Copyright (c) 1991 Association of Mizar Users
environ vocabulary ARYTM, FUNCT_3, SQUARE_1, ARYTM_1, ARYTM_3; notation ORDINAL1, XCMPLX_0, XREAL_0, REAL_1, SQUARE_1; constructors REAL_1, SQUARE_1, MEMBERED, XBOOLE_0; clusters XREAL_0, SQUARE_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, ARITHM; theorems XREAL_0, AXIOMS, REAL_1, REAL_2, SQUARE_1, XCMPLX_0, XCMPLX_1; begin reserve x, a, b, c for real number; definition let a,b,c; func delta(a,b,c) equals :Def1: b^2 - 4 * a * c; coherence; end; definition let a,b,c; cluster delta(a,b,c) -> real; coherence proof delta(a,b,c) = b^2 - 4 * a * c by Def1; hence thesis; end; end; definition let a,b,c be Real; redefine func delta(a,b,c) -> Real; coherence by XREAL_0:def 1; end; theorem Th1: a <> 0 implies a * x^2 + b * x + c = a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) proof assume A1: a <> 0; then A2: 4 * a <> 0 by XCMPLX_1:6; a * x^2 + b * x + c = a * x^2 + (b * x) * 1 + c .= a * x^2 + (b * x) * (a * (1/a)) + c by A1,XCMPLX_1:107 .= a * x^2 + a * ((b * x) * (1/a)) + c by XCMPLX_1:4 .= a * (x^2 + ((b * x) * (1/a))) + c by XCMPLX_1:8 .= a * (x^2 + ((b * x)/a)) + c by XCMPLX_1:100 .= a * (x^2 + x * (b/a)) + c by XCMPLX_1:75 .= a * (x^2 + x * ((2 * b)/(2 * a))) + c by XCMPLX_1:92 .= a * (x^2 + x * (2 * (b/(2 * a)))) + c by XCMPLX_1:75 .= a * (x^2 + (2 * x) * (b/(2 * a))) + c by XCMPLX_1:4 .= a * (x^2 + 2 * x * (b/(2 * a))) + (b^2/(4 * a) + (c - b^2/(4 * a))) by XCMPLX_1:27 .= (a * (x^2 + 2 * x * (b/(2 * a))) + b^2/(4 * a)) + (c - b^2/(4 * a)) by XCMPLX_1:1 .= (a * (x^2 + 2 * x * (b/(2 * a))) + a * (b^2/(4 * a) * (1/a))) + (c - b^2/(4 * a)) by A1,XCMPLX_1:110 .= (a * (x^2 + 2 * x * (b/(2 * a))) + a * ((b^2 * 1)/((4 * a) * a))) + (c - b^2/(4 * a)) by XCMPLX_1:77 .= (a * (x^2 + 2 * x * (b/(2 * a))) + a * (b^2/(4 * (a * a)))) + (c - b^2/(4 * a)) by XCMPLX_1:4 .= (a * (x^2 + 2 * x * (b/(2 * a))) + a * (b^2/((2 * 2) * a^2))) + (c - b^2/(4 * a)) by SQUARE_1:def 3 .= (a * (x^2 + 2 * x * (b/(2 * a))) + a * (b^2/(2^2 * a^2))) + (c - b^2/(4 * a)) by SQUARE_1:def 3 .= (a * (x^2 + 2 * x * (b/(2 * a))) + a * (b^2/(2 * a)^2)) + (c - b^2/(4 * a)) by SQUARE_1:68 .= (a * (x^2 + 2 * x * (b/(2 * a))) + a * (b/(2 * a))^2) + (c - b^2/(4 * a)) by SQUARE_1:69 .= a * ((x^2 + 2 * x * (b/(2 * a))) + (b/(2 * a))^2) + (c - b^2/(4 * a)) by XCMPLX_1:8 .= a * (x + b/(2 * a))^2 + (c - b^2/(4 * a)) by SQUARE_1:63 .= a * (x + b/(2 * a))^2 - (b^2/(4 * a) - c) by XCMPLX_1:38 .= a * (x + b/(2 * a))^2 - (b^2/(4 * a) - ((4 * a * c)/(4 * a))) by A2,XCMPLX_1:90 .= a * (x + b/(2 * a))^2 - (b^2 - (4 * a * c))/(4 * a) by XCMPLX_1:121; hence thesis by Def1; end; theorem a > 0 & delta(a,b,c) <= 0 implies a * x^2 + b * x + c >= 0 proof assume that A1: a > 0 and A2: delta(a,b,c) <= 0; A3: - delta(a,b,c) >= 0 by A2,REAL_1:26,REAL_2:109; 4 * a > 0 by A1,REAL_2:122; then (- delta(a,b,c))/(4 * a) >= 0 by A3,REAL_2:125; then - delta(a,b,c)/(4 * a) >= 0 by XCMPLX_1:188; then a * (x + b/(2 * a))^2 + - delta(a,b,c)/(4 * a) >= a * (x + b/(2 * a) )^2 + 0 by REAL_1:55; then A4: a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) >= a * (x + b/(2 * a)) ^2 by XCMPLX_0:def 8; (x +b/(2 * a))^2 >= 0 by SQUARE_1:72; then a * (x +b/(2 * a))^2 >= 0 by A1,REAL_2:121; then a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) >= 0 by A4,AXIOMS:22; hence thesis by A1,Th1; end; theorem a > 0 & delta(a,b,c) < 0 implies a * x^2 + b * x + c > 0 proof assume that A1: a > 0 and A2: delta(a,b,c) < 0; A3: - delta(a,b,c) > 0 by A2,REAL_1:26,REAL_2:110; 4 * a > 0 by A1,REAL_2:122; then (- delta(a,b,c))/(4 * a) > 0 by A3,REAL_2:127; then - delta(a,b,c)/(4 * a) > 0 by XCMPLX_1:188; then a * (x + b/(2 * a))^2 + - delta(a,b,c)/(4 * a) > a * (x + b/(2 * a)) ^2 by REAL_1:69; then A4: a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) > a * (x + b/(2 * a))^2 by XCMPLX_0:def 8; (x +b/(2 * a))^2 >= 0 by SQUARE_1:72; then a * (x +b/(2 * a))^2 >= 0 by A1,REAL_2:121; then a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) > 0 by A4,AXIOMS:22; hence thesis by A1,Th1; end; theorem a < 0 & delta(a,b,c) <= 0 implies a * x^2 + b * x + c <= 0 proof assume that A1: a < 0 and A2: delta(a,b,c) <= 0; A3: - delta(a,b,c) >= 0 by A2,REAL_1:26,REAL_2:109; 4 * a < 0 by A1,SQUARE_1:24; then (- delta(a,b,c))/(4 * a) <= 0 by A3,REAL_2:126; then - delta(a,b,c)/(4 * a) <= 0 by XCMPLX_1:188; then a * (x + b/(2 * a))^2 + - delta(a,b,c)/(4 * a) <= a * (x + b/(2 * a) )^2 + 0 by REAL_1:55; then A4: a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) <= a * (x + b/(2 * a)) ^2 by XCMPLX_0:def 8; (x +b/(2 * a))^2 >= 0 by SQUARE_1:72; then a * (x +b/(2 * a))^2 <= 0 by A1,REAL_2:123; then a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) <= 0 by A4,AXIOMS:22; hence thesis by A1,Th1; end; theorem a < 0 & delta(a,b,c) < 0 implies a * x^2 + b * x + c < 0 proof assume that A1: a < 0 and A2: delta(a,b,c) < 0; A3: - delta(a,b,c) > 0 by A2,REAL_1:66; 4 * a < 0 by A1,SQUARE_1:24; then (- delta(a,b,c))/(4 * a) < 0 by A3,REAL_2:128; then - delta(a,b,c)/(4 * a) < 0 by XCMPLX_1:188; then a * (x + b/(2 * a))^2 + - delta(a,b,c)/(4 * a) < a * (x + b/(2 * a)) ^2 + 0 by REAL_1:53; then A4: a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) < a * (x + b/(2 * a))^2 by XCMPLX_0:def 8; (x +b/(2 * a))^2 >= 0 by SQUARE_1:72; then a * (x +b/(2 * a))^2 <= 0 by A1,REAL_2:123; then a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) < 0 by A4,AXIOMS:22; hence thesis by A1,Th1; end; theorem Th6: a > 0 & a * x^2 + b * x + c >= 0 implies (2 * a * x + b)^2 - delta(a,b,c) >= 0 proof assume that A1: a > 0 and A2: a * x^2 + b * x + c >= 0; A3: 4 * a > 0 by A1,REAL_2:122; A4: 2 * a <> 0 by A1,REAL_2:122; a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) >= 0 by A1,A2,Th1; then (4 * a) * (a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a)) >= 0 by A3,REAL_2:121; then ((4 * a) * (a * (x + b/(2 * a))^2)) - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:40; then ((4 * a) * a) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:4; then (4 * (a * a)) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:4; then ((2 * 2) * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:def 3; then (2^2 * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:def 3; then (2 * a)^2 * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:68; then ((2 * a) * (x + b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:68; then ((2 * a) * x + (2 * a) * (b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:8; then A5: (2 * a * x + b)^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by A4,XCMPLX_1:88; 4 * a <> 0 by A1,REAL_2:122; hence thesis by A5,XCMPLX_1:88; end; theorem Th7: a > 0 & a * x^2 + b * x + c > 0 implies (2 * a * x + b)^2 - delta(a,b,c) > 0 proof assume that A1: a > 0 and A2: a * x^2 + b * x + c > 0; A3: 4 * a > 0 by A1,REAL_2:122; A4: 2 * a <> 0 by A1,REAL_2:122; a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) > 0 by A1,A2,Th1; then (4 * a) * (a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a)) > 0 by A3,REAL_2:122; then ((4 * a) * (a * (x + b/(2 * a))^2)) - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:40; then ((4 * a) * a) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then (4 * (a * a)) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then ((2 * 2) * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then (2^2 * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then (2 * a)^2 * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then ((2 * a) * (x + b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then ((2 * a) * x + (2 * a) * (b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:8; then A5: (2 * a * x + b)^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by A4,XCMPLX_1:88; 4 * a <> 0 by A1,REAL_2:122; hence thesis by A5,XCMPLX_1:88; end; theorem Th8: a < 0 & a * x^2 + b * x + c <= 0 implies (2 * a * x + b)^2 - delta(a,b,c) >= 0 proof assume that A1: a < 0 and A2: a * x^2 + b * x + c <= 0; A3: 4 * a < 0 by A1,SQUARE_1:24; A4: 2 * a <> 0 by A1,SQUARE_1:24; a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) <= 0 by A1,A2,Th1; then (4 * a) * (a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a)) >= 0 by A3,REAL_2:121; then ((4 * a) * (a * (x + b/(2 * a))^2)) - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:40; then ((4 * a) * a) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:4; then (4 * (a * a)) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:4; then ((2 * 2) * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:def 3; then (2^2 * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:def 3; then (2 * a)^2 * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:68; then ((2 * a) * (x + b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by SQUARE_1:68; then ((2 * a) * x + (2 * a) * (b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by XCMPLX_1:8; then A5: (2 * a * x + b)^2 - (4 * a) * (delta(a,b,c)/(4 * a)) >= 0 by A4,XCMPLX_1:88; 4 * a <> 0 by A1,SQUARE_1:24; hence thesis by A5,XCMPLX_1:88; end; theorem Th9: a < 0 & a * x^2 + b * x + c < 0 implies (2 * a * x + b)^2 - delta(a,b,c) > 0 proof assume that A1: a < 0 and A2: a * x^2 + b * x + c < 0; A3: 4 * a < 0 by A1,SQUARE_1:24; A4: 2 * a <> 0 by A1,SQUARE_1:24; a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) < 0 by A1,A2,Th1; then (4 * a) * (a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a)) > 0 by A3,REAL_2:122; then ((4 * a) * (a * (x + b/(2 * a))^2)) - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:40; then ((4 * a) * a) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then (4 * (a * a)) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then ((2 * 2) * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then (2^2 * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then (2 * a)^2 * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then ((2 * a) * (x + b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then ((2 * a) * x + (2 * a) * (b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:8; then A5: (2 * a * x + b)^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by A4,XCMPLX_1:88; 4 * a <> 0 by A1,SQUARE_1:24; hence thesis by A5,XCMPLX_1:88; end; theorem ( for x holds a * x^2 + b * x + c >= 0 ) & a > 0 implies delta(a,b,c) <= 0 proof assume that A1: for x holds a * x^2 + b * x + c >= 0 and A2: a > 0; A3: 2 * a <> 0 by A2,REAL_2:122; now a * (- b/(2 * a))^2 + b * (- b/(2 * a)) + c >= 0 by A1; then (2 * a * (- b/(2 * a)) + b)^2 - delta(a,b,c) >= 0 by A2,Th6; then (- (2 * a) * (b/(2 * a)) + b)^2 - delta(a,b,c) >= 0 by XCMPLX_1:175 ; then (- b + b)^2 - delta(a,b,c) >= 0 by A3,XCMPLX_1:88; then 0 - delta(a,b,c) >= 0 by SQUARE_1:60,XCMPLX_0:def 6; then - delta(a,b,c) >= 0 by XCMPLX_1:150; hence thesis by REAL_1:26,50; end; hence thesis; end; theorem ( for x holds a * x^2 + b * x + c <= 0 ) & a < 0 implies delta(a,b,c) <= 0 proof assume that A1: for x holds a * x^2 + b * x + c <= 0 and A2: a < 0; A3: 2 * a <> 0 by A2,SQUARE_1:24; now a * (- b/(2 * a))^2 + b * (- b/(2 * a)) + c <= 0 by A1; then (2 * a * (- b/(2 * a)) + b)^2 - delta(a,b,c) >= 0 by A2,Th8; then (- (2 * a) * (b/(2 * a)) + b)^2 - delta(a,b,c) >= 0 by XCMPLX_1:175 ; then (- b + b)^2 - delta(a,b,c) >= 0 by A3,XCMPLX_1:88; then 0 - delta(a,b,c) >= 0 by SQUARE_1:60,XCMPLX_0:def 6; then - delta(a,b,c) >= 0 by XCMPLX_1:150; hence thesis by REAL_1:26,50; end; hence thesis; end; theorem ( for x holds a * x^2 + b * x + c > 0 ) & a > 0 implies delta(a,b,c) < 0 proof assume that A1: for x holds a * x^2 + b * x + c > 0 and A2: a > 0; A3: 2 * a <> 0 by A2,REAL_2:122; now a * (- b/(2 * a))^2 + b * (- b/(2 * a)) + c > 0 by A1; then (2 * a * (- b/(2 * a)) + b)^2 - delta(a,b,c) > 0 by A2,Th7; then (- (2 * a) * (b/(2 * a)) + b)^2 - delta(a,b,c) > 0 by XCMPLX_1:175 ; then (- b + b)^2 - delta(a,b,c) > 0 by A3,XCMPLX_1:88; then 0 - delta(a,b,c) > 0 by SQUARE_1:60,XCMPLX_0:def 6; then - delta(a,b,c) > 0 by XCMPLX_1:150; hence thesis by REAL_1:66; end; hence thesis; end; theorem ( for x holds a * x^2 + b * x + c < 0 ) & a < 0 implies delta(a,b,c) < 0 proof assume that A1: for x holds a * x^2 + b * x + c < 0 and A2: a < 0; A3: 2 * a <> 0 by A2,SQUARE_1:24; now a * (- b/(2 * a))^2 + b * (- b/(2 * a)) + c < 0 by A1; then (2 * a * (- b/(2 * a)) + b)^2 - delta(a,b,c) > 0 by A2,Th9; then (- (2 * a) * (b/(2 * a)) + b)^2 - delta(a,b,c) > 0 by XCMPLX_1:175 ; then (- b + b)^2 - delta(a,b,c) > 0 by A3,XCMPLX_1:88; then 0 - delta(a,b,c) > 0 by SQUARE_1:60,XCMPLX_0:def 6; then - delta(a,b,c) > 0 by XCMPLX_1:150; hence thesis by REAL_1:26,50; end; hence thesis; end; theorem Th14: a <> 0 & a * x^2 + b * x + c = 0 implies (2 * a * x + b)^2 - delta(a,b,c) = 0 proof assume that A1: a <> 0 and A2: a * x^2 + b * x + c = 0; A3: 2 * a <> 0 by A1,XCMPLX_1:6; A4: 4 * a <> 0 by A1,XCMPLX_1:6; a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) = 0 by A1,A2,Th1; then (4 * a) * (a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a)) = 0; then ((4 * a) * (a * (x + b/(2 * a))^2)) - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by XCMPLX_1:40; then ((4 * a) * a) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by XCMPLX_1:4; then (4 * (a * a)) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by XCMPLX_1:4; then ((2 * 2) * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by SQUARE_1:def 3; then (2^2 * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by SQUARE_1:def 3; then (2 * a)^2 * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by SQUARE_1:68; then ((2 * a) * (x + b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by SQUARE_1:68; then ((2 * a) * x + (2 * a) * (b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by XCMPLX_1:8; then (2 * a * x + b)^2 - (4 * a) * (delta(a,b,c)/(4 * a)) = 0 by A3,XCMPLX_1:88; hence thesis by A4,XCMPLX_1:88; end; Lm1: a^2 = b^2 implies a = b or a = - b proof assume a^2 = b^2; then a^2 - b^2 = 0 by XCMPLX_1:14; then (a + b) * (a - b) = 0 by SQUARE_1:67; then a + b = 0 or a - b = 0 by XCMPLX_1:6; hence thesis by XCMPLX_0:def 6,XCMPLX_1:15; end; theorem a <> 0 & delta(a,b,c) >= 0 & a * x^2 + b * x + c = 0 implies x = (- b - sqrt delta(a,b,c))/(2 * a) or x = (- b + sqrt delta(a,b,c))/(2 * a) proof assume that A1: a <> 0 and A2: delta(a,b,c) >= 0 and A3: a * x^2 + b * x + c = 0; A4: 2 * a <> 0 by A1,XCMPLX_1:6; (2 * a * x + b)^2 - delta(a,b,c) = 0 by A1,A3,Th14; then (2 * a * x + b)^2 = delta(a,b,c) by XCMPLX_1:15; then (2 * a * x + b)^2 = (sqrt delta(a,b,c))^2 by A2,SQUARE_1:def 4; then 2 * a * x + b = sqrt delta(a,b,c) or 2 * a * x + b = - sqrt delta(a, b,c) by Lm1; then 2 * a * x = - b + sqrt delta(a,b,c) or 2 * a * x = - b + - sqrt delta(a,b,c) by XCMPLX_1:137; then x = (- b + sqrt delta(a,b,c))/(2 * a) or 2 * a * x = - b - sqrt delta(a,b,c) by A4,XCMPLX_0:def 8,XCMPLX_1:90; hence thesis by A4,XCMPLX_1:90; end; theorem Th16: a <> 0 & delta(a,b,c) >= 0 implies a * x^2 + b * x + c = a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) proof assume that A1: a <> 0 and A2: delta(a,b,c) >= 0; a * x^2 + b * x + c = a * (x + b/(2 * a))^2 - 1 * (delta(a,b,c)/(4 * a)) by A1,Th1 .