The Mizar article:

Gauges and Cages. Part II

by
Artur Kornilowicz, and
Robert Milewski

Received November 6, 2000

Copyright (c) 2000 Association of Mizar Users

MML identifier: JORDAN1D
[ MML identifier index ]


environ

 vocabulary ARYTM, EUCLID, COMPTS_1, RELAT_2, SPPOL_1, NAT_1, BOOLE, TARSKI,
      MATRIX_2, INT_1, GROUP_1, ARYTM_3, ARYTM_1, FINSEQ_1, JORDAN8, MCART_1,
      PSCOMP_1, TREES_1, MATRIX_1, GOBOARD5, SETFAM_1, JORDAN9, PRE_TOPC,
      JORDAN1A, TOPREAL1, GOBOARD1, FINSEQ_4, RELAT_1, FUNCT_1;
 notation TARSKI, XBOOLE_0, ENUMSET1, SETFAM_1, ORDINAL1, XCMPLX_0, XREAL_0,
      REAL_1, INT_1, NAT_1, FUNCT_1, STRUCT_0, FINSEQ_1, FINSEQ_4, BINARITH,
      NEWTON, PRE_TOPC, COMPTS_1, CONNSP_1, MATRIX_1, EUCLID, WSIERP_1,
      GOBOARD1, TOPREAL1, GOBOARD5, PSCOMP_1, SPPOL_1, ABIAN, GOBRD13, JORDAN8,
      JORDAN9, JORDAN1A;
 constructors JORDAN8, REAL_1, CARD_4, PSCOMP_1, BINARITH, CONNSP_1, JORDAN9,
      JORDAN1A, WSIERP_1, ABSVALUE, FINSEQ_4, GOBRD13, TOPREAL2, ENUMSET1,
      ABIAN, REALSET1, INT_1;
 clusters XREAL_0, TOPREAL6, JORDAN8, INT_1, NEWTON, RELSET_1, EUCLID,
      JORDAN1A, ABIAN, BINARITH, GRAPH_3, NAT_1, SPRECT_1, STRUCT_0, MEMBERED;
 requirements NUMERALS, SUBSET, REAL, BOOLE, ARITHM;
 definitions TARSKI, SETFAM_1, XBOOLE_0;
 theorems AXIOMS, BINARITH, EUCLID, GOBRD11, JORDAN8, PSCOMP_1, JORDAN1A,
      NAT_1, REAL_1, GOBOARD5, FINSEQ_2, SPRECT_2, FINSEQ_4, SPPOL_2, TOPREAL1,
      SPRECT_3, AMI_5, JORDAN3, GOBRD13, JORDAN9, GOBOARD1, TARSKI, JORDAN10,
      ENUMSET1, NEWTON, NAT_2, INT_1, REAL_2, SCMFSA9A, INT_3, WSIERP_1, HEINE,
      GOBOARD7, GOBOARD9, POLYNOM4, SPRECT_1, SQUARE_1, SPPOL_1, ZFMISC_1,
      ABIAN, GROUP_4, SETFAM_1, XBOOLE_0, XBOOLE_1, CQC_THE1, XCMPLX_0,
      XCMPLX_1;
 schemes NAT_1;

begin  :: Preliminaries

reserve
   a, b, i, k, m, n for Nat,
   r, s for real number,
   D for non empty Subset of TOP-REAL 2,
   C for compact connected non vertical non horizontal Subset of TOP-REAL 2;

  1 = 2 * 0 + 1;
then Lm1: 1 div 2 = 0 by NAT_1:def 1;

  2 = 2 * 1 + 0;
then Lm2: 2 div 2 = 1 by NAT_1:def 1;

Lm3:
 for x, A, B, C, D being set holds
  x in A \/ B \/ C \/ D iff x in A or x in B or x in C or x in D
  proof
    let x, A, B, C, D be set;
    hereby assume x in A \/ B \/ C \/ D;
      then x in A \/ B \/ C or x in D by XBOOLE_0:def 2;
      then x in A \/ B or x in C or x in D by XBOOLE_0:def 2;
      hence x in A or x in B or x in C or x in D by XBOOLE_0:def 2;
    end;
    assume x in A or x in B or x in C or x in D;
    then x in A \/ B or x in C or x in D by XBOOLE_0:def 2;
    then x in A \/ B \/ C or x in D by XBOOLE_0:def 2;
    hence thesis by XBOOLE_0:def 2;
  end;

Lm4:
 for A, B, C, D being set holds union {A,B,C,D} = A \/ B \/ C \/ D
  proof
    let A, B, C, D be set;
    hereby
      let x be set;
      assume x in union {A,B,C,D};
      then consider Z being set such that
A1:     x in Z and
A2:     Z in {A,B,C,D} by TARSKI:def 4;
        Z = A or Z = B or Z = C or Z = D by A2,ENUMSET1:18;
      hence x in A \/ B \/ C \/ D by A1,Lm3;
    end;
    let x be set;
    assume x in A \/ B \/ C \/ D;
then A3: x in A or x in B or x in C or x in D by Lm3;
      A in {A,B,C,D} & B in {A,B,C,D} & C in {A,B,C,D} & D in {A,B,C,D}
      by ENUMSET1:19;
    hence thesis by A3,TARSKI:def 4;
  end;

theorem Th1:
 for A, B being set st
  for x being set st x in A ex K being set st K c= B & x c= union K
 holds union A c= union B
  proof
    let A, B be set such that
A1:   for x being set st x in A ex K being set st K c= B & x c= union K;
    let a be set;
    assume a in union A;
    then consider Z being set such that
A2:   a in Z and
A3:   Z in A by TARSKI:def 4;
    consider K being set such that
A4:   K c= B and
A5:   Z c= union K by A1,A3;
      ex S being set st a in S & S in K by A2,A5,TARSKI:def 4;
    hence a in union B by A4,TARSKI:def 4;
  end;

definition let m be even Integer;
 cluster m + 2 -> even;
coherence
  proof
      2 = 2*1;
    then reconsider t = 2 as even Integer;
      m + t is even;
    hence thesis;
  end;
end;

definition let m be odd Integer;
 cluster m + 2 -> odd;
coherence
  proof
      2 = 2*1;
    then reconsider t = 2 as even Integer;
      m + t is odd;
    hence thesis;
  end;
end;

definition
  let m be non empty Nat;
 cluster 2|^m -> even;
coherence
  proof
    defpred P[Nat] means $1 is non empty implies 2|^$1 is even;
A1: P[0];
A2: P[k] implies P[k+1]
    proof
      assume P[k] & k+1 is non empty;
        2|^(k+1) = 2*2|^k by NEWTON:11;
      hence thesis;
    end;
      P[k] from Ind(A1,A2);
    hence thesis;
  end;
end;

definition
  let n be even Nat, m be non empty Nat;
 cluster n|^m -> even;
coherence
  proof
    defpred P[Nat] means $1 is non empty implies n|^$1 is even;
A1: P[0];
A2: P[k] implies P[k+1]
    proof
      assume P[k] & k+1 is non empty;
        n|^(k+1) = n*n|^k by NEWTON:11;
      hence thesis;
    end;
      P[k] from Ind(A1,A2);
    hence thesis;
  end;
end;

theorem Th2:
 r <> 0 implies 1/r * r|^(i+1) = r|^i
  proof
    assume
A1:   r <> 0;
    thus 1/r * r|^(i+1) = 1/r * (r|^i * r) by NEWTON:11
      .= 1/r * r * r|^i by XCMPLX_1:4
      .= 1*r|^i by A1,XCMPLX_1:107
      .= r|^i;
  end;

theorem Th3:
 r/s is not Integer implies
  - [\ r/s /] = [\ (-r) / s /] + 1
  proof
    assume
A1:   r/s is not Integer;
      r/s - 1 < [\ r/s /] by INT_1:def 4;
    then - (r/s - 1) > - [\ r/s /] by REAL_1:50;
    then -r/s + 1 > - [\ r/s /] by XCMPLX_1:162;
    then - [\ r/s /] <= (-r) / s + 1 by XCMPLX_1:188;
    then - [\ r/s /] - 1 <= (-r) / s + 1 - 1 by REAL_1:49;
then A2: - [\ r/s /] - 1 <= (-r) / s + (1-1) by XCMPLX_1:29;
      [\ r/s /] < r/s by A1,INT_1:48;
    then -r/s < - [\ r/s /] by REAL_1:50;
    then -r/s - 1 < - [\ r/s /] - 1 by REAL_1:54;
    then (-r)/s - 1 < - [\ r/s /] - 1 by XCMPLX_1:188;
    then - [\ r/s /] - 1 + 1 = [\ (-r) / s /] + 1 by A2,INT_1:def 4;
    then - [\ r/s /] - (1 - 1) = [\ (-r) / s /] + 1 by XCMPLX_1:37;
    hence - [\ r/s /] = [\ (-r) / s /] + 1;
  end;

theorem Th4:
 r/s is Integer implies
  - [\ r/s /] = [\ (-r) / s /]
  proof
    assume r/s is Integer;
then A1: [\ r/s /] = r/s by INT_1:47;
A2: -r/s = (-r)/s by XCMPLX_1:188;
    then (-r) / s - 1 < - [\ r/s /] - 0 by A1,REAL_1:92;
    hence - [\ r/s /] = [\ (-r) / s /] by A1,A2,INT_1:def 4;
  end;

theorem
   n > 0 & k mod n <> 0 implies - (k div n) = (-k) div n + 1
  proof
    assume
A1:   n > 0;
    assume k mod n <> 0;
    then k qua Integer mod n <> 0 by SCMFSA9A:5;
    then not n qua Integer divides k by A1,INT_3:11;
then A2: k/n is not Integer by A1,WSIERP_1:22;
    thus - (k div n) = - (k qua Integer div n) by SCMFSA9A:5
     .= - [\ k / n /] by INT_1:def 7
     .= [\ (-k) / n /] + 1 by A2,Th3
     .= (-k) div n + 1 by INT_1:def 7;
  end;

theorem
   n > 0 & k mod n = 0 implies - (k div n) = (-k) div n
  proof
    assume
A1:   n > 0;
    assume k mod n = 0;
    then k qua Integer mod n = 0 by SCMFSA9A:5;
    then n qua Integer divides k by A1,INT_3:11;
then A2: k/n is Integer by A1,WSIERP_1:22;
    thus - (k div n) = - (k qua Integer div n) by SCMFSA9A:5
     .= - [\ k / n /] by INT_1:def 7
     .= [\ (-k) / n /] by A2,Th4
     .= (-k) div n by INT_1:def 7;
  end;

Lm5:
  now
    let m be real number;
    assume 2 <= m;
    then 2*m >= 2*2 by REAL_2:197;
    then 2*m - 2 >= 4 - 2 by REAL_1:49;
    hence 2*m - 2 >= 0 by AXIOMS:22;
  end;

Lm6:
  now
    let m be real number;
    assume 1 <= m;
    then 2*m >= 2*1 by REAL_2:197;
    then 2*m - 1 >= 2 - 1 by REAL_1:49;
    hence 2*m - 1 >= 0 by AXIOMS:22;
  end;

Lm7:
  now
    let m;
    assume 2 <= m;
    then 2*m - 2 >= 0 by Lm5;
    hence 2*m-2 = 2*m-'2 by BINARITH:def 3;
  end;

Lm8:
  now
    let m;
    assume 1 <= m;
    then 2*m - 1 >= 0 by Lm6;
    hence 2*m-1 = 2*m-'1 by BINARITH:def 3;
  end;

Lm9:
  now
    let m;
    assume
A1:   m >= 1;
    then 2*m >= 2*1 by AXIOMS:25;
    then 2*m-1 >= 2-1 by REAL_1:49;
then A2: 2*m-'1 >= 1 by A1,Lm8;
    thus 2*m-'2+1 = 2*m-'1-'1+1 by JORDAN3:8
      .= 2*m-'1 by A2,AMI_5:4;
  end;

Lm10:
 for x being real number st 2 <= m holds
    x/(2|^i)*(m-2) = x/(2|^(i+1))*(2*m-'2-2)
  proof
    let x be real number;
    assume
    2 <= m;
then A1: 2*m - 2 >= 0 by Lm5;
    thus x/(2|^i)*(m-2)
       = x/((2|^i)/(m-2)) by XCMPLX_1:82
      .= x/((2|^i)*2/((m-2)*2)) by XCMPLX_1:92
      .= x/((2|^i)*2)*((m-2)*2) by XCMPLX_1:82
      .= x/(2|^(i+1))*((m-2)*2) by NEWTON:11
      .= x/(2|^(i+1))*(2*m-2*2) by XCMPLX_1:40
      .= x/(2|^(i+1))*(2*m-(2+2))
      .= x/(2|^(i+1))*(2*m-2-2) by XCMPLX_1:36
      .= x/(2|^(i+1))*(2*m-'2-2) by A1,BINARITH:def 3;
  end;

Lm11:
 2 <= m implies 1 <= 2*m-'2
  proof
    assume
A1:   2 <= m;
    then 2*2 <= 2*m by REAL_2:197;
then A2: 4-2 <= 2*m-2 by REAL_1:49;
      2*m-'2 = 2*m-2 by A1,Lm7;
    hence thesis by A2,AXIOMS:22;
  end;

Lm12:
 1 <= m implies 1 <= 2*m-'1
  proof
    assume
A1:   1 <= m;
    then 2*1 <= 2*m by REAL_2:197;
    then 2-1 <= 2*m-1 by REAL_1:49;
    hence thesis by A1,Lm8;
  end;

Lm13:
 m < 2|^i+3 implies 2*m-'2 < 2|^(i+1) + 3
  proof
    per cases by CQC_THE1:3;
    suppose
A1:   m = 0 or m = 1;
A2: 2*0-'2 = 0 by POLYNOM4:1;
A3: 2*1-'2 = 0 by GOBOARD9:1;
      0+0 < 2|^(i+1) by HEINE:5;
    hence thesis by A1,A2,A3,REAL_1:67;
    suppose
A4:   2 <= m;
    assume m < 2|^i+3;
    then m+1 <= 2|^i + 3 by NAT_1:38;
    then 2*(m+1) <= 2*(2|^i + 3) by AXIOMS:25;
    then 2*m+2*1 <= 2*(2|^i + 3) by XCMPLX_1:8;
    then 2*m+2*1 <= 2*(2|^i) + 2*3 by XCMPLX_1:8;
    then 2*m+2*1 <= 2|^(i+1) + 6 by NEWTON:11;
    then 2*m+2-4 <= 2|^(i+1) + 6 - 4 by REAL_1:49;
    then 2*m+(2-4) <= 2|^(i+1) + 6 - 4 by XCMPLX_1:29;
    then 2*m+-2 <= 2|^(i+1) + (6 - 4) by XCMPLX_1:29;
    then 2*m-2 <= 2|^(i+1) + 2 by XCMPLX_0:def 8;
then A5: 2*m-'2 <= 2|^(i+1) + 2 by A4,Lm7;
      2|^(i+1) + 2 < 2|^(i+1) + 3 by REAL_1:53;
    hence 2*m-'2 < 2|^(i+1) + 3 by A5,AXIOMS:22;
  end;

