 3; then [.fm,fp.] = {} by RCOMP_1:13; then A34: [.fm,fp.] \/ [.fp,fm.] = [.fp,fm.]; f.x0 < fm by A4,A11,A22,A33,RFUNCT_2:def 3; then A35: 0 < fm - f.x0 by SQUARE_1:11; set R = min(fm - f.x0,f.x0 - fp); fp < f.x0 by A4,A15,A21,A33,RFUNCT_2:def 3; then 0 < f.x0 - fp by SQUARE_1:11; then 0 < R by A35,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f1 proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A36: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A23; A37: R <= fm - f.x0 & R <= f.x0 - fp by SQUARE_1:35; then f.x0 - (f.x0 - fp) <= f.x0 - R by REAL_1:92; then fp <= f.x0 - R by XCMPLX_1:18; then A38: fp < r2 by A36,AXIOMS:22; f.x0 + R <= f.x0 + (fm - f.x0) by A37,REAL_1:55; then f.x0 + R <= fm by XCMPLX_1:27; then r2 < fm by A36,AXIOMS:22; then r2 in {g2: fp < g2 & g2 < fm} by A38; then A39: r2 in ].fp,fm.[ by RCOMP_1:def 2; ].fp,fm.[ c= [.fp,fm.] by RCOMP_1:15; then consider s such that A40: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A34,A36,A39, FCONT_2:16; s in N by A6,A17,A40; then s in dom f /\ L by A5,A20,XBOOLE_0:def 3; then A41: s in dom f1 by FUNCT_1:68; then x = f1.s by A40,FUNCT_1:68; hence thesis by A41,FUNCT_1:def 5; end; end; hence ex N be Neighbourhood of r1 st N c= rng f1; end; hence thesis by RCOMP_1:41; end; theorem f is_continuous_on right_open_halfline(p) & (f is_increasing_on right_open_halfline(p) or f is_decreasing_on right_open_halfline(p)) implies rng (f|right_open_halfline(p)) is open proof set L = right_open_halfline(p); assume that A1: f is_continuous_on L and A2: f is_increasing_on L or f is_decreasing_on L; now set f1 = f|L; let r1 be real number; assume r1 in rng f1; then consider x0 such that A3: x0 in dom f1 & f1.x0 = r1 by PARTFUN1:26; A4: x0 in dom f /\ L by A3,FUNCT_1:68; then x0 in dom f & x0 in L by XBOOLE_0:def 3; then consider N be Neighbourhood of x0 such that A5: N c= L by RCOMP_1:39; consider r be real number such that A6: 0 < r & N = ].x0 - r, x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; A7: f is_continuous_on N by A1,A5,FCONT_1:17; A8: r/2 < r by A6,SEQ_2:4; then A9: x0 - r < x0 - r/2 by REAL_1:92; A10: 0 < r/2 by A6,SEQ_2:3; then A11: x0 - r/2 < x0 - 0 by REAL_1:92; x0 < x0 + r by A6,REAL_2:174; then x0 - r/2 < x0 + r by A11,AXIOMS:22; then x0 - r/2 in {g1: x0 - r < g1 & g1 < x0 + r} by A9; then A12: x0 - r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; A13: x0 + r/2 < x0 + r by A8,REAL_1:67; A14: x0 - r < x0 by A6,REAL_2:174; A15: x0 < x0 + r/2 by A10,REAL_2:174; then x0 - r < x0 + r/2 by A14,AXIOMS:22; then x0 + r/2 in {g2: x0 - r < g2 & g2 < x0 + r} by A13; then A16: x0 + r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; then A17: [.x0 - r/2, x0 + r/2.] c= ].x0 - r, x0 + r.[ by A12,RCOMP_1:17; then A18: f is_continuous_on [.x0 - r/2, x0 + r/2.] by A6,A7,FCONT_1:17; set fm = f.(x0 - r/2); set fp = f.