environ vocabulary ARYTM, EUCLID, COMPTS_1, RELAT_2, SPPOL_1, NAT_1, BOOLE, TARSKI, MATRIX_2, INT_1, GROUP_1, ARYTM_3, ARYTM_1, FINSEQ_1, JORDAN8, MCART_1, PSCOMP_1, TREES_1, MATRIX_1, GOBOARD5, SETFAM_1, JORDAN9, PRE_TOPC, JORDAN1A, TOPREAL1, GOBOARD1, FINSEQ_4, RELAT_1, FUNCT_1; notation TARSKI, XBOOLE_0, ENUMSET1, SETFAM_1, ORDINAL1, XCMPLX_0, XREAL_0, REAL_1, INT_1, NAT_1, FUNCT_1, STRUCT_0, FINSEQ_1, FINSEQ_4, BINARITH, NEWTON, PRE_TOPC, COMPTS_1, CONNSP_1, MATRIX_1, EUCLID, WSIERP_1, GOBOARD1, TOPREAL1, GOBOARD5, PSCOMP_1, SPPOL_1, ABIAN, GOBRD13, JORDAN8, JORDAN9, JORDAN1A; constructors JORDAN8, REAL_1, CARD_4, PSCOMP_1, BINARITH, CONNSP_1, JORDAN9, JORDAN1A, WSIERP_1, ABSVALUE, FINSEQ_4, GOBRD13, TOPREAL2, ENUMSET1, ABIAN, REALSET1, INT_1; clusters XREAL_0, TOPREAL6, JORDAN8, INT_1, NEWTON, RELSET_1, EUCLID, JORDAN1A, ABIAN, BINARITH, GRAPH_3, NAT_1, SPRECT_1, STRUCT_0, MEMBERED; requirements NUMERALS, SUBSET, REAL, BOOLE, ARITHM; begin :: Preliminaries reserve a, b, i, k, m, n for Nat, r, s for real number, D for non empty Subset of TOP-REAL 2, C for compact connected non vertical non horizontal Subset of TOP-REAL 2; theorem :: JORDAN1D:1 for A, B being set st for x being set st x in A ex K being set st K c= B & x c= union K holds union A c= union B; definition let m be even Integer; cluster m + 2 -> even; end; definition let m be odd Integer; cluster m + 2 -> odd; end; definition let m be non empty Nat; cluster 2|^m -> even; end; definition let n be even Nat, m be non empty Nat; cluster n|^m -> even; end; theorem :: JORDAN1D:2 r <> 0 implies 1/r * r|^(i+1) = r|^i; theorem :: JORDAN1D:3 r/s is not Integer implies - [\ r/s /] = [\ (-r) / s /] + 1; theorem :: JORDAN1D:4 r/s is Integer implies - [\ r/s /] = [\ (-r) / s /]; theorem :: JORDAN1D:5 n > 0 & k mod n <> 0 implies - (k div n) = (-k) div n + 1; theorem :: JORDAN1D:6 n > 0 & k mod n = 0 implies - (k div n) = (-k) div n; begin :: Gauges and Cages theorem :: JORDAN1D:7 2 <= m & m < len Gauge(D,i) & 1 <= a & a <= len Gauge(D,i) & 1 <= b & b <= len Gauge(D,i+1) implies Gauge(D,i)*(m,a)`1 = Gauge(D,i+1)*(2*m-'2,b)`1; theorem :: JORDAN1D:8 2 <= n & n < len Gauge(D,i) & 1 <= a & a <= len Gauge(D,i) & 1 <= b & b <= len Gauge(D,i+1) implies Gauge(D,i)*(a,n)`2 = Gauge(D,i+1)*(b,2*n-'2)`2; theorem :: JORDAN1D:9 for D being compact non vertical non horizontal Subset of TOP-REAL 2 holds 2 <= m & m+1 < len Gauge(D,i) & 2 <= n & n+1 < len Gauge(D,i) implies cell(Gauge(D,i),m,n) = cell(Gauge(D,i+1),2*m-'2,2*n-'2) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'2) \/ cell(Gauge(D,i+1),2*m-'2,2*n-'1) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'1); theorem :: JORDAN1D:10 for D being compact non vertical non horizontal Subset of TOP-REAL 2, k being Nat holds 2 <= m & m+1 < len Gauge(D,i) & 2 <= n & n+1 < len Gauge(D,i) implies cell(Gauge(D,i),m,n) = union { cell(Gauge(D,i+k),a,b) where a, b is Nat: 2|^k*m - 2|^(k+1) + 2 <= a & a <= 2|^k*m - 2|^k + 1 & 2|^k*n - 2|^(k+1) + 2 <= b & b <= 2|^k*n - 2|^k + 1 }; theorem :: JORDAN1D:11 ex i being Nat st 1 <= i & i < len Cage(C,n) & N-max C in right_cell(Cage(C,n),i,Gauge(C,n)); theorem :: JORDAN1D:12 ex i being Nat st 1 <= i & i < len Cage(C,n) & N-max C in right_cell(Cage(C,n),i); theorem :: JORDAN1D:13 ex i being Nat st 1 <= i & i < len Cage(C,n) & E-min C in right_cell(Cage(C,n),i,Gauge(C,n)); theorem :: JORDAN1D:14 ex i being Nat st 1 <= i & i < len Cage(C,n) & E-min C in right_cell(Cage(C,n),i); theorem :: JORDAN1D:15 ex i being Nat st 1 <= i & i < len Cage(C,n) & E-max C in right_cell(Cage(C,n),i,Gauge(C,n)); theorem :: JORDAN1D:16 ex i being Nat st 1 <= i & i < len Cage(C,n) & E-max C in right_cell(Cage(C,n),i); theorem :: JORDAN1D:17 ex i being Nat st 1 <= i & i < len Cage(C,n) & S-min C in right_cell(Cage(C,n),i,Gauge(C,n)); theorem :: JORDAN1D:18 ex i being Nat st 1 <= i & i < len Cage(C,n) & S-min C in right_cell(Cage(C,n),i); theorem :: JORDAN1D:19 ex i being Nat st 1 <= i & i < len Cage(C,n) & S-max C in right_cell(Cage(C,n),i,Gauge(C,n)); theorem :: JORDAN1D:20 ex i being Nat st 1 <= i & i < len Cage(C,n) & S-max C in right_cell(Cage(C,n),i); theorem :: JORDAN1D:21 ex i being Nat st 1 <= i & i < len Cage(C,n) & W-min C in right_cell(Cage(C,n),i,Gauge(C,n)); theorem :: JORDAN1D:22 ex i being Nat st 1 <= i & i < len Cage(C,n) & W-min C in right_cell(Cage(C,n),i); theorem :: JORDAN1D:23 ex i being Nat st 1 <= i & i < len Cage(C,n) & W-max C in right_cell(Cage(C,n),i,Gauge(C,n)); theorem :: JORDAN1D:24 ex i being Nat st 1 <= i & i < len Cage(C,n) & W-max C in right_cell(Cage(C,n),i); theorem :: JORDAN1D:25 ex i being Nat st 1 <= i & i <= len Gauge(C,n) & N-min L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n)); theorem :: JORDAN1D:26 ex i being Nat st 1 <= i & i <= len Gauge(C,n) & N-max L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n)); theorem :: JORDAN1D:27 ex i being Nat st 1 <= i & i <= len Gauge(C,n) & Gauge(C,n)*(i,width Gauge(C,n)) in rng Cage(C,n); theorem :: JORDAN1D:28 ex j being Nat st 1 <= j & j <= width Gauge(C,n) & E-min L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j); theorem :: JORDAN1D:29 ex j being Nat st 1 <= j & j <= width Gauge(C,n) & E-max L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j); theorem :: JORDAN1D:30 ex j being Nat st 1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(len Gauge(C,n),j) in rng Cage(C,n); theorem :: JORDAN1D:31 ex i being Nat st 1 <= i & i <= len Gauge(C,n) & S-min L~Cage(C,n) = Gauge(C,n)*(i,1); theorem :: JORDAN1D:32 ex i being Nat st 1 <= i & i <= len Gauge(C,n) & S-max L~Cage(C,n) = Gauge(C,n)*(i,1); theorem :: JORDAN1D:33 ex i being Nat st 1 <= i & i <= len Gauge(C,n) & Gauge(C,n)*(i,1) in rng Cage(C,n); theorem :: JORDAN1D:34 ex j being Nat st 1 <= j & j <= width Gauge(C,n) & W-min L~Cage(C,n) = Gauge(C,n)*(1,j); theorem :: JORDAN1D:35 ex j being Nat st 1 <= j & j <= width Gauge(C,n) & W-max L~Cage(C,n) = Gauge(C,n)*(1,j); theorem :: JORDAN1D:36 ex j being Nat st 1 <= j & j <= width Gauge(C,n) & Gauge(C,n)*(1,j) in rng Cage(C,n);