Lm14:
  now
    let m;
    assume 2 <= m;
    hence 2*m-'2+1-2 = 2*m-2+1-2 by Lm7
       .= 2*m+-2+1-2 by XCMPLX_0:def 8
       .= 2*m+(-2+1)-2 by XCMPLX_1:1
       .= 2*m+(-1-2) by XCMPLX_1:29
       .= 2*m+-3
       .= 2*m-3 by XCMPLX_0:def 8;
  end;

begin  :: Gauges and Cages

theorem Th7:
 2 <= m & m < len Gauge(D,i) &
 1 <= a & a <= len Gauge(D,i) & 1 <= b & b <= len Gauge(D,i+1)
 implies
  Gauge(D,i)*(m,a)`1 = Gauge(D,i+1)*(2*m-'2,b)`1
  proof
    set I = Gauge(D,i), J = Gauge(D,i+1),
        z = N-bound D, e = E-bound D, s = S-bound D, w = W-bound D;
    assume that
A1:   2 <= m and
A2:   m < len I and
A3:   1 <= a & a <= len I and
A4:   1 <= b & b <= len J;
A5: len I = width I by JORDAN8:def 1;
A6: len J = width J by JORDAN8:def 1;
A7: 1 <= 2*m-'2 by A1,Lm11;
      m < 2|^i + 3 by A2,JORDAN8:def 1;
    then 2*m-'2 <= 2|^(i+1) + 3 by Lm13;
    then 2*m-'2 <= len J by JORDAN8:def 1;
then A8: [2*m-'2,b] in Indices J by A4,A6,A7,GOBOARD7:10;
      1 <= m by A1,AXIOMS:22;
    then [m,a] in Indices I by A2,A3,A5,GOBOARD7:10;
    hence I*(m,a)`1 = |[w+((e-w)/(2|^i))*(m-2),s+((z-s)/(2|^i))*(a-2)]|`1
      by JORDAN8:def 1
      .= w+((e-w)/(2|^i))*(m-2) by EUCLID:56
      .= w+((e-w)/(2|^(i+1)))*(2*m-'2-2) by A1,Lm10
      .= |[w+((e-w)/(2|^(i+1)))*(2*m-'2-2),s+((z-s)/(2|^(i+1)))*(b-2)]|`1
         by EUCLID:56
      .= J*(2*m-'2,b)`1 by A8,JORDAN8:def 1;
  end;

theorem Th8:
 2 <= n & n < len Gauge(D,i) &
 1 <= a & a <= len Gauge(D,i) & 1 <= b & b <= len Gauge(D,i+1)
 implies
  Gauge(D,i)*(a,n)`2 = Gauge(D,i+1)*(b,2*n-'2)`2
  proof
    set I = Gauge(D,i), J = Gauge(D,i+1),
        z = N-bound D, e = E-bound D, s = S-bound D, w = W-bound D;
    assume that
A1:   2 <= n and
A2:   n < len I and
A3:   1 <= a & a <= len I and
A4:   1 <= b & b <= len J;
A5: len I = width I by JORDAN8:def 1;
A6: len J = width J by JORDAN8:def 1;
A7: 1 <= 2*n-'2 by A1,Lm11;
      n < 2|^i + 3 by A2,JORDAN8:def 1;
    then 2*n-'2 <= 2|^(i+1) + 3 by Lm13;
    then 2*n-'2 <= len J by JORDAN8:def 1;
then A8: [b,2*n-'2] in Indices J by A4,A6,A7,GOBOARD7:10;
      1 <= n by A1,AXIOMS:22;
    then [a,n] in Indices I by A2,A3,A5,GOBOARD7:10;
    hence I*(a,n)`2 = |[w+((e-w)/(2|^i))*(a-2),s+((z-s)/(2|^i))*(n-2)]|`2
      by JORDAN8:def 1
      .= s+((z-s)/(2|^i))*(n-2) by EUCLID:56
      .= s+((z-s)/(2|^(i+1)))*(2*n-'2-2) by A1,Lm10
      .= |[w+((e-w)/(2|^(i+1)))*(b-2),s+((z-s)/(2|^(i+1)))*(2*n-'2-2)]|`2
         by EUCLID:56
      .= J*(b,2*n-'2)`2 by A8,JORDAN8:def 1;
  end;

Lm15:
 m+1 < len Gauge(D,i) implies 2*m-'1 < len Gauge(D,i+1)
  proof
    assume m+1 < len Gauge(D,i);
    then m+1 < 2|^i + 3 by JORDAN8:def 1;
    then 2*(m+1)-'2 < 2|^(i+1) + 3 by Lm13;
    then 2*m+2*1-'2 < 2|^(i+1) + 3 by XCMPLX_1:8;
then A1: 2*m < 2|^(i+1) + 3 by BINARITH:39;
      2*m-'1 <= 2*m by JORDAN3:7;
    then 2*m-'1 < 2|^(i+1) + 3 by A1,AXIOMS:22;
    hence thesis by JORDAN8:def 1;
  end;

theorem Th9:
 for D being compact non vertical non horizontal Subset of TOP-REAL 2 holds
 2 <= m & m+1 < len Gauge(D,i) & 2 <= n & n+1 < len Gauge(D,i) implies
 cell(Gauge(D,i),m,n) =
  cell(Gauge(D,i+1),2*m-'2,2*n-'2) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'2) \/
  cell(Gauge(D,i+1),2*m-'2,2*n-'1) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'1)
  proof
    let D be compact non vertical non horizontal Subset of TOP-REAL 2;
    set I = Gauge(D,i), J = Gauge(D,i+1),
        z = N-bound D, e = E-bound D, s = S-bound D, w = W-bound D;
    assume that
A1:   2 <= m and
A2:   m+1 < len I and
A3:   2 <= n and
A4:   n+1 < len I;
A5: len I = width I by JORDAN8:def 1;
A6: len J = width J by JORDAN8:def 1;
A7: 1 <= m & 1 <= n by A1,A3,AXIOMS:22;
then A8: 2*m-'2+1 = 2*m-'1 by Lm9;
A9: 2*n-'2+1 = 2*n-'1 by A7,Lm9;
A10: 2*m-'2 = 2*m-2 by A1,Lm7;
A11: 2*m-'1 = 2*m-1 by A7,Lm8;
A12: 2*n-'2 = 2*n-2 by A3,Lm7;
A13: 2*n-'1 = 2*n-1 by A7,Lm8;
A14: 2*m-'2+1-2 = 2*m-3 by A1,Lm14;
A15: 2*n-'2+1-2 = 2*n-3 by A3,Lm14;
A16: 2*(m+1)-'2-2 = 2*m+2*1-'2-2 by XCMPLX_1:8
      .= 2*m-2 by BINARITH:39;
A17: 2*(n+1)-'2-2 = 2*n+2*1-'2-2 by XCMPLX_1:8
      .= 2*n-2 by BINARITH:39;
A18: 1 <= 2*n-'1 by A7,Lm12;
A19: 1 <= 2*m-'1 by A7,Lm12;
then A20: 2*m-'1+1 = 2*m by JORDAN3:6;
A21: 2*n-'1+1 = 2*n by A18,JORDAN3:6;
A22: m < len I & n < width I by A2,A4,A5,NAT_1:38;
then A23: cell(I,m,n) =
     { |[r,q]| where r, q is Real: I*(m,1)`1 <= r & r <= I*(m+1,1)`1 &
       I*(1,n)`2 <= q & q <= I*(1,n+1)`2 } by A7,GOBRD11:32;
A24: 1 < len I by A7,A22,AXIOMS:22;
A25: 1 <= len J by GOBRD11:34;
A26: 1 <= 2*m-'2 & 1 <= 2*n-'2 by A1,A3,Lm11;
A27: 2*m-'2 < 2*m-'1 & 2*n-'2 < 2*n-'1 by A10,A11,A12,A13,REAL_1:92;
      m < 2|^i + 3 by A22,JORDAN8:def 1;
    then 2*m-'2 < 2|^(i+1) + 3 by Lm13;
then A28: 2*m-'2 < len J by JORDAN8:def 1;
      n < 2|^i + 3 by A5,A22,JORDAN8:def 1;
    then 2*n-'2 < 2|^(i+1) + 3 by Lm13;
then A29: 2*n-'2 < width J by A6,JORDAN8:def 1;
then A30: cell(J,2*m-'2,2*n-'2) =
    { |[r,q]| where r, q is Real: J*(2*m-'2,1)`1 <= r & r <= J*
(2*m-'2+1,1)`1 &
      J*(1,2*n-'2)`2 <= q & q <= J*(1,2*n-'2+1)`2 } by A26,A28,GOBRD11:32;
A31: 2*n-'1 < len J by A4,Lm15;
A32: 2*m-'1 < len J by A2,Lm15;
then A33: cell(J,2*m-'1,2*n-'2) =
    { |[r,q]| where r, q is Real: J*(2*m-'1,1)`1 <= r & r <= J*
(2*m-'1+1,1)`1 &
      J*(1,2*n-'2)`2 <= q & q <= J*
(1,2*n-'2+1)`2 } by A19,A26,A29,GOBRD11:32;
A34: cell(J,2*m-'2,2*n-'1) =
    { |[r,q]| where r, q is Real: J*(2*m-'2,1)`1 <= r & r <= J*
(2*m-'2+1,1)`1 &
      J*(1,2*n-'1)`2 <= q & q <= J*(1,2*n-'1+1)`2 }
       by A6,A18,A26,A28,A31,GOBRD11:32;
A35: cell(J,2*m-'1,2*n-'1) =
    { |[r,q]| where r, q is Real: J*(2*m-'1,1)`1 <= r & r <= J*
(2*m-'1+1,1)`1 &
      J*(1,2*n-'1)`2 <= q & q <= J*(1,2*n-'1+1)`2 }
        by A6,A18,A19,A31,A32,GOBRD11:32;
A36: 2|^(i+1) > 0 by HEINE:5;
      e >= w by SPRECT_1:23;
    then e-w >= 0 by SQUARE_1:12;
then A37: (e-w)/(2|^(i+1)) >= 0 by A36,REAL_2:125;
      2*m-3 < 2*m-2 by REAL_1:92;
    then (e-w)/(2|^(i+1))*(2*m-3) <= (e-w)/(2|^(i+1))*(2*m-2) by A37,AXIOMS:25
;
then A38: w+(e-w)/(2|^(i+1))*(2*m-3) <= w+(e-w)/(2|^(i+1))*(2*m-2) by AXIOMS:24
;
      z >= s by SPRECT_1:24;
    then z-s >= 0 by SQUARE_1:12;
then A39: (z-s)/(2|^(i+1)) >= 0 by A36,REAL_2:125;
      2*n-3 < 2*n-2 by REAL_1:92;
    then (z-s)/(2|^(i+1))*(2*n-3) <= (z-s)/(2|^(i+1))*(2*n-2) by A39,AXIOMS:25
;
then A40: s+(z-s)/(2|^(i+1))*(2*n-3) <= s+(z-s)/(2|^(i+1))*(2*n-2) by AXIOMS:24
;
A41: 2*m-'2+1 <= len J by A28,NAT_1:38;
      1 <= 2*m-'2+1 by NAT_1:29;
    then [2*m-'2+1,1] in Indices J by A6,A25,A41,GOBOARD7:10;
then A42: J*(2*m-'2+1,1)`1
      = |[w+(e-w)/(2|^(i+1))*(2*m-'2+1-2),s+(z-s)/(2|^(i+1))*(1-2)]|`1
          by JORDAN8:def 1
     .= w+(e-w)/(2|^(i+1))*(2*m-'2+1-2) by EUCLID:56;
      2*m-'1 <= 2*m by GOBOARD9:2;
then A43: 1 <= 2*m by A19,AXIOMS:22;
      2*n-'1 <= 2*n by GOBOARD9:2;
then A44: 1 <= 2*n by A18,AXIOMS:22;
      2*m-'1+1 <= len J by A32,NAT_1:38;
    then [2*m,1] in Indices J by A6,A20,A25,A43,GOBOARD7:10;
then A45: J*(2*m,1)`1
      = |[w+(e-w)/(2|^(i+1))*(2*m-2),s+(z-s)/(2|^(i+1))*(1-2)]|`1
          by JORDAN8:def 1
     .= w+(e-w)/(2|^(i+1))*(2*m-2) by EUCLID:56;
      2*n-'1+1 <= len J by A31,NAT_1:38;
    then [1,2*n] in Indices J by A6,A21,A25,A44,GOBOARD7:10;
then A46: J*(1,2*n)`2
      = |[w+(e-w)/(2|^(i+1))*(1-2),s+(z-s)/(2|^(i+1))*(2*n-2)]|`2
          by JORDAN8:def 1
     .= s+(z-s)/(2|^(i+1))*(2*n-2) by EUCLID:56;
A47: 2*n-'2+1 <= len J by A6,A29,NAT_1:38;
      1 <= 2*n-'2+1 by NAT_1:29;
    then [1,2*n-'2+1] in Indices J by A6,A25,A47,GOBOARD7:10;
then A48: J*(1,2*n-'2+1)`2
      = |[w+(e-w)/(2|^(i+1))*(1-2),s+(z-s)/(2|^(i+1))*(2*n-'2+1-2)]|`2
          by JORDAN8:def 1
     .= s+(z-s)/(2|^(i+1))*(2*n-'2+1-2) by EUCLID:56;
      m <= m+1 by NAT_1:29;
then A49: 2 <= m+1 by A1,AXIOMS:22;
      n <= n+1 by NAT_1:29;
then A50: 2 <= n+1 by A3,AXIOMS:22;
      1 <= m+1 by NAT_1:29;
    then [m+1,1] in Indices I by A2,A5,A24,GOBOARD7:10;
then A51: I*(m+1,1)`1
      = |[w+(e-w)/(2|^i)*(m+1-2),s+(z-s)/(2|^i)*(1-2)]|`1
          by JORDAN8:def 1
     .= w+(e-w)/(2|^i)*(m+1-2) by EUCLID:56
     .= w+(e-w)/(2|^(i+1))*(2*(m+1)-'2-2) by A49,Lm10;
      1 <= n+1 by NAT_1:29;
    then [1,n+1] in Indices I by A4,A5,A24,GOBOARD7:10;
then A52: I*(1,n+1)`2
      = |[w+(e-w)/(2|^i)*(1-2),s+(z-s)/(2|^i)*(n+1-2)]|`2
          by JORDAN8:def 1
     .= s+(z-s)/(2|^i)*(n+1-2) by EUCLID:56
     .= s+(z-s)/(2|^(i+1))*(2*(n+1)-'2-2) by A50,Lm10;
A53: I*(m,1)`1 = J*(2*m-'2,1)`1 by A1,A22,A24,A25,Th7;
A54: I*(1,n)`2 = J*(1,2*n-'2)`2 by A3,A5,A22,A24,A25,Th8;
A55: J*(2*m-'2,1)`1 < J*(2*m-'1,1)`1 by A6,A25,A26,A27,A32,GOBOARD5:4;
A56: J*(1,2*n-'2)`2 < J*(1,2*n-'1)`2 by A6,A25,A26,A27,A31,GOBOARD5:5;
    thus cell(Gauge(D,i),m,n) c=
     cell(Gauge(D,i+1),2*m-'2,2*n-'2) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'2) \/
     cell(Gauge(D,i+1),2*m-'2,2*n-'1) \/ cell(Gauge(D,i+1),2*m-'1,2*n-'1)
    proof
      let x be set;
      assume x in cell(I,m,n);
      then consider r, q being Real such that
A57:    x = |[r,q]| and
A58:     I*(m,1)`1 <= r & r <= I*(m+1,1)`1 & I*(1,n)`2 <= q & q <= I*
(1,n+1)`2
          by A23;
        r <= J*(2*m-'1,1)`1 & q <= J*(1,2*n-'1)`2 or
      r >= J*(2*m-'1,1)`1 & q <= J*(1,2*n-'1)`2 or
      r <= J*(2*m-'1,1)`1 & q >= J*(1,2*n-'1)`2 or
      r >= J*(2*m-'1,1)`1 & q >= J*(1,2*n-'1)`2;
      then |[r,q]| in cell(J,2*m-'2,2*n-'2) or
      |[r,q]| in cell(J,2*m-'1,2*n-'2) or
      |[r,q]| in cell(J,2*m-'2,2*n-'1) or
      |[r,q]| in cell(J,2*m-'1,2*n-'1)
        by A8,A9,A16,A17,A20,A21,A30,A33,A34,A35,A45,A46,A51,A52,A53,A54,A58;
      hence thesis by A57,Lm3;
    end;
    let x be set;
    assume
A59:   x in cell(Gauge(D,i+1),2*m-'2,2*n-'2) \/
          cell(Gauge(D,i+1),2*m-'1,2*n-'2) \/
          cell(Gauge(D,i+1),2*m-'2,2*n-'1) \/
          cell(Gauge(D,i+1),2*m-'1,2*n-'1);
    per cases by A59,Lm3;
    suppose x in cell(Gauge(D,i+1),2*m-'2,2*n-'2);
    then consider r, q being Real such that
A60:   x = |[r,q]| and
A61:   J*(2*m-'2,1)`1 <= r and
A62:   r <= J*(2*m-'2+1,1)`1 and
A63:   J*(1,2*n-'2)`2 <= q and
A64:   q <= J*(1,2*n-'2+1)`2 by A30;
A65: r <= I*(m+1,1)`1 by A14,A16,A38,A42,A51,A62,AXIOMS:22;
      q <= I*(1,n+1)`2 by A15,A17,A40,A48,A52,A64,AXIOMS:22;
    hence thesis by A23,A53,A54,A60,A61,A63,A65;
    suppose x in cell(Gauge(D,i+1),2*m-'1,2*n-'2);
    then consider r, q being Real such that
A66:   x = |[r,q]| and
A67:   J*(2*m-'1,1)`1 <= r and
A68:   r <= J*(2*m-'1+1,1)`1 and
A69:   J*(1,2*n-'2)`2 <= q and
A70:   q <= J*(1,2*n-'2+1)`2 by A33;
A71: I*(m,1)`1 <= r by A53,A55,A67,AXIOMS:22;
      q <= I*(1,n+1)`2 by A15,A17,A40,A48,A52,A70,AXIOMS:22;
    hence thesis by A16,A20,A23,A45,A51,A54,A66,A68,A69,A71;
    suppose x in cell(Gauge(D,i+1),2*m-'2,2*n-'1);
    then consider r, q being Real such that
A72:   x = |[r,q]| and
A73:   J*(2*m-'2,1)`1 <= r and
A74:   r <= J*(2*m-'2+1,1)`1 and
A75:   J*(1,2*n-'1)`2 <= q and
A76:   q <= J*(1,2*n-'1+1)`2 by A34;
A77: r <= I*(m+1,1)`1 by A14,A16,A38,A42,A51,A74,AXIOMS:22;
      I*(1,n)`2 <= q by A54,A56,A75,AXIOMS:22;
    hence thesis by A17,A21,A23,A46,A52,A53,A72,A73,A76,A77;
    suppose x in cell(Gauge(D,i+1),2*m-'1,2*n-'1);
    then consider r, q being Real such that
A78:   x = |[r,q]| and
A79:   J*(2*m-'1,1)`1 <= r and
A80:   r <= J*(2*m-'1+1,1)`1 and
A81:   J*(1,2*n-'1)`2 <= q and
A82:   q <= J*(1,2*n-'1+1)`2 by A35;
A83: I*(m,1)`1 <= r by A53,A55,A79,AXIOMS:22;
      I*(1,n)`2 <= q by A54,A56,A81,AXIOMS:22;
    hence thesis by A16,A17,A20,A21,A23,A45,A46,A51,A52,A78,A80,A82,A83;
  end;