(x0 + r/2); A19: x0 - r/2 < x0 + r/2 by A11,A15,AXIOMS:22; A20: N c= dom f by A7,FCONT_1:def 2; then A21: x0 + r/2 in L /\ dom f by A5,A6,A16,XBOOLE_0:def 3; A22: x0 - r/2 in L /\ dom f by A5,A6,A12,A20,XBOOLE_0:def 3; A23: r1 = f.x0 by A3,FUNCT_1:68; now per cases by A2; suppose A24: f is_increasing_on L; then fm < fp by A19,A21,A22,RFUNCT_2:def 2; then [.fp,fm.] = {} by RCOMP_1:13; then A25: [.fm,fp.] \/ [.fp,fm.] = [.fm,fp.]; fm < f.x0 by A4,A11,A22,A24,RFUNCT_2:def 2; then A26: 0 < f.x0 - fm by SQUARE_1:11; set R = min(f.x0 - fm,fp - f.x0); f.x0 < fp by A4,A15,A21,A24,RFUNCT_2:def 2; then 0 < fp - f.x0 by SQUARE_1:11; then 0 < R by A26,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f1 proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A27: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A23; A28: R <= f.x0 - fm & R <= fp - f.x0 by SQUARE_1:35; then f.x0 - (f.x0 - fm) <= f.x0 - R by REAL_1:92; then fm <= f.x0 - R by XCMPLX_1:18; then A29: fm < r2 by A27,AXIOMS:22; f.x0 + R <= f.x0 + (fp - f.x0) by A28,REAL_1:55; then f.x0 + R <= fp by XCMPLX_1:27; then r2 < fp by A27,AXIOMS:22; then r2 in {g2: fm < g2 & g2 < fp} by A29; then A30: r2 in ].fm,fp.[ by RCOMP_1:def 2; ].fm,fp.[ c= [.fm,fp.] by RCOMP_1:15; then consider s such that A31: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A25,A27,A30, FCONT_2:16; s in N by A6,A17,A31; then s in dom f /\ L by A5,A20,XBOOLE_0:def 3; then A32: s in dom f1 by FUNCT_1:68; then x = f1.s by A31,FUNCT_1:68; hence thesis by A32,FUNCT_1:def 5; end; suppose A33: f is_decreasing_on L; then fp < fm by A19,A21,A22,RFUNCT_2:def 3; then [.fm,fp.] = {} by RCOMP_1:13; then A34: [.fm,fp.] \/ [.fp,fm.] = [.fp,fm.]; f.x0 < fm by A4,A11,A22,A33,RFUNCT_2:def 3; then A35: 0 < fm - f.x0 by SQUARE_1:11; set R = min(fm - f.x0,f.x0 - fp); fp < f.x0 by A4,A15,A21,A33,RFUNCT_2:def 3; then 0 < f.x0 - fp by SQUARE_1:11; then 0 < R by A35,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f1 proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A36: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A23; A37: R <= fm - f.x0 & R <= f.x0 - fp by SQUARE_1:35; then f.x0 - (f.x0 - fp) <= f.x0 - R by REAL_1:92; then fp <= f.x0 - R by XCMPLX_1:18; then A38: fp < r2 by A36,AXIOMS:22; f.x0 + R <= f.x0 + (fm - f.x0) by A37,REAL_1:55; then f.x0 + R <= fm by XCMPLX_1:27; then r2 < fm by A36,AXIOMS:22; then r2 in {g2: fp < g2 & g2 < fm} by A38; then A39: r2 in ].fp,fm.[ by RCOMP_1:def 2; ].fp,fm.[ c= [.fp,fm.] by RCOMP_1:15; then consider s such that A40: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A34,A36,A39, FCONT_2:16; s in N by A6,A17,A40; then s in dom f /\ L by A5,A20,XBOOLE_0:def 3; then A41: s in dom f1 by FUNCT_1:68; then x = f1.s by A40,FUNCT_1:68; hence thesis by A41,FUNCT_1:def 5; end; end; hence ex N be Neighbourhood of r1 st N c= rng f1; end; hence thesis by RCOMP_1:41; end; theorem f is_continuous_on [#](REAL) & (f is_increasing_on [#](REAL) or f is_decreasing_on [#](REAL)) implies rng f is open proof set L = [#](REAL); assume that A1: f is_continuous_on L and A2: f is_increasing_on L or f is_decreasing_on L; now dom f c= REAL; then A3: dom f c= L by SUBSET_1:def 4; let r1 be real number; assume r1 in rng f; then consider x0 such that A4: x0 in dom f & f.x0 = r1 by PARTFUN1:26; consider N be Neighbourhood of x0 such that A5: N c= [#] REAL by A3,A4,Th4,RCOMP_1:42; consider r be real number such that A6: 0 < r & N = ].x0 - r, x0 + r.