environ vocabulary ARYTM, FUNCT_3, SQUARE_1, ARYTM_1, ARYTM_3; notation ORDINAL1, XCMPLX_0, XREAL_0, REAL_1, SQUARE_1; constructors REAL_1, SQUARE_1, MEMBERED, XBOOLE_0; clusters XREAL_0, SQUARE_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, ARITHM; begin reserve x, a, b, c for real number; definition let a,b,c; func delta(a,b,c) equals :: QUIN_1:def 1 b^2 - 4 * a * c; end; definition let a,b,c; cluster delta(a,b,c) -> real; end; definition let a,b,c be Real; redefine func delta(a,b,c) -> Real; end; theorem :: QUIN_1:1 a <> 0 implies a * x^2 + b * x + c = a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a); theorem :: QUIN_1:2 a > 0 & delta(a,b,c) <= 0 implies a * x^2 + b * x + c >= 0; theorem :: QUIN_1:3 a > 0 & delta(a,b,c) < 0 implies a * x^2 + b * x + c > 0; theorem :: QUIN_1:4 a < 0 & delta(a,b,c) <= 0 implies a * x^2 + b * x + c <= 0; theorem :: QUIN_1:5 a < 0 & delta(a,b,c) < 0 implies a * x^2 + b * x + c < 0; theorem :: QUIN_1:6 a > 0 & a * x^2 + b * x + c >= 0 implies (2 * a * x + b)^2 - delta(a,b,c) >= 0; theorem :: QUIN_1:7 a > 0 & a * x^2 + b * x + c > 0 implies (2 * a * x + b)^2 - delta(a,b,c) > 0; theorem :: QUIN_1:8 a < 0 & a * x^2 + b * x + c <= 0 implies (2 * a * x + b)^2 - delta(a,b,c) >= 0; theorem :: QUIN_1:9 a < 0 & a * x^2 + b * x + c < 0 implies (2 * a * x + b)^2 - delta(a,b,c) > 0; theorem :: QUIN_1:10 ( for x holds a * x^2 + b * x + c >= 0 ) & a > 0 implies delta(a,b,c) <= 0; theorem :: QUIN_1:11 ( for x holds a * x^2 + b * x + c <= 0 ) & a < 0 implies delta(a,b,c) <= 0; theorem :: QUIN_1:12 ( for x holds a * x^2 + b * x + c > 0 ) & a > 0 implies delta(a,b,c) < 0; theorem :: QUIN_1:13 ( for x holds a * x^2 + b * x + c < 0 ) & a < 0 implies delta(a,b,c) < 0; theorem :: QUIN_1:14 a <> 0 & a * x^2 + b * x + c = 0 implies (2 * a * x + b)^2 - delta(a,b,c) = 0; theorem :: QUIN_1:15 a <> 0 & delta(a,b,c) >= 0 & a * x^2 + b * x + c = 0 implies x = (- b - sqrt delta(a,b,c))/(2 * a) or x = (- b + sqrt delta(a,b,c))/(2 * a); theorem :: QUIN_1:16 a <> 0 & delta(a,b,c) >= 0 implies a * x^2 + b * x + c = a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)); theorem :: QUIN_1:17 a < 0 & delta(a,b,c) > 0 implies (- b + sqrt delta(a,b,c))/(2 * a) < (- b - sqrt delta(a,b,c))/(2 * a); theorem :: QUIN_1:18 ( a < 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c > 0 iff (- b + sqrt delta(a,b,c))/(2 * a) < x & x < (- b - sqrt delta(a,b,c))/(2 * a) ); theorem :: QUIN_1:19 ( a < 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c < 0 iff x < (- b + sqrt delta(a,b,c))/(2 * a) or x > (- b - sqrt delta(a,b,c))/(2 * a) ); canceled 2; theorem :: QUIN_1:22 a <> 0 & delta(a,b,c) = 0 & a * x^2 + b * x + c = 0 implies x = - b/(2 * a) ; theorem :: QUIN_1:23 a > 0 & (2 * a * x + b)^2 - delta(a,b,c) > 0 implies a * x^2 + b * x + c > 0; theorem :: QUIN_1:24 ( a > 0 & delta(a,b,c) = 0 ) implies ( a * x^2 + b * x + c > 0 iff x <> - b/(2 * a) ); theorem :: QUIN_1:25 a < 0 & (2 * a * x + b)^2 - delta(a,b,c) > 0 implies a * x^2 + b * x + c < 0; theorem :: QUIN_1:26 ( a < 0 & delta(a,b,c) = 0 ) implies ( a * x^2 + b * x + c < 0 iff x <> - b/(2 * a) ); theorem :: QUIN_1:27 a > 0 & delta(a,b,c) > 0 implies (- b + sqrt delta(a,b,c))/(2 * a) > (- b - sqrt delta(a,b,c))/(2 * a); theorem :: QUIN_1:28 ( a > 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c < 0 iff (- b - sqrt delta(a,b,c))/(2 * a) < x & x < (- b + sqrt delta(a,b,c))/(2 * a) ); theorem :: QUIN_1:29 ( a > 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c > 0 iff x < (- b - sqrt delta(a,b,c))/(2 * a) or x > (- b + sqrt delta(a,b,c))/(2 * a) );