theorem
   for D being compact non vertical non horizontal Subset of TOP-REAL 2,
     k being Nat holds
 2 <= m & m+1 < len Gauge(D,i) & 2 <= n & n+1 < len Gauge(D,i) implies
 cell(Gauge(D,i),m,n) =
  union { cell(Gauge(D,i+k),a,b) where a, b is Nat:
   2|^k*m - 2|^(k+1) + 2 <= a & a <= 2|^k*m - 2|^k + 1 &
   2|^k*n - 2|^(k+1) + 2 <= b & b <= 2|^k*n - 2|^k + 1 }
  proof
    let D be compact non vertical non horizontal Subset of TOP-REAL 2;
    let k be Nat;
    assume that
A1:   2 <= m and
A2:   m+1 < len Gauge(D,i) and
A3:   2 <= n and
A4:   n+1 < len Gauge(D,i);
    deffunc F(Nat) =
     { cell(Gauge(D,i+$1),a,b) where a, b is Nat:
         2|^$1*m - 2|^($1+1) + 2 <= a & a <= 2|^$1*m - 2|^$1 + 1 &
         2|^$1*n - 2|^($1+1) + 2 <= b & b <= 2|^$1*n - 2|^$1 + 1 };
    defpred P[Nat] means cell(Gauge(D,i),m,n) = union F($1);
A5: P[0]
    proof
A6:   now let m;
A7:     2|^0 * m = 1*m by NEWTON:9;
        hence 2|^0 * m - 2|^(0+1) + 2 = m - 2 + 2 by NEWTON:10
          .= m by XCMPLX_1:27;
        thus 2|^0 * m - 2|^0 + 1 = m - 1 + 1 by A7,NEWTON:9
          .= m by XCMPLX_1:27;
      end;
        F(0) = { cell(Gauge(D,i),m,n) }
      proof
        hereby
          let x be set;
          assume x in F(0);
          then consider a, b such that
A8:         x = cell(Gauge(D,i+0),a,b) and
A9:         2|^0 * m - 2|^(0+1) + 2 <= a & a <= 2|^0 * m - 2|^0 + 1 &
            2|^0 * n - 2|^(0+1) + 2 <= b & b <= 2|^0 * n - 2|^0 + 1;
            now
            let a, m;
            assume
A10:          2|^0 * m - 2|^(0+1) + 2 <= a & a <= 2|^0 * m - 2|^0 + 1;
              2|^0 * m - 2|^(0+1) + 2= m & 2|^0 * m - 2|^0 + 1 = m by A6;
            hence a = m by A10,AXIOMS:21;
          end;
          then a = m & b = n by A9;
          hence x in { cell(Gauge(D,i),m,n) } by A8,TARSKI:def 1;
        end;
        let x be set;
        assume x in { cell(Gauge(D,i),m,n) };
then A11:     x = cell(Gauge(D,i+0),m,n) by TARSKI:def 1;
          2|^0 * m - 2|^(0+1) + 2 <= m & m <= 2|^0 * m - 2|^0 + 1 &
        2|^0 * n - 2|^(0+1) + 2 <= n & n <= 2|^0 * n - 2|^0 + 1 by A6;
        hence x in F(0) by A11;
      end;
      hence thesis by ZFMISC_1:31;
    end;
A12:now let m;
      thus m+1-2 = m+(1-2) by XCMPLX_1:29
        .= m+-1
        .= m-1 by XCMPLX_0:def 8;
    end;
A13:for w being Nat st P[w] holds P[w+1]
    proof
      let w be Nat such that
A14:     P[w];
A15:   i+w+1 = i+(w+1) by XCMPLX_1:1;
A16:   len Gauge(D,i+w) = 2|^(i+w) + 3 by JORDAN8:def 1;
A17:   len Gauge(D,i) = 2|^i + 3 by JORDAN8:def 1;
A18:  2|^w > 0 by HEINE:5;
A19:  2|^(w+1) > 0 by HEINE:5;
        for x being set st x in F(w) ex K being set st K c= F(w+1) & x c= union
K
      proof
        let x be set;
        assume x in F(w);
        then consider a, b such that
A20:       x = cell(Gauge(D,i+w),a,b) and
A21:       2|^w*m - 2|^(w+1) + 2 <= a and
A22:       a <= 2|^w*m - 2|^w + 1 and
A23:       2|^w*n - 2|^(w+1) + 2 <= b and
A24:       b <= 2|^w*n - 2|^w + 1;
           now
          let m;
          assume 2 <= m;
          then 2|^w*m >= 2|^w*2 by A18,AXIOMS:25;
          then 2|^w*m >= 2|^(w+1) by NEWTON:11;
          then 0 <= 2|^w*m - 2|^(w+1) by SQUARE_1:12;
          hence 0 + 2 <= 2|^w*m - 2|^(w+1) + 2 by AXIOMS:24;
        end;
then A25:    2 <= 2|^w*m - 2|^(w+1) + 2 & 2 <= 2|^w*n - 2|^(w+1) + 2 by A1,A3;
then A26:    2 <= a by A21,AXIOMS:22;
A27:    2 <= b by A23,A25,AXIOMS:22;
A28:    1 <= a by A26,AXIOMS:22;
then A29:    2*a-'1 = 2*a-1 by Lm8;
A30:    1 <= b by A27,AXIOMS:22;
then A31:    2*b-'1 = 2*b-1 by Lm8;
A32:    2*a-'2 = 2*a-2 by A26,Lm7;
A33:    2*b-'2 = 2*b-2 by A27,Lm7;
A34:    2*a-'2 < 2*a-'1 by A29,A32,REAL_1:92;
A35:    2*b-'2 < 2*b-'1 by A31,A33,REAL_1:92;
        take K =
         { cell(Gauge(D,i+w+1),2*a-'2,2*b-'2),
           cell(Gauge(D,i+w+1),2*a-'1,2*b-'2),
           cell(Gauge(D,i+w+1),2*a-'2,2*b-'1),
           cell(Gauge(D,i+w+1),2*a-'1,2*b-'1) };
        hereby
          let q be set;
          assume
A36:         q in K;
A37:       now
            let a,m;
            assume
A38:           2 <= a;
            assume a <= 2|^w*m - 2|^w + 1;
            then 2*a <= 2*(2|^w*m - 2|^w + 1) by AXIOMS:25;
            then 2*a <= 2*(2|^w*m) - 2*(2|^w) + 2*1 by XCMPLX_1:44;
            then 2*a <= 2*2|^w*m - 2*(2|^w) + 2 by XCMPLX_1:4;
            then 2*a <= 2|^(w+1)*m - 2*(2|^w) + 2 by NEWTON:11;
            then 2*a <= 2|^(w+1)*m - 2|^(w+1) + 2 by NEWTON:11;
            then 2*a-2 <= 2|^(w+1)*m - 2|^(w+1) + 2 - 2 by REAL_1:49;
            then 2*a-'2 <= 2|^(w+1)*m - 2|^(w+1) + 2 - 2 by A38,Lm7;
then A39:         2*a-'2 <= 2|^(w+1)*m - 2|^(w+1) + (2 - 2) by XCMPLX_1:29;
              2|^(w+1)*m - 2|^(w+1) + 0 < 2|^(w+1)*m - 2|^(w+1) + 1
              by REAL_1:53;
            hence 2*a-'2 < 2|^(w+1)*m - 2|^(w+1) + 1 by A39,AXIOMS:22;
          end;
A40:       now
            let a,m;
            assume
A41:           2 <= a;
            assume 2|^w*m - 2|^(w+1) + 2 <= a;
            then 2 * (2|^w*m - 2|^(w+1) + 2) <= 2 * a by AXIOMS:25;
            then 2*(2|^w*m) - 2 * (2|^(w+1)) + 2*2 <= 2 * a by XCMPLX_1:44;
            then 2*2|^w*m - 2 * (2|^(w+1)) + 4 <= 2 * a by XCMPLX_1:4;
            then 2|^(w+1)*m - 2 * (2|^(w+1)) + 4 <= 2 * a by NEWTON:11;
            then 2|^(w+1)*m - 2|^(w+1+1) + 4 <= 2 * a by NEWTON:11;
            then 2|^(w+1)*m - 2|^(w+1+1) + 4 - 2 <= 2 * a - 2 by REAL_1:49
;
            then 2|^(w+1)*m - 2|^(w+1+1) + 4 - 2 <= 2 * a -' 2 by A41,Lm7;
            hence 2|^(w+1)*m - 2|^(w+1+1) + (4 - 2) <= 2 * a -' 2
              by XCMPLX_1:29;
          end;
then A42:       2|^(w+1)*m - 2|^(w+1+1) + 2 <= 2*a-'2 by A21,A26;
A43:       2*a-'2 < 2|^(w+1)*m - 2|^(w+1) + 1 by A22,A26,A37;
          then 2*a-'2+1 <= 2|^(w+1)*m - 2|^(w+1) + 1 by INT_1:20;
then A44:       2*a-'1 <= 2|^(w+1)*m - 2|^(w+1) + 1 by A28,Lm9;
A45:       2|^(w+1)*n - 2|^(w+1+1) + 2 <= 2*b-'2 by A23,A27,A40;
A46:       2*b-'2 < 2|^(w+1)*n - 2|^(w+1) + 1 by A24,A27,A37;
          then 2*b-'2+1 <= 2|^(w+1)*n - 2|^(w+1) + 1 by INT_1:20;
then A47:       2*b-'1 <= 2|^(w+1)*n - 2|^(w+1) + 1 by A30,Lm9;
A48:       2|^(w+1)*m - 2|^(w+1+1) + 2 <= 2*a-'1 by A34,A42,AXIOMS:22;
A49:       2|^(w+1)*n - 2|^(w+1+1) + 2 <= 2*b-'1 by A35,A45,AXIOMS:22;
            q = cell(Gauge(D,i+(w+1)),2*a-'2,2*b-'2) or
          q = cell(Gauge(D,i+(w+1)),2*a-'1,2*b-'2) or
          q = cell(Gauge(D,i+(w+1)),2*a-'2,2*b-'1) or
          q = cell(Gauge(D,i+(w+1)),2*a-'1,2*b-'1) by A15,A36,ENUMSET1:18;
          hence q in F(w+1) by A42,A43,A44,A45,A46,A47,A48,A49;
        end;
          now
          let a, m;
          assume m+1 < len Gauge(D,i);
          then m+1-2 < 2|^i + 3 - 2 by A17,REAL_1:54
;
          then m-1 < 2|^i + 3 - 2 by A12;
          then m-1 < 2|^i + (3 - 2) by XCMPLX_1:29;
          then m-1 <= 2|^i + 0 by INT_1:20;
          then 2|^w*(m-1) <= 2|^w*2|^i by A18,AXIOMS:25;
          then 2|^w*(m-1) <= 2|^(w+i) by NEWTON:13;
then A50:      2|^w*(m-1)+3 <= 2|^(w+i)+3 by AXIOMS:24;
          assume a <= 2|^w*m - 2|^w + 1;
          then a+1 <= 2|^w*m - 2|^w + 1 + 1 by AXIOMS:24;
          then a+1 < 2|^w*m - 2|^w + 1 + 1 + 1 by SPPOL_1:5;
          then a+1 < 2|^w*m - 2|^w + 1 + (1 + 1) by XCMPLX_1:1;
          then a+1 < 2|^w*m - 1*2|^w + (1 + 2) by XCMPLX_1:1;
          then a+1 < 2|^w*(m - 1) + 3 by XCMPLX_1:40;
          hence a+1 < len Gauge(D,i+w) by A16,A50,AXIOMS:22;
        end;
        then a+1 < len Gauge(D,i+w) & b+1 < len Gauge(D,i+w)
          by A2,A4,A22,A24;
        then cell(Gauge(D,i+w),a,b) =
          cell(Gauge(D,i+w+1),2*a-'2,2*b-'2) \/
          cell(Gauge(D,i+w+1),2*a-'1,2*b-'2) \/
          cell(Gauge(D,i+w+1),2*a-'2,2*b-'1) \/
          cell(Gauge(D,i+w+1),2*a-'1,2*b-'1) by A26,A27,Th9;
        hence x c= union K by A20,Lm4;
      end;
      hence cell(Gauge(D,i),m,n) c= union F(w+1) by A14,Th1;
        F(w+1) is_finer_than F(w)
      proof
        let X be set;
        assume X in F(w+1);
        then consider a, b being Nat such that
A51:      X = cell(Gauge(D,i+(w+1)),a,b) and
A52:      2|^(w+1)*m - 2|^(w+1+1) + 2 <= a and
A53:      a <= 2|^(w+1)*m - 2|^(w+1) + 1 and
A54:      2|^(w+1)*n - 2|^(w+1+1) + 2 <= b and
A55:      b <= 2|^(w+1)*n - 2|^(w+1) + 1;
A56:     now
          let a be even Nat;
A57:       ex e being Nat st a = 2*e by ABIAN:def 2;
          thus 2*(a div 2 + 1) = 2*(a div 2) + 2*1 by XCMPLX_1:8
            .= a + 2 by A57,AMI_5:3;
        end;
A58:     now
          let a be odd Nat;
          consider e being Nat such that
A59:         a = 2*e+1 by SCMFSA9A:1;
A60:       2*e mod 2 = 0 by GROUP_4:101;
          thus 2*(a div 2 + 1) = 2*(a div 2) + 2*1 by XCMPLX_1:8
            .= 2*(2*e div 2 + (1 div 2)) + 2 by A59,A60,GROUP_4:106
            .= 2*(e + 0) + (1+1) by Lm1,AMI_5:3
            .= a + 1 by A59,XCMPLX_1:1;
        end;
        deffunc G(Nat,Nat)=
          cell(Gauge(D,i+w+1),2*(a div 2 + 1)-'$1,2*(b div 2 + 1)-'$2);
A61:    now
          let a, m;
          assume
A62:        2 <= m;
            2|^(w+1+1) = 2|^(w+1) * 2|^1 by NEWTON:13
            .= 2|^(w+1) * 2 by NEWTON:10;
