environ vocabulary SUPINF_1, RLVECT_1, ARYTM, MEASURE6, GROUP_1, ARYTM_1, ARYTM_3, COMPLEX1, ABSVALUE, SQUARE_1; notation ORDINAL1, XCMPLX_0, XREAL_0, REAL_1, ABSVALUE, SQUARE_1, SUPINF_1, SUPINF_2, MEASURE6, EXTREAL1, MESFUNC1; constructors SQUARE_1, MESFUNC1, SUPINF_2, MEASURE6, EXTREAL1, REAL_1, MEMBERED, ABSVALUE; clusters XREAL_0, MEMBERED; requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM; begin :: Preliminaries reserve x,y,w,z for R_eal; reserve a,b for Real; canceled; theorem :: EXTREAL2:2 :: extension of AXIOMS:19 x <> +infty & x <> -infty implies ex y st x + y = 0.; theorem :: EXTREAL2:3 :: extension of AXIOMS:20 x <> +infty & x <> -infty & x <> 0. implies ex y st x*y = 1.; theorem :: EXTREAL2:4 1. * x = x & x * 1. = x & R_EAL 1 * x = x & x * R_EAL 1 = x; theorem :: EXTREAL2:5 :: extension of REAL_1:25 0. - x = -x; canceled; theorem :: EXTREAL2:7 0. <=' x & 0. <=' y implies 0. <=' x + y; theorem :: EXTREAL2:8 (0. <=' x & 0. <' y) or (0. <' x & 0. <=' y) implies 0. <' x + y; theorem :: EXTREAL2:9 x <=' 0. & y <=' 0. implies x + y <=' 0.; theorem :: EXTREAL2:10 (x <=' 0. & y <' 0.) or (x <' 0. & y <=' 0.) implies x + y <' 0.; theorem :: EXTREAL2:11 z <> +infty & z <> -infty & x + z = y implies x = y - z; theorem :: EXTREAL2:12 :: extension of REAL_1:34 x <> +infty & x <> -infty & x <> 0. implies x*(1./x) = 1. & (1./x)*x = 1.; theorem :: EXTREAL2:13 :: extension of REAL_1:36 x <> +infty & x <> -infty implies x - x = 0.; theorem :: EXTREAL2:14 :: extension of REAL_2:6 not ((x = +infty & y = -infty) or (x = -infty & y = +infty)) implies -(x + y) = -x + -y & -(x + y) = -y - x & -(x + y) = -x - y; theorem :: EXTREAL2:15 :: extension of REAL_2:8 not ((x = +infty & y = +infty) or (x = -infty & y = -infty)) implies -(x - y) = -x + y & -(x - y) = y - x; theorem :: EXTREAL2:16 :: extension of REAL_2:9 not ((x = +infty & y = +infty) or (x = -infty & y = -infty)) implies -(-x + y) = x - y & -(-x + y) = x + -y; theorem :: EXTREAL2:17 (x = +infty & 0. <' y & y <' +infty) or (x = -infty & y <' 0. & -infty <' y) implies x / y = +infty; theorem :: EXTREAL2:18 (x = +infty & y <' 0. & -infty <' y) or (x = -infty & 0. <' y & y <' +infty) implies x / y = -infty; theorem :: EXTREAL2:19 :: extension of REAL_2:62 -infty <' y & y <' +infty & y <> 0. implies x * y / y = x & x * (y / y) = x; theorem :: EXTREAL2:20 1. <' +infty & -infty <' 1.; theorem :: EXTREAL2:21 x = +infty or x = -infty implies (for y st y in REAL holds x + y <> 0.); theorem :: EXTREAL2:22 x = +infty or x = -infty implies for y holds x * y <> 1.; theorem :: EXTREAL2:23 not ((x = +infty & y = -infty) or (x = -infty & y = +infty)) & x + y <' +infty implies x <> +infty & y <> +infty; theorem :: EXTREAL2:24 not ((x = +infty & y = -infty) or (x = -infty & y = +infty)) & -infty <' x + y implies x <> -infty & y <> -infty; theorem :: EXTREAL2:25 not ((x = +infty & y = +infty) or (x = -infty & y = -infty)) & x - y <' +infty implies x <> +infty & y <> -infty; theorem :: EXTREAL2:26 not ((x = +infty & y = +infty) or (x = -infty & y = -infty)) & -infty <' x - y implies x <> -infty & y <> +infty; theorem :: EXTREAL2:27 not ((x = +infty & y = -infty) or (x = -infty & y = +infty)) & x + y <' z implies x <> +infty & y <> +infty & z <> -infty & x <' z - y; theorem :: EXTREAL2:28 not ((z = +infty & y = +infty) or (z = -infty & y = -infty)) & x <' z - y implies x <> +infty & y <> +infty & z <> -infty & x + y <' z; theorem :: EXTREAL2:29 not ((x = +infty & y = +infty) or (x = -infty & y = -infty)) & x - y <' z implies x <> +infty & y <> -infty & z <> -infty & x <' z + y; theorem :: EXTREAL2:30 not ((z = +infty & y = -infty) or (z = -infty & y = +infty)) & x <' z + y implies x <> +infty & y <> -infty & z <> -infty & x - y <' z; theorem :: EXTREAL2:31 not ((x = +infty & y = -infty) or (x = -infty & y = +infty) or (y = +infty & z = +infty) or (y = -infty & z = -infty)) & x + y <=' z implies y <> +infty & x <=' z - y; theorem :: EXTREAL2:32 not (x = +infty & y = -infty) & not (x = -infty & y = +infty) & not (y = +infty & z = +infty) & x <=' z - y implies y <> +infty & x + y <=' z; theorem :: EXTREAL2:33 not ((x = +infty & y = +infty) or (x = -infty & y = -infty) or (y = +infty & z = -infty) or (y = -infty & z = +infty)) & x - y <=' z implies y <> -infty & x <=' z + y; theorem :: EXTREAL2:34 not (x = +infty & y = +infty) & not (x = -infty & y = -infty) & not (y = -infty & z = +infty) & x <=' z + y implies y <> -infty & x - y <=' z; canceled 5; theorem :: EXTREAL2:40 :: extension of REAL_1:27 not (x = +infty & y = +infty) & not (x = -infty & y = -infty) & not (y = +infty & z = -infty) & not (y = -infty & z = +infty) & not (x = +infty & z = +infty) & not (x = -infty & z = -infty) implies x - y - z = x - (y + z); theorem :: EXTREAL2:41 :: extension of REAL_1:28 not (x = +infty & y = +infty) & not (x = -infty & y = -infty) & not (y = +infty & z = +infty) & not (y = -infty & z = -infty) & not (x = +infty & z = -infty) & not (x = -infty & z = +infty) implies x - y + z = x - (y - z); theorem :: EXTREAL2:42 x * y <> +infty & x * y <> -infty implies x is Real or y is Real; theorem :: EXTREAL2:43 :: extension of EXTREAL1:21 (0. <' x & 0. <' y) or (x <' 0. & y <' 0.) iff 0. <' x * y; theorem :: EXTREAL2:44 :: extension of EXTREAL1:22 (0. <' x & y <' 0.) or (x <' 0. & 0. <' y) iff x * y <' 0.; theorem :: EXTREAL2:45 :: extension of REAL_2:121 ((0. <=' x or 0. <' x) & (0. <=' y or 0. <' y)) or ((x <=' 0. or x <' 0.) & (y <=' 0. or y <' 0.)) iff 0. <=' x * y; theorem :: EXTREAL2:46 :: extension of REAL_2:123 ((x <=' 0. or x <' 0.) & (0. <=' y or 0. <' y)) or ((0. <=' x or 0. <' x) & (y <=' 0. or y <' 0.)) iff x * y <=' 0.; theorem :: EXTREAL2:47 (x <=' -y iff y <=' -x) & (-x <=' y iff -y <=' x); theorem :: EXTREAL2:48 (x <' -y iff y <' -x) & (-x <' y iff -y <' x); begin :: Basic properties of absolute value for extended real numbers theorem :: EXTREAL2:49 x = a implies |.x.