= a * (x + b/(2 * a))^2 - (a * (1/a)) * (delta(a,b,c)/(4 * a)) by A1,XCMPLX_1:107 .= a * (x + b/(2 * a))^2 - a * ((1/a) * (delta(a,b,c)/(4 * a))) by XCMPLX_1:4 .= a * ((x + b/(2 * a))^2 - (1/a) * (delta(a,b,c)/(4 * a))) by XCMPLX_1:40 .= a * ((x + b/(2 * a))^2 - (delta(a,b,c) * 1)/((4 * a) * a)) by XCMPLX_1:77 .= a * ((x + b/(2 * a))^2 - delta(a,b,c)/(4 * (a * a))) by XCMPLX_1:4 .= a * ((x + b/(2 * a))^2 - delta(a,b,c)/((2 * 2) * a^2)) by SQUARE_1:def 3 .= a * ((x + b/(2 * a))^2 - delta(a,b,c)/(2^2 * a^2)) by SQUARE_1:def 3 .= a * ((x + b/(2 * a))^2 - delta(a,b,c)/(2 * a)^2) by SQUARE_1:68 .= a * ((x + b/(2 * a))^2 - (sqrt delta(a,b,c))^2/(2 * a)^2) by A2,SQUARE_1: def 4 .= a * ((x + b/(2 * a))^2 - (sqrt delta(a,b,c)/(2 * a))^2) by SQUARE_1:69 .= a * (((x + b/(2 * a)) - sqrt delta(a,b,c)/(2 * a)) * ((x + b/(2 * a)) + sqrt delta(a,b,c)/(2 * a))) by SQUARE_1:67 .= a * ((x + b/(2 * a)) - sqrt delta(a,b,c)/(2 * a)) * ((x + b/(2 * a)) + sqrt delta(a,b,c)/(2 * a)) by XCMPLX_1:4 .= a * ((x + b/(2 * a)) - sqrt delta(a,b,c)/(2 * a)) * (x - (- b/(2 * a) - sqrt delta(a,b,c)/(2 * a))) by XCMPLX_1:157 .= a * (x + (b/(2 * a) - sqrt delta(a,b,c)/(2 * a))) * (x - (- b/(2 * a) - sqrt delta(a,b,c)/(2 * a))) by XCMPLX_1:29 .= a * (x - (sqrt delta(a,b,c)/(2 * a) - b/(2 * a))) * (x - (- b/(2 * a) - sqrt delta(a,b,c)/(2 * a))) by XCMPLX_1:38 .= a * (x - (- b/(2 * a) + sqrt delta(a,b,c)/(2 * a))) * (x - (- b/(2 * a) - sqrt delta(a,b,c)/(2 * a))) by XCMPLX_0:def 8 .= a * (x - ((- b)/(2 * a) + sqrt delta(a,b,c)/(2 * a))) * (x - (- b/(2 * a) - sqrt delta(a,b,c)/(2 * a))) by XCMPLX_1:188 .= a * (x - ((- b)/(2 * a) + sqrt delta(a,b,c)/(2 * a))) * (x - ((- b)/(2 * a) - sqrt delta(a,b,c)/(2 * a))) by XCMPLX_1:188 .= a * (x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - ((- b)/(2 * a) - sqrt delta(a,b,c)/(2 * a))) by XCMPLX_1:63 .= a * (x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - (- b - sqrt delta(a,b,c))/(2 * a)) by XCMPLX_1:121; hence thesis by XCMPLX_1:4; end; theorem Th17: a < 0 & delta(a,b,c) > 0 implies (- b + sqrt delta(a,b,c))/(2 * a) < (- b - sqrt delta(a,b,c))/(2 * a) proof assume that A1: a < 0 and A2: delta(a,b,c) > 0; A3: 2 * a < 0 by A1,SQUARE_1:24; sqrt delta(a,b,c) > 0 by A2,SQUARE_1:93; then 2 * sqrt delta(a,b,c) > 0 by REAL_2:122; then sqrt delta(a,b,c) + sqrt delta(a,b,c) > 0 by XCMPLX_1:11; then sqrt delta(a,b,c) > - sqrt delta(a,b,c) by REAL_2:109; then - b + sqrt delta(a,b,c) > - b + - sqrt delta(a,b,c) by REAL_1:53; then - b + sqrt delta(a,b,c) > - b - sqrt delta(a,b,c) by XCMPLX_0:def 8; hence thesis by A3,REAL_1:74; end; theorem ( a < 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c > 0 iff (- b + sqrt delta(a,b,c))/(2 * a) < x & x < (- b - sqrt delta(a,b,c))/(2 * a) ) proof assume that A1: a < 0 and A2: delta(a,b,c) > 0; thus a * x^2 + b * x + c > 0 implies (- b + sqrt delta(a,b,c))/(2 * a) < x & x < (- b - sqrt delta(a,b,c))/(2 * a) proof assume a * x^2 + b * x + c > 0; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) > 0 by A1,A2,Th16; then a * ((x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a))) > 0 by XCMPLX_1:4; then (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) < 0/a by A1,REAL_2:178; then