          then 2|^(w+1)*m >= 2|^(w+1+1) by A19,A62,AXIOMS:25;
          then 0 <= 2|^(w+1)*m - 2|^(w+1+1) by SQUARE_1:12;
          hence 0 + 2 <= 2|^(w+1)*m - 2|^(w+1+1) + 2 by AXIOMS:24;
        end;
        then 2 <= 2|^(w+1)*m - 2|^(w+1+1) + 2 by A1;
then A63:     2 <= a by A52,AXIOMS:22;
          2 <= 2|^(w+1)*n - 2|^(w+1+1) + 2 by A3,A61;
then A64:     2 <= b by A54,AXIOMS:22;
        take Y = cell(Gauge(D,i+w),a div 2 + 1,b div 2 + 1);
          2 div 2 <= a div 2 by A63,NAT_2:26;
then A65:     1 + 1 <= a div 2 + 1 by Lm2,AXIOMS:24;
A66:    now let m;
          thus 2 * (2|^w*m - 2|^(w+1) + 2)
             = 2*(2|^w*m - 2|^(w+1)) + 2*2 by XCMPLX_1:8
            .= 2*(2|^w*m) - 2*2|^(w+1) + (2+2) by XCMPLX_1:40
            .= 2*2|^w*m - 2*2|^(w+1) + (2+2) by XCMPLX_1:4
            .= 2*2|^w*m - 2|^(w+1+1) + (2+2) by NEWTON:11
            .= 2|^(w+1)*m - 2|^(w+1+1) + (2+2) by NEWTON:11
            .= 2|^(w+1)*m - 2|^(w+1+1) + 2+2 by XCMPLX_1:1;
        end;
A67:    now let m;
          thus 2 * (2|^w*m - 2|^w + 1)
             = 2*(2|^w*m - 2|^w) + 2*1 by XCMPLX_1:8
            .= 2*(2|^w*m) - 2*2|^w + (1+1) by XCMPLX_1:40
            .= 2*2|^w*m - 2*2|^w + (1+1) by XCMPLX_1:4
            .= 2*2|^w*m - 2|^(w+1) + (1+1) by NEWTON:11
            .= 2|^(w+1)*m - 2|^(w+1) + (1+1) by NEWTON:11
            .= 2|^(w+1)*m - 2|^(w+1) + 1+1 by XCMPLX_1:1;
        end;
A68:     now
          let a, m;
          assume
A69:         m+1 < len Gauge(D,i);
          assume a <= 2|^(w+1)*m - 2|^(w+1) + 1;
          then a+3 <= 2|^(w+1)*m - 2|^(w+1) + 1 + 3 by AXIOMS:24;
then A70:      a+3+0 < 2|^(w+1)*m - 2|^(w+1) + 1 + 3 + 1 by REAL_1:67;
          then a+3+1 <= 2|^(w+1)*m - 2|^(w+1) + 1 + 3 + 1 by INT_1:20;
then A71:      a+(3+1) <= 2|^(w+1)*m - 2|^(w+1) + 1 + 3 + 1 by XCMPLX_1:1;
            m+1 < 2|^i + 3 by A69,JORDAN8:def 1;
          then 2*(m+1)-'2 < 2|^(i+1) + 3 by Lm13;
          then 2*m+2*1-'2 < 2|^(i+1) + 3 by XCMPLX_1:8;
          then 2*m < 2|^(i+1) + 3 by BINARITH:39;
          then 1/2*(2*m) < 1/2*(2|^(i+1) + 3) by REAL_1:70;
          then 1/2*2*m < 1/2*(2|^(i+1) + 3) by XCMPLX_1:4;
          then m < 1/2*2|^(i+1) + 1/2*3 by XCMPLX_1:8;
then A72:      m < 2|^i + 1/2*3 by Th2;
            2|^i + 3/2 < 2|^i + 2 by REAL_1:53;
          then m < 2|^i + 2 by A72,AXIOMS:22;
          then m+1 <= 2|^i + 2 by NAT_1:38;
          then m+1-2 <= 2|^i + 2 - 2 by REAL_1:49;
          then m-1 <= 2|^i + 2 - 2 by A12;
          then m-1 <= 2|^i + (2 - 2) by XCMPLX_1:29;
          then 2|^(w+1)*(m-1) <= 2|^(w+1)*2|^i by A19,AXIOMS:25;
          then 2|^(w+1)*(m - 1) + 5 < 2|^(w+1) * 2|^i + 6 by REAL_1:67;
          then 2|^(w+1)*(m - 1) + 5 < 2|^(w+1+i) + 6 by NEWTON:13;
          then 2|^(w+1)*(m - 1) + (1 + 4) < 2*2|^(i+w) + 6 by A15,NEWTON:11;
          then 2|^(w+1)*(m - 1) + 1 + (3 + 1) < 2*2|^(i+w) + 6 by XCMPLX_1:1;
          then 2|^(w+1)*(m - 1) + 1 + 3 + 1 < 2*2|^(i+w) + 2*3 by XCMPLX_1:1;
          then 2|^(w+1)*(m - 1) + 1 + 3 + 1 < 2 * (2|^(i+w) + 3) by XCMPLX_1:8
;
then A73:      2|^(w+1)*m - 2|^(w+1)*1 + 1 + 3 + 1 < 2 * (2|^(i+w) + 3)
            by XCMPLX_1:40;
            now per cases;
            suppose
A74:          a is odd;
              2 * (a div 2 + 1 + 1) = 2*(a div 2 + 1) + 2*1 by XCMPLX_1:8
              .= a+1+2 by A58,A74
              .= a+(1+2) by XCMPLX_1:1;
            hence 2 * (a div 2 + 1 + 1) < 2 * (2|^(i+w) + 3)
              by A70,A73,AXIOMS:22;
            suppose
A75:          a is even;
              2 * (a div 2 + 1 + 1) = 2*(a div 2 + 1) + 2*1 by XCMPLX_1:8
              .= a+2+2 by A56,A75
              .= a+(2+2) by XCMPLX_1:1;
            hence 2 * (a div 2 + 1 + 1) < 2 * (2|^(i+w) + 3)
              by A71,A73,AXIOMS:22;
          end;
          hence a div 2 + 1 + 1 < len Gauge(D,i+w) by A16,AXIOMS:25;
        end;
then A76:     a div 2 + 1+1 < len Gauge(D,i+w) by A2,A53;
          2 div 2 <= b div 2 by A64,NAT_2:26;
then A77:     1 + 1 <= b div 2 + 1 by Lm2,AXIOMS:24;
          b div 2 + 1+1 < len Gauge(D,i+w) by A4,A55,A68;
then A78:     Y = G(2,2) \/ G(1,2) \/ G(2,1) \/ G(1,1) by A65,A76,A77,Th9;
A79:    now
          let m; let a be even Nat;
          assume
A80:        2|^(w+1)*m - 2|^(w+1+1) + 2 <= a;
A81:      2 * (2|^w*m - 2|^(w+1) + 2) = 2|^(w+1)*m - 2|^(w+1+1) + 2+2 by A66;
            2|^(w+1)*m - 2|^(w+1+1) + 2 + 2 <= a + 2 by A80,AXIOMS:24;
          then 2 * (2|^w*m - 2|^(w+1) + 2) <= 2 * (a div 2 + 1) by A56,A81;
          hence 2|^w*m - 2|^(w+1) + 2 <= a div 2 + 1 by REAL_1:70;
        end;
A82:    now
          let m; let a be even Nat;
          assume a <= 2|^(w+1)*m - 2|^(w+1) + 1;
then A83:      a < 2|^(w+1)*m - 2|^(w+1) + 1 by REAL_1:def 5;
A84:      2 * (2|^w*m - 2|^w + 1) = 2|^(w+1)*m - 2|^(w+1) + 1+1 by A67;
            a + 1 <= 2|^(w+1)*m - 2|^(w+1) + 1 by A83,INT_1:20;
          then a + 1 + 1 <= 2|^(w+1)*m - 2|^(w+1) + 1 + 1 by AXIOMS:24;
          then a + (1+1) <= 2|^(w+1)*m - 2|^(w+1) + 1 + 1 by XCMPLX_1:1;
          then 2*(a div 2 + 1) <= 2*(2|^w*m - 2|^w + 1) by A56,A84;
          hence a div 2 + 1 <= 2|^w*m - 2|^w + 1 by REAL_1:70;
        end;
A85:    now
          let m; let a be odd Nat;
          assume 2|^(w+1)*m - 2|^(w+1+1) + 2 <= a;
then A86:      2|^(w+1)*m - 2|^(w+1+1) + 2 < a by REAL_1:def 5;
A87:      2 * (2|^w*m - 2|^(w+1) + 2) = 2|^(w+1)*m - 2|^(w+1+1) + 2+2 by A66;
            2|^(w+1)*m - 2|^(w+1+1) + 2 + 1 < a + 1 by A86,REAL_1:53;
          then 2|^(w+1)*m - 2|^(w+1+1) + 2 + 1 + 1 <= a + 1 by INT_1:20;
          then 2|^(w+1)*m - 2|^(w+1+1) + 2 + (1 + 1) <= a + 1 by XCMPLX_1:1;
          then 2 * (2|^w*m - 2|^(w+1) + 2) <= 2 * (a div 2 + 1) by A58,A87;
          hence 2|^w*m - 2|^(w+1) + 2 <= a div 2 + 1 by REAL_1:70;
        end;
A88:    now
          let m; let a be odd Nat;
          assume
A89:        a <= 2|^(w+1)*m - 2|^(w+1) + 1;
A90:      2 * (2|^w*m - 2|^w + 1) = 2|^(w+1)*m - 2|^(w+1) + 1+1 by A67;
            a + 1 <= 2|^(w+1)*m - 2|^(w+1) + 1 + 1 by A89,AXIOMS:24;
          then 2*(a div 2 + 1) <= 2*(2|^w*m - 2|^w + 1) by A58,A90;
          hence a div 2 + 1 <= 2|^w*m - 2|^w + 1 by REAL_1:70;
        end;
        per cases;
        suppose
A91:       a is odd & b is odd;
then A92:     2*(a div 2 + 1)-'1 = a+1-'1 by A58
          .= a by BINARITH:39;
A93:     2|^w*m - 2|^(w+1) + 2 <= a div 2 + 1 by A52,A85,A91;
A94:     a div 2 + 1 <= 2|^w*m - 2|^w + 1 by A53,A88,A91;
A95:     2|^w*n - 2|^(w+1) + 2 <= b div 2 + 1 by A54,A85,A91;
          b div 2 + 1 <= 2|^w*n - 2|^w + 1 by A55,A88,A91;
        hence Y in F(w) by A93,A94,A95;
          2*(b div 2 + 1)-'1 = b+1-'1 by A58,A91
          .= b by BINARITH:39;
        hence X c= Y by A15,A51,A78,A92,XBOOLE_1:7;
        suppose
A96:       a is odd & b is even;
then A97:     2*(a div 2 + 1)-'1 = a+1-'1 by A58
          .= a by BINARITH:39;
A98:    2*(b div 2 + 1)-'2 = b+2-'2 by A56,A96
          .= b by BINARITH:39;
A99:     2|^w*m - 2|^(w+1) + 2 <= a div 2 + 1 by A52,A85,A96;
A100:     a div 2 + 1 <= 2|^w*m - 2|^w + 1 by A53,A88,A96;
A101:     2|^w*n - 2|^(w+1) + 2 <= b div 2 + 1 by A54,A79,A96;
          b div 2 + 1 <= 2|^w*n - 2|^w + 1 by A55,A82,A96;
        hence Y in F(w) by A99,A100,A101;
A102:    G(1,2) c= G(2,2) \/ G(1,2) by XBOOLE_1:7;
          G(2,2) \/ G(1,2) c= G(2,2) \/ G(1,2) \/ G(2,1) by XBOOLE_1:7;
then A103:    G(1,2) c= G(2,2) \/ G(1,2) \/ G(2,1) by A102,XBOOLE_1:1;
          G(2,2) \/ G(1,2) \/ G(2,1) c= Y by A78,XBOOLE_1:7;
        hence X c= Y by A15,A51,A97,A98,A103,XBOOLE_1:1;
        suppose
A104:       a is even & b is odd;
then A105:     2*(a div 2 + 1)-'2 = a+2-'2 by A56
          .= a by BINARITH:39;
A106:    2*(b div 2 + 1)-'1 = b+1-'1 by A58,A104
          .= b by BINARITH:39;
A107:     2|^w*m - 2|^(w+1) + 2 <= a div 2 + 1 by A52,A79,A104;
A108:     a div 2 + 1 <= 2|^w*m - 2|^w + 1 by A53,A82,A104;
A109:     2|^w*n - 2|^(w+1) + 2 <= b div 2 + 1 by A54,A85,A104;
          b div 2 + 1 <= 2|^w*n - 2|^w + 1 by A55,A88,A104;
        hence Y in F(w) by A107,A108,A109;
A110:    G(2,1) c= G(2,2) \/ G(1,2) \/ G(2,1) by XBOOLE_1:7;
          G(2,2) \/ G(1,2) \/ G(2,1) c= Y by A78,XBOOLE_1:7;
        hence X c= Y by A15,A51,A105,A106,A110,XBOOLE_1:1;
        suppose
A111:       a is even & b is even;
then A112:     2*(a div 2 + 1)-'2 = a+2-'2 by A56
          .= a by BINARITH:39;
A113:     2|^w*m - 2|^(w+1) + 2 <= a div 2 + 1 by A52,A79,A111;
A114:     a div 2 + 1 <= 2|^w*m - 2|^w + 1 by A53,A82,A111;
A115:     2|^w*n - 2|^(w+1) + 2 <= b div 2 + 1 by A54,A79,A111;
          b div 2 + 1 <= 2|^w*n - 2|^w + 1 by A55,A82,A111;
        hence Y in F(w) by A113,A114,A115;
          2*(b div 2 + 1)-'2 = b+2-'2 by A56,A111
          .= b by BINARITH:39;
        then X c= G(2,2) \/ (G(1,2) \/ G(2,1) \/
 G(1,1)) by A15,A51,A112,XBOOLE_1:7;
        then X c= G(2,2) \/ (G(1,2) \/ G(2,1)) \/ G(1,1) by XBOOLE_1:4;
        hence X c= Y by A78,XBOOLE_1:4;
      end;
then A116:   union F(w+1) c= union F(w) by SETFAM_1:18;
      let d be set;
      assume d in union F(w+1);
      hence thesis by A14,A116;
    end;
      for w being Nat holds P[w] from Ind(A5,A13);
    hence thesis;
  end;