[ by RCOMP_1:def 7; reconsider r as Real by XREAL_0:def 1; A7: f is_continuous_on N by A1,A5,FCONT_1:17; A8: r/2 < r by A6,SEQ_2:4; then A9: x0 - r < x0 - r/2 by REAL_1:92; A10: 0 < r/2 by A6,SEQ_2:3; then A11: x0 - r/2 < x0 - 0 by REAL_1:92; x0 < x0 + r by A6,REAL_2:174; then x0 - r/2 < x0 + r by A11,AXIOMS:22; then x0 - r/2 in {g1: x0 - r < g1 & g1 < x0 + r} by A9; then A12: x0 - r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; A13: x0 + r/2 < x0 + r by A8,REAL_1:67; A14: x0 - r < x0 by A6,REAL_2:174; A15: x0 < x0 + r/2 by A10,REAL_2:174; then x0 - r < x0 + r/2 by A14,AXIOMS:22; then x0 + r/2 in {g2: x0 - r < g2 & g2 < x0 + r} by A13; then A16: x0 + r/2 in ].x0 - r, x0 + r.[ by RCOMP_1:def 2; then A17: [.x0 - r/2, x0 + r/2.] c= ].x0 - r, x0 + r.[ by A12,RCOMP_1:17; then A18: f is_continuous_on [.x0 - r/2, x0 + r/2.] by A6,A7,FCONT_1:17; set fm = f.(x0 - r/2); set fp = f.(x0 + r/2); A19: x0 - r/2 < x0 + r/2 by A11,A15,AXIOMS:22; A20: N c= dom f by A7,FCONT_1:def 2; then A21: x0 + r/2 in L /\ dom f by A5,A6,A16,XBOOLE_0:def 3; A22: x0 - r/2 in L /\ dom f by A5,A6,A12,A20,XBOOLE_0:def 3; A23: x0 in L /\ dom f by A3,A4,XBOOLE_0:def 3; now per cases by A2; suppose A24: f is_increasing_on L; then fm < fp by A19,A21,A22,RFUNCT_2:def 2; then [.fp,fm.] = {} by RCOMP_1:13; then A25: [.fm,fp.] \/ [.fp,fm.] = [.fm,fp.]; fm < f.x0 by A11,A22,A23,A24,RFUNCT_2:def 2; then A26: 0 < f.x0 - fm by SQUARE_1:11; set R = min(f.x0 - fm,fp - f.x0); f.x0 < fp by A15,A21,A23,A24,RFUNCT_2:def 2; then 0 < fp - f.x0 by SQUARE_1:11; then 0 < R by A26,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A27: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A4; A28: R <= f.x0 - fm & R <= fp - f.x0 by SQUARE_1:35; then f.x0 - (f.x0 - fm) <= f.x0 - R by REAL_1:92; then fm <= f.x0 - R by XCMPLX_1:18; then A29: fm < r2 by A27,AXIOMS:22; f.x0 + R <= f.x0 + (fp - f.x0) by A28,REAL_1:55; then f.x0 + R <= fp by XCMPLX_1:27; then r2 < fp by A27,AXIOMS:22; then r2 in {g2: fm < g2 & g2 < fp} by A29; then A30: r2 in ].fm,fp.[ by RCOMP_1:def 2; ].fm,fp.[ c= [.fm,fp.] by RCOMP_1:15; then consider s such that A31: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A25,A27,A30, FCONT_2:16; s in N by A6,A17,A31; hence thesis by A20,A31,FUNCT_1:def 5; end; suppose A32: f is_decreasing_on L; then fp < fm by A19,A21,A22,RFUNCT_2:def 3; then [.fm,fp.] = {} by RCOMP_1:13; then A33: [.fm,fp.] \/ [.fp,fm.] = [.fp,fm.]; f.x0 < fm by A11,A22,A23,A32,RFUNCT_2:def 3; then A34: 0 < fm - f.x0 by SQUARE_1:11; set R = min(fm - f.x0,f.x0 - fp); fp < f.x0 by A15,A21,A23,A32,RFUNCT_2:def 3; then 0 < f.x0 - fp by SQUARE_1:11; then 0 < R by A34,SQUARE_1:38; then reconsider N1 = ].r1 - R, r1 + R.[ as Neighbourhood of r1 by RCOMP_1 :def 7; take N1; thus N1 c= rng f proof let x; assume x in N1; then x in {r2: r1 - R < r2 & r2 < r1 + R} by RCOMP_1:def 2; then consider r2 such that A35: r2 = x & f.x0 - R < r2 & r2 < f.x0 + R by A4; A36: R <= fm - f.x0 & R <= f.x0 - fp by SQUARE_1:35; then f.x0 - (f.x0 - fp) <= f.x0 - R by REAL_1:92; then fp <= f.x0 - R by XCMPLX_1:18; then A37: fp < r2 by A35,AXIOMS:22; f.x0 + R <= f.x0 + (fm - f.x0) by A36,REAL_1:55; then f.x0 + R <= fm by XCMPLX_1:27; then r2 < fm by A35,AXIOMS:22; then r2 in {g2: fp < g2 & g2 < fm} by A37; then A38: r2 in ].fp,fm.[ by RCOMP_1:def 2; ].fp,fm.[ c= [.fp,fm.] by RCOMP_1:15; then consider s such that A39: s in [.x0 - r/2, x0 + r/2.] & x = f.s by A18,A19,A33,A35,A38, FCONT_2:16; s in N by A6,A17,A39; hence thesis by A20,A39,FUNCT_1:def 5; end; end; hence ex N be Neighbourhood of r1 st N c= rng f; end; hence thesis by RCOMP_1:41; end;