| = abs(a); theorem :: EXTREAL2:50 |.x.| = x or |.x.| = -x; theorem :: EXTREAL2:51 :: extension of ABSVALUE:5 0. <=' |.x.|; theorem :: EXTREAL2:52 :: extension of ABSVALUE:6 x <> 0. implies 0. <' |.x.|; theorem :: EXTREAL2:53 :: extension of ABSVALUE:7 x = 0. iff |.x.| = 0.; theorem :: EXTREAL2:54 :: extension of ABSVALUE:9 |.x.| = -x & x <> 0. implies x <' 0.; theorem :: EXTREAL2:55 x <=' 0. implies |.x.| = -x; theorem :: EXTREAL2:56 :: extension of ABSVALUE:10 |.x * y.| = |.x.| * |.y.|; theorem :: EXTREAL2:57 :: extension of ABSVALUE:11 -|.x.| <=' x & x <=' |.x.|; theorem :: EXTREAL2:58 |.x.| <' y implies -y <' x & x <' y; theorem :: EXTREAL2:59 -y <' x & x <' y implies 0. <' y & |.x.| <' y; theorem :: EXTREAL2:60 :: extension of ABSVALUE:12 -y <=' x & x <=' y iff |.x.| <=' y; theorem :: EXTREAL2:61 :: extension of ABSVALUE:13 not ((x = +infty & y = -infty) or (x = -infty & y = +infty)) implies |.x + y.| <=' |.x.| + |.y.|; theorem :: EXTREAL2:62 :: extension of ABSVALUE:14 -infty <' x & x <' +infty & x <> 0. implies |.x.|*|. 1./x .| = 1.; theorem :: EXTREAL2:63 x = +infty or x = -infty implies |.x.|*|. 1./x .| = 0.; theorem :: EXTREAL2:64 :: extension of ABSVALUE:15 x <> 0. implies |. 1./x .| = 1./|.x.|; theorem :: EXTREAL2:65 :: extension of ABSVALUE:16 not((x=-infty or x=+infty) & (y=-infty or y=+infty)) & y<>0. implies |.x/y.| = |.x.|/|.y.|; theorem :: EXTREAL2:66 :: extension of ABSVALUE:17 |.x.| = |.-x.|; theorem :: EXTREAL2:67 x = +infty or x = -infty implies |.x.| = +infty; theorem :: EXTREAL2:68 :: extension of ABSVALUE:18 x is Real or y is Real implies |.x.|-|.y.| <=' |.x-y.|; theorem :: EXTREAL2:69 :: extension of ABSVALUE:19 not((x = +infty & y = +infty) or (x = -infty & y = -infty)) implies |.x-y.| <=' |.x.| + |.y.|; theorem :: EXTREAL2:70 :: extension of ABSVALUE:20 |.|.x.|.| = |.x.|; theorem :: EXTREAL2:71 :: extension of ABSVALUE:21 not((x = +infty & y = -infty) or (x = -infty & y = +infty)) & |.x.| <=' z & |.y.| <=' w implies |.x+y.| <=' z + w; theorem :: EXTREAL2:72 :: extension of ABSVALUE:22 x is Real or y is Real implies |.|.x.|-|.y.|.| <=' |.x-y.|; theorem :: EXTREAL2:73 :: extension of ABSVALUE:24 0. <=' x * y implies |.x+y.| = |.x.|+|.y.