  theorem Th11:
   ex i being Nat st 1 <= i & i < len Cage(C,n) &
    N-max C in right_cell(Cage(C,n),i,Gauge(C,n))
   proof
      N-max C in N-most C by PSCOMP_1:101;
    then consider p be Point of TOP-REAL 2 such that
     A1: north_halfline N-max C /\ L~Cage(C,n) = {p} by JORDAN1A:107;
    A2: p in north_halfline N-max C /\ L~Cage(C,n) by A1,TARSKI:def 1;
    then A3: p in north_halfline N-max C & p in L~Cage(C,n) by XBOOLE_0:def 3;
    then consider i be Nat such that
     A4: 1 <= i & i+1 <= len Cage(C,n) and
     A5: p in LSeg(Cage(C,n),i) by SPPOL_2:13;
    take i;
    thus A6: 1 <= i & i < len Cage(C,n) by A4,NAT_1:38;
    A7: Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i1,j1,i2,j2 be Nat such that
     A8: [i1,j1] in Indices Gauge(C,n) and
     A9: Cage(C,n)/.i = Gauge(C,n)*(i1,j1) and
     A10: [i2,j2] in Indices Gauge(C,n) and
     A11: Cage(C,n)/.(i+1) = Gauge(C,n)*(i2,j2) and
     A12: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or
      i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A4,JORDAN8:6;
    A13: N-max C in N-most C by PSCOMP_1:101;
    then A14: p`2 = N-bound L~Cage(C,n) by A2,JORDAN1A:103;
    A15: LSeg(Cage(C,n),i) is horizontal by A3,A5,A6,A13,JORDAN1A:99;
    A16: LSeg(Cage(C,n),i) = LSeg(Cage(C,n)/.i,Cage(C,n)/.(i+1))
                                                       by A4,TOPREAL1:def 5;
    then A17: (Cage(C,n)/.i)`2 = p`2 by A5,A15,SPRECT_3:19;
    A18: (Cage(C,n)/.(i+1))`2 = p`2 by A5,A15,A16,SPRECT_3:19;
    A19: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
    A20: 1 <= i1 & i1 <= len Gauge(C,n) by A8,GOBOARD5:1;
    A21: 1 <= i2 & i2 <= len Gauge(C,n) by A10,GOBOARD5:1;
    A22: 1 <= j1 & j2 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A23: 1 <= j2 & j1 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A24: j1 = j2
    proof
     assume j1 <> j2;
     then j1 < j2 or j2 < j1 by REAL_1:def 5;
     hence contradiction by A9,A11,A12,A17,A18,A20,A22,A23,GOBOARD5:5;
    end;
      (Gauge(C,n)*(i1,j1))`2 = Gauge(C,n)*(i1,len Gauge(C,n))`2
                                               by A9,A14,A17,A20,JORDAN1A:91;
    then A25: len Gauge(C,n) <= j1 by A19,A20,A22,GOBOARD5:5;
    then A26: j1 = len Gauge(C,n) by A19,A23,AXIOMS:21;
    A27: 1 <= i1 & i1 < len Gauge(C,n)
       by A4,A8,A9,A10,A11,A12,A19,A21,A24,A25,GOBOARD5:1,JORDAN10:4,NAT_1:38;
    A28: len Gauge(C,n) >= 4 by JORDAN8:13;
    then A29: 1 < len Gauge(C,n) by AXIOMS:22;
    A30: (N-max C)`2 = N-bound C by PSCOMP_1:94
       .= Gauge(C,n)*(1,len Gauge(C,n)-'1)`2 by A29,JORDAN8:17;
    A31: len Gauge(C,n)-'1 <= len Gauge(C,n) by JORDAN3:7;
      len Gauge(C,n) >= 1+1 by A28,AXIOMS:22;
    then A32: len Gauge(C,n)-1 >= 1 by REAL_1:84;
    then len Gauge(C,n)-1 >= 0 by AXIOMS:22;
    then A33: len Gauge(C,n)-'1 >= 1 by A32,BINARITH:def 3;
    then A34: Gauge(C,n)*(1,j1)`2 >= (N-max C)`2
                                          by A19,A26,A29,A30,A31,SPRECT_3:24;
      i1 <= i1+1 by NAT_1:29;
    then (Cage(C,n)/.i)`1 <= (Cage(C,n)/.(i+1))`1 by A4,A8,A9,A10,A11,A12,A19,
A20,A21,A22,A24,A25,JORDAN10:4,JORDAN1A:39;
    then (Cage(C,n)/.i)`1 <= p`1 & p`1 <= (Cage(C,n)/.(i+1))`1
                                                        by A5,A16,TOPREAL1:9;
    then Gauge(C,n)*(i1,len Gauge(C,n))`1 <= (N-max C)`1 &
     (N-max C)`1 <= Gauge(C,n)*(i1+1,len Gauge(C,n))`1 by A3,A4,A8,A9,A10,A11,
A12,A19,A24,A26,JORDAN10:4,JORDAN1A:def 2,NAT_1:38;
    then A35: Gauge(C,n)*(i1,1)`1 <= (N-max C)`1 &
     (N-max C)`1 <= Gauge(C,n)*(i1+1,1)`1 by A4,A8,A9,A10,A11,A12,A19,A20,A21,
A24,A25,A29,GOBOARD5:3,JORDAN10:4,NAT_1:38;
    A36: len Gauge(C,n)-'1+1 = len Gauge(C,n) by A29,AMI_5:4;
    then A37: len Gauge(C,n)-'1 < len Gauge(C,n) by NAT_1:38;
      N-max C = |[(N-max C)`1,(N-max C)`2]| by EUCLID:57;
    then N-max C in { |[r,s]| where r,s is Real :
     Gauge(C,n)*(i1,1)`1 <= r & r <= Gauge(C,n)*(i1+1,1)`1 &
     Gauge(C,n)*(1,j1-'1)`2 <= s & s <= Gauge(C,n)*(1,j1)`2 }
                                                          by A26,A30,A34,A35;
    then N-max C in cell(Gauge(C,n),i1,j1-'1)
                                 by A19,A26,A27,A33,A36,A37,GOBRD11:32;
    hence N-max C in right_cell(Cage(C,n),i,Gauge(C,n))
         by A4,A7,A8,A9,A10,A11,A12,A19,A24,A25,GOBRD13:25,JORDAN10:4,NAT_1:38;
   end;