x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 or x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 by REAL_2:132; then x > (- b - sqrt delta(a,b,c))/(2 * a) & x < (- b + sqrt delta(a,b,c))/(2 * a) & (- b + sqrt delta(a,b,c))/(2 * a) < (- b - sqrt delta(a,b,c))/(2 * a) or x < (- b - sqrt delta(a,b,c))/(2 * a) & x > (- b + sqrt delta(a,b,c))/(2 * a) by A1,A2,Th17,REAL_2:106,SQUARE_1:12; hence thesis by AXIOMS:22; end; assume (- b + sqrt delta(a,b,c))/(2 * a) < x & x < (- b - sqrt delta(a,b,c))/(2 * a); then x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 by REAL_2:105,SQUARE_1:11; then (x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - (- b - sqrt delta(a,b,c))/(2 * a)) < 0 by SQUARE_1:24; then a * ((x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - (- b - sqrt delta(a,b,c))/(2 * a))) > 0 by A1,REAL_2:122; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) > 0 by XCMPLX_1:4; hence thesis by A1,A2,Th16; end; theorem ( a < 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c < 0 iff x < (- b + sqrt delta(a,b,c))/(2 * a) or x > (- b - sqrt delta(a,b,c))/(2 * a) ) proof assume that A1: a < 0 and A2: delta(a,b,c) > 0; thus a * x^2 + b * x + c < 0 implies x < (- b + sqrt delta(a,b,c))/(2 * a) or x > (- b - sqrt delta(a,b,c))/(2 * a) proof assume a * x^2 + b * x + c < 0; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) < 0 by A1,A2,Th16; then a * ((x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a))) < 0 by XCMPLX_1:4; then (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) > 0/a by A1,REAL_2:178; then x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 or x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 by SQUARE_1:26; hence thesis by REAL_2:106,SQUARE_1:12; end; assume x < (- b + sqrt delta(a,b,c))/(2 * a) or x > (- b - sqrt delta(a,b,c))/(2 * a); then A3: x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 or x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 by REAL_2:105,SQUARE_1:11; (- b + sqrt delta(a,b,c))/(2 * a) < (- b - sqrt delta(a,b,c))/(2 * a) by A1,A2,Th17; then x - (- b + sqrt delta(a,b,c))/(2 * a) > x - (- b - sqrt delta(a,b,c))/(2 * a) by REAL_2:105; then x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 & x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 or x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 by A3,AXIOMS:22; then (x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - (- b - sqrt delta(a,b,c))/(2 * a)) > 0 by REAL_2:122; then a * ((x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - (- b - sqrt delta(a,b,c))/(2 * a))) < 0 by A1,SQUARE_1:24; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) < 0 by XCMPLX_1:4; hence thesis by A1,A2,Th16; end; canceled 2; theorem a <> 0 & delta(a,b,c) = 0 & a * x^2 + b * x + c = 0 implies x = - b/(2 * a) proof assume that A1: a <> 0 and A2: delta(a,b,c) = 0 and A3: a * x^2 + b * x + c = 0; A4: 2 * a <> 0 by A1,XCMPLX_1:6; (2 * a * x + b)^2 - 0 = 0 by A1,A2,A3,Th14; then 2 * a * x + b = 0 by SQUARE_1:73; then 2 * a * x = - b by XCMPLX_0:def 6; then x = (- b)/(2 * a) by A4,XCMPLX_1:90; hence thesis by XCMPLX_1:188; end; theorem Th23: a > 0 & (2 * a * x + b)^2 - delta(a,b,c) > 0 implies a * x^2 + b * x + c > 0 proof assume that A1: a > 0 and A2: (2 * a * x + b)^2 - delta(a,b,c) > 0; A3: 4 * a > 0 by A1,REAL_2:122; A4: 2 * a <> 0 by A1,REAL_2:122; 4 * a <> 0 by A1,REAL_2:122; then (2 * a * x + b)^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by A2,XCMPLX_1:88; then (2 * a * x + (2 * a) * (b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by A4,XCMPLX_1:88; then ((2 * a) * (x + b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:8; then (2 * a)^2 * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then (2^2 * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then ((2 * 2) * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then (4 * (a * a)) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then ((4 * a) * a) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then ((4 * a) * (a * (x + b/(2 * a))^2)) - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then (4 * a) * (a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:40; then a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) > 0/(4 * a) by A3,REAL_2:178; hence thesis by A1,Th1; end; theorem ( a > 0 & delta(a,b,c) = 0 ) implies ( a * x^2 + b * x + c > 0 iff x <> - b/(2 * a) ) proof assume that A1: a > 0 and A2: delta(a,b,c) = 0; A3: 2 * a <> 0 by A1,REAL_2:122; thus a * x^2 + b * x + c > 0 implies x <> - b/(2 * a) proof assume a * x^2 + b * x + c > 0; then (2 * a * x + b)^2 - 0 > 0 by A1,A2,Th7; then (2 * a * x + b) * (2 * a * x + b) > 0 by SQUARE_1:def 3; then 2 * a * x + b <> 0; then 2 * a * x <> - b by XCMPLX_0:def 6; then x <> (- b)/(2 * a) by A3,XCMPLX_1:88; hence thesis by XCMPLX_1:188; end; assume x <> - b/(2 * a); then x <> (- b)/(2 * a) by XCMPLX_1:188; then 2 * a * x <> - b by A3,XCMPLX_1:90; then 2 * a * x + b <> 0 by XCMPLX_0:def 6; then (2 * a * x + b)^2 - delta(a,b,c) > 0 by A2,SQUARE_1:74; hence thesis by A1,Th23; end; theorem Th25: a < 0 & (2 * a * x + b)^2 - delta(a,b,c) > 0 implies a * x^2 + b * x + c < 0 proof assume that A1: a < 0 and A2: (2 * a * x + b)^2 - delta(a,b,c) > 0; A3: 4 * a < 0 by A1,SQUARE_1:24; A4: 2 * a <> 0 by A1,SQUARE_1:24; 4 * a <> 0 by A1,SQUARE_1:24; then (2 * a * x + b)^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by A2,XCMPLX_1:88; then (2 * a * x + (2 * a) * (b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by A4,XCMPLX_1:88; then ((2 * a) * (x + b/(2 * a)))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:8; then (2 * a)^2 * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then (2^2 * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:68; then ((2 * 2) * a^2) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then (4 * (a * a)) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by SQUARE_1:def 3; then ((4 * a) * a) * (x + b/(2 * a))^2 - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then ((4 * a) * (a * (x + b/(2 * a))^2)) - (4 * a) * (delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:4; then (4 * a) * (a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a)) > 0 by XCMPLX_1:40; then a * (x + b/(2 * a))^2 - delta(a,b,c)/(4 * a) < 0/(4 * a) by A3,REAL_2:178; hence thesis by A1,Th1; end; theorem ( a < 0 & delta(a,b,c) = 0 ) implies ( a * x^2 + b * x + c < 0 iff x <> - b/(2 * a) ) proof assume that A1: a < 0 and A2: delta(a,b,c) = 0; A3: 2 * a <> 0 by A1,SQUARE_1:24; thus a * x^2 + b * x + c < 0 implies x <> - b/(2 * a) proof assume a * x^2 + b * x + c < 0; then (2 * a * x + b)^2 - 0 > 0 by A1,A2,Th9; then (2 * a * x + b) * (2 * a * x + b) > 0 by SQUARE_1:def 3; then 2 * a * x + b <> 0; then 2 * a * x <> - b by XCMPLX_0:def 6; then x <> (- b)/(2 * a) by A3,XCMPLX_1:88; hence thesis by XCMPLX_1:188; end; assume x <> - b/(2 * a); then x <> (- b)/(2 * a) by XCMPLX_1:188; then 2 * a * x <> - b by A3,XCMPLX_1:90; then 2 * a * x + b <> 0 by XCMPLX_0:def 6; then (2 * a * x + b)^2 - delta(a,b,c) > 0 by A2,SQUARE_1:74; hence thesis by A1,Th25; end; theorem Th27: a > 0 & delta(a,b,c) > 0 implies (- b + sqrt delta(a,b,c))/(2 * a) > (- b - sqrt delta(a,b,c))/(2 * a) proof assume that A1: a > 0 and A2: delta(a,b,c) > 0; A3: 2 * a > 0 by A1,REAL_2:122; sqrt delta(a,b,c) > 0 by