|; begin :: Definitions of MIN,MAX for extended real numbers and their basic properties theorem :: EXTREAL2:74 x = a & y = b implies (b < a iff y <' x) & (b <= a iff y <=' x); definition let x,y; func min(x,y) -> R_eal equals :: EXTREAL2:def 1 x if x <=' y otherwise y; func max(x,y) -> R_eal equals :: EXTREAL2:def 2 x if y <=' x otherwise y; end; theorem :: EXTREAL2:75 x = -infty or y = -infty implies min(x,y) = -infty; theorem :: EXTREAL2:76 x = +infty or y = +infty implies max(x,y) = +infty; theorem :: EXTREAL2:77 for x,y being R_eal holds for a,b being Real holds (x = a & y = b) implies min(x,y) = min(a,b) & max(x,y) = max(a,b); theorem :: EXTREAL2:78 :: extension of SQUARE_1:32 y <=' x implies min(x,y) = y; theorem :: EXTREAL2:79 :: extension of SQUARE_1:33 not y <=' x implies min(x,y) = x; theorem :: EXTREAL2:80 :: extension of SQUARE_1:34 x <> +infty & y <> +infty & not ((x = +infty & y = +infty) or (x = -infty & y = -infty)) implies min(x,y) = (x + y - |.x - y.|) / R_EAL 2; theorem :: EXTREAL2:81 :: extension of SQUARE_1:35 min(x,y) <=' x & min(y,x) <=' x; canceled; theorem :: EXTREAL2:83 :: extension of SQUARE_1:37 min(x,y) = min(y,x); theorem :: EXTREAL2:84 :: extension of SQUARE_1:38 min(x,y) = x or min(x,y) = y; theorem :: EXTREAL2:85 :: extension of SQUARE_1:39 x <=' y & x <=' z iff x <=' min(y,z); canceled; theorem :: EXTREAL2:87 min(x,y) = y implies y <=' x; theorem :: EXTREAL2:88 :: extension of SQUARE_1:40 min(x,min(y,z)) = min(min(x,y),z); theorem :: EXTREAL2:89 :: extension of SQUARE_1:43 x <=' y implies max(x,y) = y; theorem :: EXTREAL2:90 :: extension of SQUARE_1:44 not x <=' y implies max(x,y) = x; theorem :: EXTREAL2:91 :: extension of SQUARE_1:45 x <> -infty & y <> -infty & not ((x = +infty & y = +infty) or (x = -infty & y = -infty)) implies max(x,y) = (x + y + |.x - y.|) / R_EAL 2; theorem :: EXTREAL2:92 :: extension of SQUARE_1:46 x <=' max(x,y) & x <=' max(y,x); canceled; theorem :: EXTREAL2:94 :: extension of SQUARE_1:48 max(x,y) = max(y,x); theorem :: EXTREAL2:95 :: extension of SQUARE_1:49 max(x,y) = x or max(x,y) = y; theorem :: EXTREAL2:96 :: extension of SQUARE_1:50 y <=' x & z <=' x iff max(y,z) <=' x; canceled; theorem :: EXTREAL2:98 max(x,y) = y implies x <=' y; theorem :: EXTREAL2:99 :: extension of SQUARE_1:51 max(x,max(y,z)) = max(max(x,y),z); theorem :: EXTREAL2:100 :: extension of SQUARE_1:53 min(x,y) + max(x,y) = x + y; theorem :: EXTREAL2:101 :: extension of SQUARE_1:54 max(x,min(x,y)) = x & max(min(x,y),x) = x & max(min(y,x),x) = x & max(x,min(y,x)) = x; theorem :: EXTREAL2:102 :: extension of SQUARE_1:55 min(x,max(x,y)) = x & min(max(x,y),x) = x & min(max(y,x),x) = x & min(x,max(y,x)) = x; theorem :: EXTREAL2:103 :: extension of SQUARE_1:56 min(x,max(y,z)) = max(min(x,y),min(x,z)) & min(max(y,z),x) = max(min(y,x),min(z,x)); theorem :: EXTREAL2:104 :: extension of SQUARE_1:57 max(x,min(y,z)) = min(max(x,y),max(x,z)) & max(min(y,z),x) = min(max(y,x),max(z,x));