Journal of Formalized Mathematics
Volume 12, 2000
University of Bialystok
Copyright (c) 2000
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Artur Kornilowicz,
and
- Robert Milewski
- Received November 6, 2000
- MML identifier: JORDAN1D
- [
Mizar article,
MML identifier index
]
environ
vocabulary ARYTM, EUCLID, COMPTS_1, RELAT_2, SPPOL_1, NAT_1, BOOLE, TARSKI,
MATRIX_2, INT_1, GROUP_1, ARYTM_3, ARYTM_1, FINSEQ_1, JORDAN8, MCART_1,
PSCOMP_1, TREES_1, MATRIX_1, GOBOARD5, SETFAM_1, JORDAN9, PRE_TOPC,
JORDAN1A, TOPREAL1, GOBOARD1, FINSEQ_4, RELAT_1, FUNCT_1;
notation TARSKI, XBOOLE_0, ENUMSET1, SETFAM_1, ORDINAL1, XCMPLX_0, XREAL_0,
REAL_1, INT_1, NAT_1, FUNCT_1, STRUCT_0, FINSEQ_1, FINSEQ_4, BINARITH,
NEWTON, PRE_TOPC, COMPTS_1, CONNSP_1, MATRIX_1, EUCLID, WSIERP_1,
GOBOARD1, TOPREAL1, GOBOARD5, PSCOMP_1, SPPOL_1, ABIAN, GOBRD13, JORDAN8,
JORDAN9, JORDAN1A;
constructors JORDAN8, REAL_1, CARD_4, PSCOMP_1, BINARITH, CONNSP_1, JORDAN9,
JORDAN1A, WSIERP_1, ABSVALUE, FINSEQ_4, GOBRD13, TOPREAL2, ENUMSET1,
ABIAN, REALSET1, INT_1;
clusters XREAL_0, TOPREAL6, JORDAN8, INT_1, NEWTON, RELSET_1, EUCLID,
JORDAN1A, ABIAN, BINARITH, GRAPH_3, NAT_1, SPRECT_1, STRUCT_0, MEMBERED;
requirements NUMERALS, SUBSET, REAL, BOOLE, ARITHM;
begin :: Preliminaries
reserve
a, b, i, k, m, n for Nat,
r, s for real number,
D for non empty Subset of TOP-REAL 2,
C for compact connected non vertical non horizontal Subset of TOP-REAL 2;
theorem :: JORDAN1D:1
for A, B being set st
for x being set st x in A ex K being set st K c= B & x c= union K
holds union A c= union B;
definition let m be even Integer;
cluster m + 2 -> even;
end;
definition let m be odd Integer;
cluster m + 2 -> odd;
end;
definition
let m be non empty Nat;
cluster 2|^m -> even;
end;
definition
let n be even Nat, m be non empty Nat;
cluster n|^m -> even;
end;
theorem :: JORDAN1D:2
r <> 0 implies 1/r * r|^(i+1) = r|^i;
theorem :: JORDAN1D:3
r/s is not Integer implies
- [\ r/s /] = [\ (-r) / s /] + 1;
theorem :: JORDAN1D:4
r/s is Integer implies
- [\ r/s /] = [\ (-r) / s /];
theorem :: JORDAN1D:5
n > 0 & k mod n <> 0 implies - (k div n) = (-k) div n + 1;
theorem :: JORDAN1D:6
n > 0 & k mod n = 0 implies - (k div n) = (-k) div n;
begin :: Gauges and Cages
theorem :: JORDAN1D:7
2 <= m & m < len Gauge(D,i) &
1 <= a & a <= len Gauge(D,i) & 1 <= b & b <= len Gauge(D,i+1)
implies
Gauge(D,i)*(m,a)`1 = Gauge(D,i+1)*(2*m-'2,b)`1;
theorem :: JORDAN1D:8
2 <= n & n < len Gauge(D,i) &
1 <= a & a <= len Gauge(D,i) & 1 <= b & b <= len Gauge(D,i+1)
implies
Gauge(D,i)*(a,n)`2 = Gauge(D,i+1)*(b,2*n-'2)`2;
theorem :: JORDAN1D:9
for D being compact non vertical non horizontal Subset of TOP-REAL 2 holds
2 <= m & m+1 < len Gauge(D,i) & 2 <= n & n+1 < len Gauge(D,i) implies
cell(Gauge(D,i),m,n) =
cell(Gauge(D,i+1),2*m-'2,2*n-'2) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'2) \/
cell(Gauge(D,i+1),2*m-'2,2*n-'1) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'1);
theorem :: JORDAN1D:10
for D being compact non vertical non horizontal Subset of TOP-REAL 2,
k being Nat holds
2 <= m & m+1 < len Gauge(D,i) & 2 <= n & n+1 < len Gauge(D,i) implies
cell(Gauge(D,i),m,n) =
union { cell(Gauge(D,i+k),a,b) where a, b is Nat:
2|^k*m - 2|^(k+1) + 2 <= a & a <= 2|^k*m - 2|^k + 1 &
2|^k*n - 2|^(k+1) + 2 <= b & b <= 2|^k*n - 2|^k + 1 };
theorem :: JORDAN1D:11
ex i being Nat st 1 <= i & i < len Cage(C,n) &
N-max C in right_cell(Cage(C,n),i,Gauge(C,n));
theorem :: JORDAN1D:12
ex i being Nat st 1 <= i & i < len Cage(C,n) &
N-max C in right_cell(Cage(C,n),i);
theorem :: JORDAN1D:13
ex i being Nat st 1 <= i & i < len Cage(C,n) &
E-min C in right_cell(Cage(C,n),i,Gauge(C,n));
theorem :: JORDAN1D:14
ex i being Nat st 1 <= i & i < len Cage(C,n) &
E-min C in right_cell(Cage(C,n),i);
theorem :: JORDAN1D:15
ex i being Nat st 1 <= i & i < len Cage(C,n) &
E-max C in right_cell(Cage(C,n),i,Gauge(C,n));
theorem :: JORDAN1D:16
ex i being Nat st 1 <= i & i < len Cage(C,n) &
E-max C in right_cell(Cage(C,n),i);
theorem :: JORDAN1D:17
ex i being Nat st 1 <= i & i < len Cage(C,n) &
S-min C in right_cell(Cage(C,n),i,Gauge(C,n));
theorem :: JORDAN1D:18
ex i being Nat st 1 <= i & i < len Cage(C,n) &
S-min C in right_cell(Cage(C,n),i);
theorem :: JORDAN1D:19
ex i being Nat st 1 <= i & i < len Cage(C,n) &
S-max C in right_cell(Cage(C,n),i,Gauge(C,n));
theorem :: JORDAN1D:20
ex i being Nat st 1 <= i & i < len Cage(C,n) &
S-max C in right_cell(Cage(C,n),i);
theorem :: JORDAN1D:21
ex i being Nat st 1 <= i & i < len Cage(C,n) &
W-min C in right_cell(Cage(C,n),i,Gauge(C,n));
theorem :: JORDAN1D:22
ex i being Nat st 1 <= i & i < len Cage(C,n) &
W-min C in right_cell(Cage(C,n),i);
theorem :: JORDAN1D:23
ex i being Nat st 1 <= i & i < len Cage(C,n) &
W-max C in right_cell(Cage(C,n),i,Gauge(C,n));
theorem :: JORDAN1D:24
ex i being Nat st 1 <= i & i < len Cage(C,n) &
W-max C in right_cell(Cage(C,n),i);
theorem :: JORDAN1D:25
ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
N-min L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n));
theorem :: JORDAN1D:26
ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
N-max L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n));
theorem :: JORDAN1D:27
ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
Gauge(C,n)*(i,width Gauge(C,n)) in rng Cage(C,n);
theorem :: JORDAN1D:28
ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
E-min L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j);
theorem :: JORDAN1D:29
ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
E-max L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j);
theorem :: JORDAN1D:30
ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
Gauge(C,n)*(len Gauge(C,n),j) in rng Cage(C,n);
theorem :: JORDAN1D:31
ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
S-min L~Cage(C,n) = Gauge(C,n)*(i,1);
theorem :: JORDAN1D:32
ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
S-max L~Cage(C,n) = Gauge(C,n)*(i,1);
theorem :: JORDAN1D:33
ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
Gauge(C,n)*(i,1) in rng Cage(C,n);
theorem :: JORDAN1D:34
ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
W-min L~Cage(C,n) = Gauge(C,n)*(1,j);
theorem :: JORDAN1D:35
ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
W-max L~Cage(C,n) = Gauge(C,n)*(1,j);
theorem :: JORDAN1D:36
ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
Gauge(C,n)*(1,j) in rng Cage(C,n);
Back to top