A2,SQUARE_1:93; then 2 * sqrt delta(a,b,c) > 0 by REAL_2:122; then sqrt delta(a,b,c) + sqrt delta(a,b,c) > 0 by XCMPLX_1:11; then sqrt delta(a,b,c) > - sqrt delta(a,b,c) by REAL_2:109; then - b + sqrt delta(a,b,c) > - b + - sqrt delta(a,b,c) by REAL_1:53; then - b + sqrt delta(a,b,c) > - b - sqrt delta(a,b,c) by XCMPLX_0:def 8; hence thesis by A3,REAL_1:73; end; theorem ( a > 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c < 0 iff (- b - sqrt delta(a,b,c))/(2 * a) < x & x < (- b + sqrt delta(a,b,c))/(2 * a) ) proof assume that A1: a > 0 and A2: delta(a,b,c) > 0; thus a * x^2 + b * x + c < 0 implies (- b - sqrt delta(a,b,c))/(2 * a) < x & x < (- b + sqrt delta(a,b,c))/(2 * a) proof assume a * x^2 + b * x + c < 0; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) < 0 by A1,A2,Th16; then a * ((x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a))) < 0 by XCMPLX_1:4; then (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) < 0/a by A1,REAL_2:178; then x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 or x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 by REAL_2:132; then x > (- b - sqrt delta(a,b,c))/(2 * a) & x < (- b + sqrt delta(a,b,c))/(2 * a) or (- b + sqrt delta(a,b,c))/(2 * a) > (- b - sqrt delta(a,b,c))/(2 * a) & x < (- b - sqrt delta(a,b,c))/(2 * a) & x > (- b + sqrt delta(a,b,c))/(2 * a) by A1,A2,Th27,REAL_2:106,SQUARE_1:12; hence thesis by AXIOMS:22; end; assume (- b - sqrt delta(a,b,c))/(2 * a) < x & x < (- b + sqrt delta(a,b,c))/(2 * a); then x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 by REAL_2:105,SQUARE_1:11; then (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) < 0 by SQUARE_1:24; then a * ((x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a))) < 0 by A1,SQUARE_1:24; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) < 0 by XCMPLX_1:4; hence thesis by A1,A2,Th16; end; theorem ( a > 0 & delta(a,b,c) > 0 ) implies ( a * x^2 + b * x + c > 0 iff x < (- b - sqrt delta(a,b,c))/(2 * a) or x > (- b + sqrt delta(a,b,c))/(2 * a) ) proof assume that A1: a > 0 and A2: delta(a,b,c) > 0; thus a * x^2 + b * x + c > 0 implies x < (- b - sqrt delta(a,b,c))/(2 * a) or x > (- b + sqrt delta(a,b,c))/(2 * a) proof assume a * x^2 + b * x + c > 0; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) > 0 by A1,A2,Th16; then a * ((x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a))) > 0 by XCMPLX_1:4; then (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) > 0/a by A1,REAL_2:178; then x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 or x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 by SQUARE_1:26; hence thesis by REAL_2:106,SQUARE_1:12; end; assume x < (- b - sqrt delta(a,b,c))/(2 * a) or x > (- b + sqrt delta(a,b,c))/(2 * a); then A3: x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 or x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 by REAL_2:105,SQUARE_1:11; (- b + sqrt delta(a,b,c))/(2 * a) > (- b - sqrt delta(a,b,c))/(2 * a) by A1,A2,Th27; then x - (- b + sqrt delta(a,b,c))/(2 * a) < x - (- b - sqrt delta(a,b,c))/(2 * a) by REAL_2:105; then x - (- b - sqrt delta(a,b,c))/(2 * a) < 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) < 0 or x - (- b - sqrt delta(a,b,c))/(2 * a) > 0 & x - (- b + sqrt delta(a,b,c))/(2 * a) > 0 by A3,AXIOMS:22; then (x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - (- b - sqrt delta(a,b,c))/(2 * a)) > 0 by REAL_2:122; then a * ((x - (- b + sqrt delta(a,b,c))/(2 * a)) * (x - (- b - sqrt delta(a,b,c))/(2 * a))) > 0 by A1,REAL_2:122; then a * (x - (- b - sqrt delta(a,b,c))/(2 * a)) * (x - (- b + sqrt delta(a,b,c))/(2 * a)) > 0 by XCMPLX_1:4; hence thesis by A1,A2,Th16; end;