  theorem
     ex i being Nat st 1 <= i & i < len Cage(C,n) &
    N-max C in right_cell(Cage(C,n),i)
   proof
    consider i be Nat such that
     A1: 1 <= i & i < len Cage(C,n) and
     A2: N-max C in right_cell(Cage(C,n),i,Gauge(C,n)) by Th11;
    take i;
    thus 1 <= i & i < len Cage(C,n) by A1;
    A3: i+1 <= len Cage(C,n) by A1,NAT_1:38;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then right_cell(Cage(C,n),i,Gauge(C,n)) c= right_cell(Cage(C,n),i)
                                                         by A1,A3,GOBRD13:34;
    hence N-max C in right_cell(Cage(C,n),i) by A2;
   end;

  theorem Th13:
   ex i being Nat st 1 <= i & i < len Cage(C,n) &
    E-min C in right_cell(Cage(C,n),i,Gauge(C,n))
   proof
      E-min C in E-most C by PSCOMP_1:111;
    then consider p be Point of TOP-REAL 2 such that
     A1: east_halfline E-min C /\ L~Cage(C,n) = {p} by JORDAN1A:108;
    A2: p in east_halfline E-min C /\ L~Cage(C,n) by A1,TARSKI:def 1;
    then A3: p in east_halfline E-min C & p in L~Cage(C,n) by XBOOLE_0:def 3;
    then consider i be Nat such that
     A4: 1 <= i & i+1 <= len Cage(C,n) and
     A5: p in LSeg(Cage(C,n),i) by SPPOL_2:13;
    take i;
    thus A6: 1 <= i & i < len Cage(C,n) by A4,NAT_1:38;
    A7: Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i1,j1,i2,j2 be Nat such that
     A8: [i1,j1] in Indices Gauge(C,n) and
     A9: Cage(C,n)/.i = Gauge(C,n)*(i1,j1) and
     A10: [i2,j2] in Indices Gauge(C,n) and
     A11: Cage(C,n)/.(i+1) = Gauge(C,n)*(i2,j2) and
     A12: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or
      i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A4,JORDAN8:6;
    A13: E-min C in E-most C by PSCOMP_1:111;
    then A14: p`1 = E-bound L~Cage(C,n) by A2,JORDAN1A:104;
    A15: LSeg(Cage(C,n),i) is vertical by A3,A5,A6,A13,JORDAN1A:100;
    A16: LSeg(Cage(C,n),i) = LSeg(Cage(C,n)/.i,Cage(C,n)/.(i+1))
                                                       by A4,TOPREAL1:def 5;
    then A17: (Cage(C,n)/.i)`1 = p`1 by A5,A15,SPRECT_3:20;
    A18: (Cage(C,n)/.(i+1))`1 = p`1 by A5,A15,A16,SPRECT_3:20;
    A19: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
    A20: 1 <= i1 & i1 <= len Gauge(C,n) by A8,GOBOARD5:1;
    A21: 1 <= i2 & i2 <= len Gauge(C,n) by A10,GOBOARD5:1;
    A22: 1 <= j1 & j2 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A23: 1 <= j2 & j1 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A24: i1 = i2
    proof
     assume i1 <> i2;
     then i1 < i2 or i2 < i1 by REAL_1:def 5;
     hence contradiction by A9,A11,A12,A17,A18,A20,A21,A22,GOBOARD5:4;
    end;
      (Gauge(C,n)*(i1,j1))`1 = Gauge(C,n)*(len Gauge(C,n),j1)`1
                                      by A9,A14,A17,A19,A22,A23,JORDAN1A:92;
    then A25: len Gauge(C,n) <= i1 by A20,A22,A23,GOBOARD5:4;
    then A26: i1 = len Gauge(C,n) by A20,AXIOMS:21;
    A27: 1 <= j2 & j2 < width Gauge(C,n) by A4,A8,A9,A10,A11,A12,A23,A24,A25,
JORDAN10:1,NAT_1:38;
    A28: len Gauge(C,n) >= 4 by JORDAN8:13;
    then A29: 1 < len Gauge(C,n) by AXIOMS:22;
    A30: (E-min C)`1 = E-bound C by PSCOMP_1:104
       .= Gauge(C,n)*(len Gauge(C,n)-'1,1)`1 by A29,JORDAN8:15;
    A31: len Gauge(C,n)-'1 <= len Gauge(C,n) by JORDAN3:7;
      len Gauge(C,n) >= 1+1 by A28,AXIOMS:22;
    then A32: len Gauge(C,n)-1 >= 1 by REAL_1:84;
    then A33: len Gauge(C,n)-1 >= 0 by AXIOMS:22;
    then len Gauge(C,n)-'1 >= 1 by A32,BINARITH:def 3;
    then A34: Gauge(C,n)*(i1,1)`1 >= (E-min C)`1
                                          by A19,A26,A29,A30,A31,SPRECT_3:25;
      j2 <= j2+1 by NAT_1:29;
    then (Cage(C,n)/.i)`2 >= (Cage(C,n)/.(i+1))`2
               by A4,A8,A9,A10,A11,A12,A20,A23,A24,A25,JORDAN10:1,JORDAN1A:40;
    then (Cage(C,n)/.(i+1))`2 <= p`2 & p`2 <= (Cage(C,n)/.i)`2
                                                       by A5,A16,TOPREAL1:10;
    then Gauge(C,n)*(len Gauge(C,n),j2)`2 <= (E-min C)`2 &
     (E-min C)`2 <= Gauge(C,n)*(len Gauge(C,n),j2+1)`2 by A3,A4,A8,A9,A10,A11,
A12,A24,A26,JORDAN10:1,JORDAN1A:def 3,NAT_1:38;
    then A35: Gauge(C,n)*(1,j2)`2 <= (E-min C)`2 &
     (E-min C)`2 <= Gauge(C,n)*
(1,j2+1)`2 by A4,A8,A9,A10,A11,A12,A21,A22,A23,A24,A26,GOBOARD5:2,JORDAN10:1,
NAT_1:38;
      len Gauge(C,n) < len Gauge(C,n)+1 by NAT_1:38;
    then len Gauge(C,n)-1 < len Gauge(C,n) by REAL_1:84;
    then A36: 1 <= len Gauge(C,n)-'1 & len Gauge(C,n)-'1 < len Gauge(C,n)
                                               by A32,A33,BINARITH:def 3;
    A37: len Gauge(C,n)-'1+1 = len Gauge(C,n) by A29,AMI_5:4;
      E-min C = |[(E-min C)`1,(E-min C)`2]| by EUCLID:57;
    then E-min C in { |[r,s]| where r,s is Real :
     Gauge(C,n)*(len Gauge(C,n)-'1,1)`1 <= r &
     r <= Gauge(C,n)*(len Gauge(C,n),1)`1 &
     Gauge(C,n)*(1,j2)`2 <= s &
     s <= Gauge(C,n)*(1,j2+1)`2 } by A26,A30,A34,A35;
    then E-min C in cell(Gauge(C,n),i2-'1,j2)
                                       by A24,A26,A27,A36,A37,GOBRD11:32;
    hence E-min C in right_cell(Cage(C,n),i,Gauge(C,n)) by A4,A7,A8,A9,A10,A11,
A12,A24,A25,GOBRD13:29,JORDAN10:1,NAT_1:38;
   end;

  theorem
     ex i being Nat st 1 <= i & i < len Cage(C,n) &
    E-min C in right_cell(Cage(C,n),i)
   proof
    consider i be Nat such that
     A1: 1 <= i & i < len Cage(C,n) and
     A2: E-min C in right_cell(Cage(C,n),i,Gauge(C,n)) by Th13;
    take i;
    thus 1 <= i & i < len Cage(C,n) by A1;
    A3: i+1 <= len Cage(C,n) by A1,NAT_1:38;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then right_cell(Cage(C,n),i,Gauge(C,n)) c= right_cell(Cage(C,n),i)
                                                         by A1,A3,GOBRD13:34;
    hence E-min C in right_cell(Cage(C,n),i) by A2;
   end;

  theorem Th15:
   ex i being Nat st 1 <= i & i < len Cage(C,n) &
    E-max C in right_cell(Cage(C,n),i,Gauge(C,n))
   proof
      E-max C in E-most C by PSCOMP_1:111;
    then consider p be Point of TOP-REAL 2 such that
     A1: east_halfline E-max C /\ L~Cage(C,n) = {p} by JORDAN1A:108;
    A2: p in east_halfline E-max C /\ L~Cage(C,n) by A1,TARSKI:def 1;
    then A3: p in east_halfline E-max C & p in L~Cage(C,n) by XBOOLE_0:def 3;
    then consider i be Nat such that
     A4: 1 <= i & i+1 <= len Cage(C,n) and
     A5: p in LSeg(Cage(C,n),i) by SPPOL_2:13;
    take i;
    thus A6: 1 <= i & i < len Cage(C,n) by A4,NAT_1:38;
    A7: Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i1,j1,i2,j2 be Nat such that
     A8: [i1,j1] in Indices Gauge(C,n) and
     A9: Cage(C,n)/.i = Gauge(C,n)*(i1,j1) and
     A10: [i2,j2] in Indices Gauge(C,n) and
     A11: Cage(C,n)/.(i+1) = Gauge(C,n)*(i2,j2) and
     A12: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or
      i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A4,JORDAN8:6;
    A13: E-max C in E-most C by PSCOMP_1:111;
    then A14: p`1 = E-bound L~Cage(C,n) by A2,JORDAN1A:104;
    A15: LSeg(Cage(C,n),i) is vertical by A3,A5,A6,A13,JORDAN1A:100;
    A16: LSeg(Cage(C,n),i) = LSeg(Cage(C,n)/.i,Cage(C,n)/.(i+1))
                                                       by A4,TOPREAL1:def 5;
    then A17: (Cage(C,n)/.i)`1 = p`1 by A5,A15,SPRECT_3:20;
    A18: (Cage(C,n)/.(i+1))`1 = p`1 by A5,A15,A16,SPRECT_3:20;
    A19: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
    A20: 1 <= i1 & i1 <= len Gauge(C,n) by A8,GOBOARD5:1;
    A21: 1 <= i2 & i2 <= len Gauge(C,n) by A10,GOBOARD5:1;
    A22: 1 <= j1 & j2 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A23: 1 <= j2 & j1 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A24: i1 = i2
    proof
     assume i1 <> i2;
     then i1 < i2 or i2 < i1 by REAL_1:def 5;
     hence contradiction by A9,A11,A12,A17,A18,A20,A21,A22,GOBOARD5:4;
    end;
      (Gauge(C,n)*(i1,j1))`1 = Gauge(C,n)*(len Gauge(C,n),j1)`1
                                      by A9,A14,A17,A19,A22,A23,JORDAN1A:92;
    then A25: len Gauge(C,n) <= i1 by A20,A22,A23,GOBOARD5:4;
    then A26: i1 = len Gauge(C,n) by A20,AXIOMS:21;
    A27: 1 <= j2 & j2 < width Gauge(C,n)
                     by A4,A8,A9,A10,A11,A12,A23,A24,A25,JORDAN10:1,NAT_1:38;
    A28: len Gauge(C,n) >= 4 by JORDAN8:13;
    then A29: 1 < len Gauge(C,n) by AXIOMS:22;
    A30: (E-max C)`1 = E-bound C by PSCOMP_1:104
       .= Gauge(C,n)*(len Gauge(C,n)-'1,1)`1 by A29,JORDAN8:15;
    A31: len Gauge(C,n)-'1 <= len Gauge(C,n) by JORDAN3:7;
      len Gauge(C,n) >= 1+1 by A28,AXIOMS:22;
    then A32: len Gauge(C,n)-1 >= 1 by REAL_1:84;
    then A33: len Gauge(C,n)-1 >= 0 by AXIOMS:22;
    then len Gauge(C,n)-'1 >= 1 by A32,BINARITH:def 3;
    then A34: Gauge(C,n)*(i1,1)`1 >= (E-max C)`1
                                          by A19,A26,A29,A30,A31,SPRECT_3:25;
      j2 <= j2+1 by NAT_1:29;
    then (Cage(C,n)/.i)`2 >= (Cage(C,n)/.(i+1))`2 by A4,A8,A9,A10,A11,A12,A20,
A23,A24,A25,JORDAN10:1,JORDAN1A:40;
    then (Cage(C,n)/.(i+1))`2 <= p`2 & p`2 <= (Cage(C,n)/.i)`2
                                                       by A5,A16,TOPREAL1:10;
    then Gauge(C,n)*(len Gauge(C,n),j2)`2 <= (E-max C)`2 &
     (E-max C)`2 <= Gauge(C,n)*(len Gauge(C,n),j2+1)`2 by A3,A4,A8,A9,A10,A11,
A12,A24,A26,JORDAN10:1,JORDAN1A:def 3,NAT_1:38;
    then A35: Gauge(C,n)*(1,j2)`2 <= (E-max C)`2 &
     (E-max C)`2 <= Gauge(C,n)*
(1,j2+1)`2 by A4,A8,A9,A10,A11,A12,A22,A23,A24,A25,A29,GOBOARD5:2,JORDAN10:1,
NAT_1:38;
      len Gauge(C,n) < len Gauge(C,n)+1 by NAT_1:38;
    then len Gauge(C,n)-1 < len Gauge(C,n) by REAL_1:84;
    then A36: 1 <= len Gauge(C,n)-'1 & len Gauge(C,n)-'1 < len Gauge(C,n)
                                               by A32,A33,BINARITH:def 3;
    A37: len Gauge(C,n)-'1+1 = len Gauge(C,n) by A29,AMI_5:4;
      E-max C = |[(E-max C)`1,(E-max C)`2]| by EUCLID:57;
    then E-max C in { |[r,s]| where r,s is Real :
     Gauge(C,n)*(len Gauge(C,n)-'1,1)`1 <= r &
     r <= Gauge(C,n)*(len Gauge(C,n),1)`1 &
     Gauge(C,n)*(1,j2)`2 <= s &
     s <= Gauge(C,n)*(1,j2+1)`2 } by A26,A30,A34,A35;
    then E-max C in cell(Gauge(C,n),i2-'1,j2)
                                       by A24,A26,A27,A36,A37,GOBRD11:32;
    hence E-max C in right_cell(Cage(C,n),i,Gauge(C,n)) by A4,A7,A8,A9,A10,A11,
A12,A24,A25,GOBRD13:29,JORDAN10:1,NAT_1:38;
   end;

  theorem
     ex i being Nat st 1 <= i & i < len Cage(C,n) &
    E-max C in right_cell(Cage(C,n),i)
   proof
    consider i be Nat such that
     A1: 1 <= i & i < len Cage(C,n) and
     A2: E-max C in right_cell(Cage(C,n),i,Gauge(C,n)) by Th15;
    take i;
    thus 1 <= i & i < len Cage(C,n) by A1;
    A3: i+1 <= len Cage(C,n) by A1,NAT_1:38;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then right_cell(Cage(C,n),i,Gauge(C,n)) c= right_cell(Cage(C,n),i)
                                                         by A1,A3,GOBRD13:34;
    hence E-max C in right_cell(Cage(C,n),i) by A2;
   end;

