environ vocabulary SQUARE_1, ABSVALUE, RELAT_1, FUNCT_3, POWER, POLYEQ_1, ARYTM_1, ARYTM_3, POLYEQ_2, GROUP_1, ARYTM; notation ORDINAL1, XCMPLX_0, XREAL_0, ABSVALUE, SQUARE_1, NEWTON, POWER, POLYEQ_1, QUIN_1; constructors REAL_1, NAT_1, SQUARE_1, PREPOWER, POLYEQ_1, QUIN_1, SERIES_1, MEMBERED; clusters XREAL_0, NEWTON, SQUARE_1, QUIN_1, MEMBERED; requirements REAL, SUBSET, NUMERALS, ARITHM; begin definition let a,b,c,d,e,x be real number; func Four(a,b,c,d,e,x) equals :: POLYEQ_2:def 1 a*(x |^ 4)+b*(x |^ 3)+c*(x^2)+d*x+e; end; definition let a,b,c,d,e,x be real number; cluster Four(a,b,c,d,e,x) -> real; end; theorem :: POLYEQ_2:1 for a,c,e,x being real number st a <> 0 & e <> 0 & c^2 - (4*a*e) > 0 holds Four(a,0,c,0,e,x) = 0 implies x <> 0 & (x = sqrt((-c + sqrt delta(a,c,e))/(2*a)) or x = sqrt((-c - sqrt delta(a,c,e))/(2*a)) or x = - sqrt((-c + sqrt delta(a,c,e))/(2*a)) or x = - sqrt((-c - sqrt delta(a,c,e))/(2*a))); theorem :: POLYEQ_2:2 for a,b,c,x,y being real number st a <> 0 & y = x + 1/x holds Four(a,b,c,b,a,x) = 0 implies x <> 0 & a*y^2 + b*y + c - 2*a = 0; theorem :: POLYEQ_2:3 for a,b,c,x,y being real number st a <> 0 & b^2-4*a*c + 8*a^2 > 0 & y = x + 1/x holds Four(a,b,c,b,a,x) = 0 implies (for y1,y2 being real number st y1 = (-b+sqrt(b^2-4*a*c+8*a^2))/(2*a) & y2 = (-b-sqrt(b^2-4*a*c+8*a^2))/(2*a) holds x <> 0 & (x = (y1 + sqrt delta(1,(-y1),1))/2 or x = (y2 + sqrt delta(1,(-y2),1))/2 or x = (y1 - sqrt delta(1,(-y1),1))/2 or x = (y2 - sqrt delta(1,(-y2),1))/2)); theorem :: POLYEQ_2:4 for x being real number holds x|^ 3 = x^2*x & (x|^ 3)*x = x|^ 4 & x^2*x^2 = x|^ 4; theorem :: POLYEQ_2:5 for x,y being real number st x+y <> 0 holds (x+y)|^ 4 = (x|^ 3 + ((3*y)*x^2+(3*y^2)*x) +y|^ 3)*x + (x|^ 3 + ((3*y)*x^2+(3*y^2)*x) +y|^ 3)*y; theorem :: POLYEQ_2:6 for x,y being real number st x+y <> 0 holds (x+y)|^ 4 = x|^ 4+((4*y)*(x|^ 3)+6*y^2*x^2+4*(y|^ 3)*x)+y|^ 4; theorem :: POLYEQ_2:7 for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 being real number holds (for x being real number holds Four(a1,a2,a3,a4,a5,x) = Four(b1,b2,b3,b4,b5,x)) implies a5=b5 & a1-a2+a3-a4 = b1-b2+b3-b4 & a1+a2+a3+a4 = b1+b2+b3+b4; theorem :: POLYEQ_2:8 for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 being real number holds (for x being real number holds Four(a1,a2,a3,a4,a5,x)=Four(b1,b2,b3,b4,b5,x)) implies a1-b1=b3-a3 & a2-b2=b4-a4; theorem :: POLYEQ_2:9 for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 being real number st (for x being real number holds Four(a1,a2,a3,a4,a5,x) = Four(b1,b2,b3,b4,b5,x)) holds a1 = b1 & a2 = b2 & a3 = b3 & a4 = b4 & a5 = b5; definition let a1,x1,x2,x3,x4,x be real number; func Four0(a1,x1,x2,x3,x4,x) equals :: POLYEQ_2:def 2 a1*((x-x1)*(x-x2)*(x-x3)*(x-x4)); end; definition let a1,x1,x2,x3,x4,x be real number; cluster Four0(a1,x1,x2,x3,x4,x) -> real; end; theorem :: POLYEQ_2:10 for a1,a2,a3,a4,a5,x,x1,x2,x3,x4 being real number st a1 <> 0 holds (for x being real number holds Four(a1,a2,a3,a4,a5,x) = Four0(a1,x1,x2,x3,x4,x)) implies (a1*(x|^ 4)+a2*(x|^ 3)+a3*x^2+a4*x+a5)/a1 = x^2*x^2-(x1+x2+x3)*(x^2*x)+(x1*x3+x2*x3+x1*x2)*x^2 - (x1*x2*x3)*x-((x-x1)*(x-x2)*(x-x3))*x4; theorem :: POLYEQ_2:11 for a1,a2,a3,a4,a5,x,x1,x2,x3,x4 being real number st a1 <> 0 holds (for x being real number holds Four(a1,a2,a3,a4,a5,x) = Four0(a1,x1,x2,x3,x4,x)) implies (a1*(x|^ 4)+a2*(x|^ 3)+a3*x^2+a4*x+a5)/a1 = x|^ 4-(x1+x2+x3+x4)*x|^ 3 +((x1*x2+x1*x3+x1*x4)+(x2*x3+x2*x4)+x3*x4)*x^2 -(x1*x2*x3+x1*x2*x4+x1*x3*x4+x2*x3*x4)*x+(x1*x2*x3*x4); theorem :: POLYEQ_2:12 for a1,a2,a3,a4,a5,x1,x2,x3,x4 being real number st a1 <> 0 & (for x being real number holds Four(a1,a2,a3,a4,a5,x) = Four0(a1,x1,x2,x3,x4,x)) holds a2/a1 = -(x1+x2+x3+x4) & a3/a1 = (x1*x2+x1*x3+x1*x4)+(x2*x3+x2*x4)+x3*x4 & a4/a1 = -(x1*x2*x3+x1*x2*x4+x1*x3*x4+x2*x3*x4) & a5/a1 = x1*x2*x3*x4; theorem :: POLYEQ_2:13 for a,k,y being real number st a <> 0 holds (for x being real number holds x|^ 4+a|^ 4 = k*a*x*(x^2+a^2)) implies y|^ 4 -k*(y|^ 3)-k*y+1 = 0;