  theorem Th17:
   ex i being Nat st 1 <= i & i < len Cage(C,n) &
    S-min C in right_cell(Cage(C,n),i,Gauge(C,n))
   proof
      S-min C in S-most C by PSCOMP_1:121;
    then consider p be Point of TOP-REAL 2 such that
     A1: south_halfline S-min C /\ L~Cage(C,n) = {p} by JORDAN1A:109;
    A2: p in south_halfline S-min C /\ L~Cage(C,n) by A1,TARSKI:def 1;
    then A3: p in south_halfline S-min C & p in L~Cage(C,n) by XBOOLE_0:def 3;
    then consider i be Nat such that
     A4: 1 <= i & i+1 <= len Cage(C,n) and
     A5: p in LSeg(Cage(C,n),i) by SPPOL_2:13;
    take i;
    thus A6: 1 <= i & i < len Cage(C,n) by A4,NAT_1:38;
    A7: Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i1,j1,i2,j2 be Nat such that
     A8: [i1,j1] in Indices Gauge(C,n) and
     A9: Cage(C,n)/.i = Gauge(C,n)*(i1,j1) and
     A10: [i2,j2] in Indices Gauge(C,n) and
     A11: Cage(C,n)/.(i+1) = Gauge(C,n)*(i2,j2) and
     A12: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or
      i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A4,JORDAN8:6;
    A13: S-min C in S-most C by PSCOMP_1:121;
    then A14: p`2 = S-bound L~Cage(C,n) by A2,JORDAN1A:105;
    A15: LSeg(Cage(C,n),i) is horizontal by A3,A5,A6,A13,JORDAN1A:101;
    A16: LSeg(Cage(C,n),i) = LSeg(Cage(C,n)/.i,Cage(C,n)/.(i+1))
                                                       by A4,TOPREAL1:def 5;
    then A17: (Cage(C,n)/.i)`2 = p`2 by A5,A15,SPRECT_3:19;
    A18: (Cage(C,n)/.(i+1))`2 = p`2 by A5,A15,A16,SPRECT_3:19;
    A19: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
    A20: 1 <= i1 & i1 <= len Gauge(C,n) by A8,GOBOARD5:1;
    A21: 1 <= i2 & i2 <= len Gauge(C,n) by A10,GOBOARD5:1;
    A22: 1 <= j1 & j2 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A23: 1 <= j2 & j1 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A24: j1 = j2
    proof
     assume j1 <> j2;
     then j1 < j2 or j2 < j1 by REAL_1:def 5;
     hence contradiction by A9,A11,A12,A17,A18,A20,A22,A23,GOBOARD5:5;
    end;
      (Gauge(C,n)*(i1,j1))`2 = Gauge(C,n)*(i1,1)`2
                                               by A9,A14,A17,A20,JORDAN1A:93;
    then A25: 1 >= j1 by A20,A23,GOBOARD5:5;
    then A26: j1 = 1 by A22,AXIOMS:21;
    A27: 1 <= i2 & i2 < len Gauge(C,n) by A4,A8,A9,A10,A11,A12,A20,A24,A25,
GOBOARD5:1,JORDAN10:3,NAT_1:38;
    A28: len Gauge(C,n) >= 4 by JORDAN8:13;
    then A29: 1 < len Gauge(C,n) by AXIOMS:22;
    A30: 1+1 <= len Gauge(C,n) by A28,AXIOMS:22;
    A31: (S-min C)`2 = S-bound C by PSCOMP_1:114
       .= Gauge(C,n)*(1,2)`2 by A29,JORDAN8:16;
    then A32: Gauge(C,n)*
(1,j1)`2 <= (S-min C)`2 by A19,A26,A29,A30,SPRECT_3:24;
      i2 <= i2+1 by NAT_1:29;
    then (Cage(C,n)/.i)`1 >= (Cage(C,n)/.(i+1))`1 by A4,A8,A9,A10,A11,A12,A20,
A21,A22,A23,A25,JORDAN10:3,JORDAN1A:39;
    then (Cage(C,n)/.(i+1))`1 <= p`1 & p`1 <= (Cage(C,n)/.i)`1
                                                        by A5,A16,TOPREAL1:9;
    then A33: Gauge(C,n)*(i2,1)`1 <= (S-min C)`1 &
     (S-min C)`1 <= Gauge(C,n)*(i2+1,1)`1
                                   by A3,A4,A8,A9,A10,A11,A12,A24,A26,JORDAN10:
3,JORDAN1A:def 4;
      S-min C = |[(S-min C)`1,(S-min C)`2]| by EUCLID:57;
    then S-min C in { |[r,s]| where r,s is Real :
     Gauge(C,n)*(i2,1)`1 <= r & r <= Gauge(C,n)*(i2+1,1)`1 &
     Gauge(C,n)*(1,j1)`2 <= s & s <= Gauge(C,n)*(1,j1+1)`2 }
                                                          by A26,A31,A32,A33;
    then S-min C in cell(Gauge(C,n),i2,j1) by A19,A26,A27,A29,GOBRD11:32;
    hence S-min C in right_cell(Cage(C,n),i,Gauge(C,n))
                       by A4,A7,A8,A9,A10,A11,A12,A24,A26,GOBRD13:27,JORDAN10:3
;
   end;

  theorem
     ex i being Nat st 1 <= i & i < len Cage(C,n) &
    S-min C in right_cell(Cage(C,n),i)
   proof
    consider i be Nat such that
     A1: 1 <= i & i < len Cage(C,n) and
     A2: S-min C in right_cell(Cage(C,n),i,Gauge(C,n)) by Th17;
    take i;
    thus 1 <= i & i < len Cage(C,n) by A1;
    A3: i+1 <= len Cage(C,n) by A1,NAT_1:38;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then right_cell(Cage(C,n),i,Gauge(C,n)) c= right_cell(Cage(C,n),i)
                                                         by A1,A3,GOBRD13:34;
    hence S-min C in right_cell(Cage(C,n),i) by A2;
   end;

  theorem Th19:
   ex i being Nat st 1 <= i & i < len Cage(C,n) &
    S-max C in right_cell(Cage(C,n),i,Gauge(C,n))
   proof
      S-max C in S-most C by PSCOMP_1:121;
    then consider p be Point of TOP-REAL 2 such that
     A1: south_halfline S-max C /\ L~Cage(C,n) = {p} by JORDAN1A:109;
    A2: p in south_halfline S-max C /\ L~Cage(C,n) by A1,TARSKI:def 1;
    then A3: p in south_halfline S-max C & p in L~Cage(C,n) by XBOOLE_0:def 3;
    then consider i be Nat such that
     A4: 1 <= i & i+1 <= len Cage(C,n) and
     A5: p in LSeg(Cage(C,n),i) by SPPOL_2:13;
    take i;
    thus A6: 1 <= i & i < len Cage(C,n) by A4,NAT_1:38;
    A7: Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i1,j1,i2,j2 be Nat such that
     A8: [i1,j1] in Indices Gauge(C,n) and
     A9: Cage(C,n)/.i = Gauge(C,n)*(i1,j1) and
     A10: [i2,j2] in Indices Gauge(C,n) and
     A11: Cage(C,n)/.(i+1) = Gauge(C,n)*(i2,j2) and
     A12: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or
      i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A4,JORDAN8:6;
    A13: S-max C in S-most C by PSCOMP_1:121;
    then A14: p`2 = S-bound L~Cage(C,n) by A2,JORDAN1A:105;
    A15: LSeg(Cage(C,n),i) is horizontal by A3,A5,A6,A13,JORDAN1A:101;
    A16: LSeg(Cage(C,n),i) = LSeg(Cage(C,n)/.i,Cage(C,n)/.(i+1))
                                                       by A4,TOPREAL1:def 5;
    then A17: (Cage(C,n)/.i)`2 = p`2 by A5,A15,SPRECT_3:19;
    A18: (Cage(C,n)/.(i+1))`2 = p`2 by A5,A15,A16,SPRECT_3:19;
    A19: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
    A20: 1 <= i1 & i1 <= len Gauge(C,n) by A8,GOBOARD5:1;
    A21: 1 <= i2 & i2 <= len Gauge(C,n) by A10,GOBOARD5:1;
    A22: 1 <= j1 & j2 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A23: 1 <= j2 & j1 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A24: j1 = j2
    proof
     assume j1 <> j2;
     then j1 < j2 or j2 < j1 by REAL_1:def 5;
     hence contradiction by A9,A11,A12,A17,A18,A20,A22,A23,GOBOARD5:5;
    end;
      (Gauge(C,n)*(i1,j1))`2 = Gauge(C,n)*(i1,1)`2
                                               by A9,A14,A17,A20,JORDAN1A:93;
    then A25: 1 >= j1 by A20,A23,GOBOARD5:5;
    then A26: j1 = 1 by A22,AXIOMS:21;
    A27: 1 <= i2 & i2 < len Gauge(C,n) by A4,A8,A9,A10,A11,A12,A20,A24,A25,
GOBOARD5:1,JORDAN10:3,NAT_1:38;
    A28: len Gauge(C,n) >= 4 by JORDAN8:13;
    then A29: 1 < len Gauge(C,n) by AXIOMS:22;
    A30: 1+1 <= len Gauge(C,n) by A28,AXIOMS:22;
    A31: (S-max C)`2 = S-bound C by PSCOMP_1:114
       .= Gauge(C,n)*(1,2)`2 by A29,JORDAN8:16;
    then A32: Gauge(C,n)*
(1,j1)`2 <= (S-max C)`2 by A19,A26,A29,A30,SPRECT_3:24;
      i2 <= i2+1 by NAT_1:29;
    then (Cage(C,n)/.i)`1 >= (Cage(C,n)/.(i+1))`1 by A4,A8,A9,A10,A11,A12,A20,
A21,A22,A23,A25,JORDAN10:3,JORDAN1A:39;
    then (Cage(C,n)/.(i+1))`1 <= p`1 & p`1 <= (Cage(C,n)/.i)`1
                                                        by A5,A16,TOPREAL1:9;
    then A33: Gauge(C,n)*(i2,1)`1 <= (S-max C)`1 &
     (S-max C)`1 <= Gauge(C,n)*(i2+1,1)`1
                                   by A3,A4,A8,A9,A10,A11,A12,A24,A26,JORDAN10:
3,JORDAN1A:def 4;
      S-max C = |[(S-max C)`1,(S-max C)`2]| by EUCLID:57;
    then S-max C in { |[r,s]| where r,s is Real :
     Gauge(C,n)*(i2,1)`1 <= r & r <= Gauge(C,n)*(i2+1,1)`1 &
     Gauge(C,n)*(1,j1)`2 <= s & s <= Gauge(C,n)*(1,j1+1)`2 }
                                                          by A26,A31,A32,A33;
    then S-max C in cell(Gauge(C,n),i2,j1) by A19,A26,A27,A29,GOBRD11:32;
    hence S-max C in right_cell(Cage(C,n),i,Gauge(C,n))
                                    by A4,A7,A8,A9,A10,A11,A12,A24,A26,GOBRD13:
27,JORDAN10:3;
   end;

  theorem
     ex i being Nat st 1 <= i & i < len Cage(C,n) &
    S-max C in right_cell(Cage(C,n),i)
   proof
    consider i be Nat such that
     A1: 1 <= i & i < len Cage(C,n) and
     A2: S-max C in right_cell(Cage(C,n),i,Gauge(C,n)) by Th19;
    take i;
    thus 1 <= i & i < len Cage(C,n) by A1;
    A3: i+1 <= len Cage(C,n) by A1,NAT_1:38;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then right_cell(Cage(C,n),i,Gauge(C,n)) c= right_cell(Cage(C,n),i)
                                                         by A1,A3,GOBRD13:34;
    hence S-max C in right_cell(Cage(C,n),i) by A2;
   end;

  theorem Th21:
   ex i being Nat st 1 <= i & i < len Cage(C,n) &
    W-min C in right_cell(Cage(C,n),i,Gauge(C,n))
   proof
      W-min C in W-most C by PSCOMP_1:91;
    then consider p be Point of TOP-REAL 2 such that
     A1: west_halfline W-min C /\ L~Cage(C,n) = {p} by JORDAN1A:110;
    A2: p in west_halfline W-min C /\ L~Cage(C,n) by A1,TARSKI:def 1;
    then A3: p in west_halfline W-min C & p in L~Cage(C,n) by XBOOLE_0:def 3;
    then consider i be Nat such that
     A4: 1 <= i & i+1 <= len Cage(C,n) and
     A5: p in LSeg(Cage(C,n),i) by SPPOL_2:13;
    take i;
    thus A6: 1 <= i & i < len Cage(C,n) by A4,NAT_1:38;
    A7: Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i1,j1,i2,j2 be Nat such that
     A8: [i1,j1] in Indices Gauge(C,n) and
     A9: Cage(C,n)/.i = Gauge(C,n)*(i1,j1) and
     A10: [i2,j2] in Indices Gauge(C,n) and
     A11: Cage(C,n)/.(i+1) = Gauge(C,n)*(i2,j2) and
     A12: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or
      i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A4,JORDAN8:6;
    A13: W-min C in W-most C by PSCOMP_1:91;
    then A14: p`1 = W-bound L~Cage(C,n) by A2,JORDAN1A:106;
    A15: LSeg(Cage(C,n),i) is vertical by A3,A5,A6,A13,JORDAN1A:102;
    A16: LSeg(Cage(C,n),i) = LSeg(Cage(C,n)/.i,Cage(C,n)/.(i+1))
                                                       by A4,TOPREAL1:def 5;
    then A17: (Cage(C,n)/.i)`1 = p`1 by A5,A15,SPRECT_3:20;
    A18: (Cage(C,n)/.(i+1))`1 = p`1 by A5,A15,A16,SPRECT_3:20;
    A19: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
    A20: 1 <= i1 & i1 <= len Gauge(C,n) by A8,GOBOARD5:1;
    A21: 1 <= i2 & i2 <= len Gauge(C,n) by A10,GOBOARD5:1;
    A22: 1 <= j1 & j2 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A23: 1 <= j2 & j1 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A24: i1 = i2
    proof
     assume i1 <> i2;
     then i1 < i2 or i2 < i1 by REAL_1:def 5;
     hence contradiction by A9,A11,A12,A17,A18,A20,A21,A22,GOBOARD5:4;
    end;
      (Gauge(C,n)*(i1,j1))`1 = Gauge(C,n)*(1,j1)`1
                                      by A9,A14,A17,A19,A22,A23,JORDAN1A:94;
    then A25: 1 >= i1 by A20,A22,A23,GOBOARD5:4;
    then A26: i1 = 1 by A20,AXIOMS:21;
    A27: 1 <= j1 & j1 < width Gauge(C,n) by A4,A8,A9,A10,A11,A12,A22,A24,A25,
JORDAN10:2,NAT_1:38;
    A28: len Gauge(C,n) >= 4 by JORDAN8:13;
    then A29: 1 < len Gauge(C,n) by AXIOMS:22;
    A30: 1+1 <= len Gauge(C,n) by A28,AXIOMS:22;
    A31: (W-min C)`1 = W-bound C by PSCOMP_1:84
       .= Gauge(C,n)*(2,1)`1 by A29,JORDAN8:14;
    then A32: Gauge(C,n)*
(i1,1)`1 <= (W-min C)`1 by A19,A26,A29,A30,SPRECT_3:25;
      j1 <= j1+1 by NAT_1:29;
    then (Cage(C,n)/.i)`2 <= (Cage(C,n)/.(i+1))`2 by A4,A8,A9,A10,A11,A12,A20,
A22,A24,A25,JORDAN10:2,JORDAN1A:40;
    then (Cage(C,n)/.i)`2 <= p`2 & p`2 <= (Cage(C,n)/.(i+1))`2
                                                       by A5,A16,TOPREAL1:10;
    then A33: Gauge(C,n)*(1,j1)`2 <= (W-min C)`2 &
     (W-min C)`2 <= Gauge(C,n)*(1,j1+1)`2
                                   by A3,A4,A8,A9,A10,A11,A12,A24,A26,JORDAN10:
2,JORDAN1A:def 5;
      W-min C = |[(W-min C)`1,(W-min C)`2]| by EUCLID:57;
    then W-min C in { |[r,s]| where r,s is Real :
     Gauge(C,n)*(i1,1)`1 <= r & r <= Gauge(C,n)*(i1+1,1)`1 &
     Gauge(C,n)*(1,j1)`2 <= s & s <= Gauge(C,n)*(1,j1+1)`2 }
                                                          by A26,A31,A32,A33;
    then W-min C in cell(Gauge(C,n),i1,j1) by A26,A27,A29,GOBRD11:32;
    hence W-min C in right_cell(Cage(C,n),i,Gauge(C,n))
                                    by A4,A7,A8,A9,A10,A11,A12,A24,A26,GOBRD13:
23,JORDAN10:2;
   end;

  theorem
     ex i being Nat st 1 <= i & i < len Cage(C,n) &
    W-min C in right_cell(Cage(C,n),i)
   proof
    consider i be Nat such that
     A1: 1 <= i & i < len Cage(C,n) and
     A2: W-min C in right_cell(Cage(C,n),i,Gauge(C,n)) by Th21;
    take i;
    thus 1 <= i & i < len Cage(C,n) by A1;
    A3: i+1 <= len Cage(C,n) by A1,NAT_1:38;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then right_cell(Cage(C,n),i,Gauge(C,n)) c= right_cell(Cage(C,n),i)
                                                         by A1,A3,GOBRD13:34;
    hence W-min C in right_cell(Cage(C,n),i) by A2;
   end;

  theorem Th23:
   ex i being Nat st 1 <= i & i < len Cage(C,n) &
    W-max C in right_cell(Cage(C,n),i,Gauge(C,n))
   proof
      W-max C in W-most C by PSCOMP_1:91;
    then consider p be Point of TOP-REAL 2 such that
     A1: west_halfline W-max C /\ L~Cage(C,n) = {p} by JORDAN1A:110;
    A2: p in west_halfline W-max C /\ L~Cage(C,n) by A1,TARSKI:def 1;
    then A3: p in west_halfline W-max C & p in L~Cage(C,n) by XBOOLE_0:def 3;
    then consider i be Nat such that
     A4: 1 <= i & i+1 <= len Cage(C,n) and
     A5: p in LSeg(Cage(C,n),i) by SPPOL_2:13;
    take i;
    thus A6: 1 <= i & i < len Cage(C,n) by A4,NAT_1:38;
    A7: Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i1,j1,i2,j2 be Nat such that
     A8: [i1,j1] in Indices Gauge(C,n) and
     A9: Cage(C,n)/.i = Gauge(C,n)*(i1,j1) and
     A10: [i2,j2] in Indices Gauge(C,n) and
     A11: Cage(C,n)/.(i+1) = Gauge(C,n)*(i2,j2) and
     A12: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or
      i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A4,JORDAN8:6;
    A13: W-max C in W-most C by PSCOMP_1:91;
    then A14: p`1 = W-bound L~Cage(C,n) by A2,JORDAN1A:106;
    A15: LSeg(Cage(C,n),i) is vertical by A3,A5,A6,A13,JORDAN1A:102;
    A16: LSeg(Cage(C,n),i) = LSeg(Cage(C,n)/.i,Cage(C,n)/.(i+1))
                                                       by A4,TOPREAL1:def 5;
    then A17: (Cage(C,n)/.i)`1 = p`1 by A5,A15,SPRECT_3:20;
    A18: (Cage(C,n)/.(i+1))`1 = p`1 by A5,A15,A16,SPRECT_3:20;
    A19: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
    A20: 1 <= i1 & i1 <= len Gauge(C,n) by A8,GOBOARD5:1;
    A21: 1 <= i2 & i2 <= len Gauge(C,n) by A10,GOBOARD5:1;
    A22: 1 <= j1 & j2 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A23: 1 <= j2 & j1 <= width Gauge(C,n) by A8,A10,GOBOARD5:1;
    A24: i1 = i2
    proof
     assume i1 <> i2;
     then i1 < i2 or i2 < i1 by REAL_1:def 5;
     hence contradiction by A9,A11,A12,A17,A18,A20,A21,A22,GOBOARD5:4;
    end;
      (Gauge(C,n)*(i1,j1))`1 = Gauge(C,n)*(1,j1)`1
                                      by A9,A14,A17,A19,A22,A23,JORDAN1A:94;
    then A25: 1 >= i1 by A20,A22,A23,GOBOARD5:4;
    then A26: i1 = 1 by A20,AXIOMS:21;
    A27: 1 <= j1 & j1 < width Gauge(C,n) by A4,A8,A9,A10,A11,A12,A22,A24,A25,
JORDAN10:2,NAT_1:38;
    A28: len Gauge(C,n) >= 4 by JORDAN8:13;
    then A29: 1 < len Gauge(C,n) by AXIOMS:22;
    A30: 1+1 <= len Gauge(C,n) by A28,AXIOMS:22;
    A31: (W-max C)`1 = W-bound C by PSCOMP_1:84
       .= Gauge(C,n)*(2,1)`1 by A29,JORDAN8:14;
    then A32: Gauge(C,n)*
(i1,1)`1 <= (W-max C)`1 by A19,A26,A29,A30,SPRECT_3:25;
      j1 <= j1+1 by NAT_1:29;
    then (Cage(C,n)/.i)`2 <= (Cage(C,n)/.(i+1))`2 by A4,A8,A9,A10,A11,A12,A20,
A22,A24,A25,JORDAN10:2,JORDAN1A:40;
    then (Cage(C,n)/.i)`2 <= p`2 & p`2 <= (Cage(C,n)/.(i+1))`2
                                                       by A5,A16,TOPREAL1:10;
    then A33: Gauge(C,n)*(1,j1)`2 <= (W-max C)`2 &
     (W-max C)`2 <= Gauge(C,n)*(1,j1+1)`2
                                   by A3,A4,A8,A9,A10,A11,A12,A24,A26,JORDAN10:
2,JORDAN1A:def 5;
      W-max C = |[(W-max C)`1,(W-max C)`2]| by EUCLID:57;
    then W-max C in { |[r,s]| where r,s is Real :
     Gauge(C,n)*(i1,1)`1 <= r & r <= Gauge(C,n)*(i1+1,1)`1 &
     Gauge(C,n)*(1,j1)`2 <= s & s <= Gauge(C,n)*(1,j1+1)`2 }
                                                          by A26,A31,A32,A33;
    then W-max C in cell(Gauge(C,n),i1,j1) by A26,A27,A29,GOBRD11:32;
    hence W-max C in right_cell(Cage(C,n),i,Gauge(C,n))
                                    by A4,A7,A8,A9,A10,A11,A12,A24,A26,GOBRD13:
23,JORDAN10:2;
   end;

  theorem
     ex i being Nat st 1 <= i & i < len Cage(C,n) &
    W-max C in right_cell(Cage(C,n),i)
   proof
    consider i be Nat such that
     A1: 1 <= i & i < len Cage(C,n) and
     A2: W-max C in right_cell(Cage(C,n),i,Gauge(C,n)) by Th23;
    take i;
    thus 1 <= i & i < len Cage(C,n) by A1;
    A3: i+1 <= len Cage(C,n) by A1,NAT_1:38;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then right_cell(Cage(C,n),i,Gauge(C,n)) c= right_cell(Cage(C,n),i)
                                                         by A1,A3,GOBRD13:34;
    hence W-max C in right_cell(Cage(C,n),i) by A2;
   end;

  theorem Th25:
   ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
    N-min L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n))
   proof
      N-min L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:43;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = N-min L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = N-min L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take i;
    thus A6: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
    A8: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
      now assume j < width Gauge(C,n);
     then (N-min L~Cage(C,n))`2 < Gauge(C,n)*(i,width Gauge(C,n))`2
                                                   by A3,A5,A6,A7,GOBOARD5:5;
     then N-bound L~Cage(C,n) < Gauge(C,n)*(i,width Gauge(C,n))`2
                                                              by PSCOMP_1:94;
     hence contradiction by A6,A8,JORDAN1A:91;
    end;
    hence N-min L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n))
                                                       by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
    N-max L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n))
   proof
      N-max L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:44;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = N-max L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = N-max L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take i;
    thus A6: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
    A8: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
      now assume j < width Gauge(C,n);
     then (N-max L~Cage(C,n))`2 < Gauge(C,n)*(i,width Gauge(C,n))`2
                                                   by A3,A5,A6,A7,GOBOARD5:5;
     then N-bound L~Cage(C,n) < Gauge(C,n)*(i,width Gauge(C,n))`2
                                                              by PSCOMP_1:94;
     hence contradiction by A6,A8,JORDAN1A:91;
    end;
    hence N-max L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n))
                                                       by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
    Gauge(C,n)*(i,width Gauge(C,n)) in rng Cage(C,n)
   proof
    consider i be Nat such that A1: 1 <= i & i <= len Gauge(C,n) &
     N-min L~Cage(C,n) = Gauge(C,n)*(i,width Gauge(C,n)) by Th25;
    take i;
    thus thesis by A1,SPRECT_2:43;
   end;

  theorem Th28:
   ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
    E-min L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j)
   proof
      E-min L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:49;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = E-min L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = E-min L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take j;
    thus A6: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A8: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
      now assume i < len Gauge(C,n);
     then (E-min L~Cage(C,n))`1 < Gauge(C,n)*(len Gauge(C,n),j)`1
                                                   by A3,A5,A6,A7,GOBOARD5:4;
     then E-bound L~Cage(C,n) < Gauge(C,n)*
(len Gauge(C,n),j)`1 by PSCOMP_1:104;
     hence contradiction by A6,A8,JORDAN1A:92;
    end;
    hence E-min L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j)
                                                       by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
    E-max L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j)
   proof
      E-max L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:50;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = E-max L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = E-max L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take j;
    thus A6: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A8: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
      now assume i < len Gauge(C,n);
     then (E-max L~Cage(C,n))`1 < Gauge(C,n)*(len Gauge(C,n),j)`1
                                                   by A3,A5,A6,A7,GOBOARD5:4;
     then E-bound L~Cage(C,n) < Gauge(C,n)*
(len Gauge(C,n),j)`1 by PSCOMP_1:104;
     hence contradiction by A6,A8,JORDAN1A:92;
    end;
    hence E-max L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j)
                                                       by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
    Gauge(C,n)*(len Gauge(C,n),j) in rng Cage(C,n)
   proof
    consider j be Nat such that A1: 1 <= j & j <= width Gauge(C,n) &
     E-min L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),j) by Th28;
    take j;
    thus thesis by A1,SPRECT_2:49;
   end;

  theorem Th31:
   ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
    S-min L~Cage(C,n) = Gauge(C,n)*(i,1)
   proof
      S-min L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:45;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = S-min L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = S-min L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take i;
    thus A6: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
      now assume j > 1;
     then (S-min L~Cage(C,n))`2 > Gauge(C,n)*(i,1)`2
                                                   by A3,A5,A6,A7,GOBOARD5:5;
     then S-bound L~Cage(C,n) > Gauge(C,n)*(i,1)`2 by PSCOMP_1:114;
     hence contradiction by A6,JORDAN1A:93;
    end;
    hence S-min L~Cage(C,n) = Gauge(C,n)*(i,1) by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
    S-max L~Cage(C,n) = Gauge(C,n)*(i,1)
   proof
      S-max L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:46;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = S-max L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = S-max L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take i;
    thus A6: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
      now assume j > 1;
     then (S-max L~Cage(C,n))`2 > Gauge(C,n)*(i,1)`2
                                                   by A3,A5,A6,A7,GOBOARD5:5;
     then S-bound L~Cage(C,n) > Gauge(C,n)*(i,1)`2 by PSCOMP_1:114;
     hence contradiction by A6,JORDAN1A:93;
    end;
    hence S-max L~Cage(C,n) = Gauge(C,n)*(i,1) by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex i being Nat st 1 <= i & i <= len Gauge(C,n) &
    Gauge(C,n)*(i,1) in rng Cage(C,n)
   proof
    consider i be Nat such that A1: 1 <= i & i <= len Gauge(C,n) &
     S-min L~Cage(C,n) = Gauge(C,n)*(i,1) by Th31;
    take i;
    thus thesis by A1,SPRECT_2:45;
   end;

  theorem Th34:
   ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
    W-min L~Cage(C,n) = Gauge(C,n)*(1,j)
   proof
      W-min L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:47;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = W-min L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = W-min L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take j;
    thus A6: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A8: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
      now assume i > 1;
     then (W-min L~Cage(C,n))`1 > Gauge(C,n)*(1,j)`1
                                                   by A3,A5,A6,A7,GOBOARD5:4;
     then W-bound L~Cage(C,n) > Gauge(C,n)*(1,j)`1 by PSCOMP_1:84;
     hence contradiction by A6,A8,JORDAN1A:94;
    end;
    hence W-min L~Cage(C,n) = Gauge(C,n)*(1,j) by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
    W-max L~Cage(C,n) = Gauge(C,n)*(1,j)
   proof
      W-max L~Cage(C,n) in rng Cage(C,n) by SPRECT_2:48;
    then consider m be Nat such that
     A1: m in dom Cage(C,n) and
     A2: Cage(C,n).m = W-max L~Cage(C,n) by FINSEQ_2:11;
    A3: Cage(C,n)/.m = W-max L~Cage(C,n) by A1,A2,FINSEQ_4:def 4;
      Cage(C,n) is_sequence_on Gauge(C,n) by JORDAN9:def 1;
    then consider i,j be Nat such that
     A4: [i,j] in Indices Gauge(C,n) and
     A5: Cage(C,n)/.m = Gauge(C,n)*(i,j) by A1,GOBOARD1:def 11;
    take j;
    thus A6: 1 <= j & j <= width Gauge(C,n) by A4,GOBOARD5:1;
    A7: 1 <= i & i <= len Gauge(C,n) by A4,GOBOARD5:1;
    A8: len Gauge(C,n) = width Gauge(C,n) by JORDAN8:def 1;
      now assume i > 1;
     then (W-max L~Cage(C,n))`1 > Gauge(C,n)*(1,j)`1
                                                   by A3,A5,A6,A7,GOBOARD5:4;
     then W-bound L~Cage(C,n) > Gauge(C,n)*(1,j)`1 by PSCOMP_1:84;
     hence contradiction by A6,A8,JORDAN1A:94;
    end;
    hence W-max L~Cage(C,n) = Gauge(C,n)*(1,j) by A3,A5,A7,AXIOMS:21;
   end;

  theorem
     ex j being Nat st 1 <= j & j <= width Gauge(C,n) &
    Gauge(C,n)*(1,j) in rng Cage(C,n)
   proof
    consider j be Nat such that A1: 1 <= j & j <= width Gauge(C,n) &
     W-min L~Cage(C,n) = Gauge(C,n)*(1,j) by Th34;
    take j;
    thus thesis by A1,SPRECT_2:47;
   end;

Back to top