environ vocabulary FUNCT_2, MARGREL1, BVFUNC_1, ZF_LANG, FUNCT_1, RELAT_1; notation TARSKI, XBOOLE_0, SUBSET_1, MARGREL1, VALUAT_1, RELAT_1, FUNCT_1, FRAENKEL, BINARITH, BVFUNC_1; constructors BINARITH, BVFUNC_1; clusters MARGREL1, VALUAT_1, BINARITH, FRAENKEL; requirements SUBSET, BOOLE; begin ::Chap. 1 Propositional Calculus reserve Y for non empty set; theorem :: BVFUNC_5:1 for a,b being Element of Funcs(Y,BOOLEAN) holds a=I_el(Y) & b=I_el(Y) iff (a '&' b)=I_el(Y); theorem :: BVFUNC_5:2 for a,b being Element of Funcs(Y,BOOLEAN) st a=I_el(Y) & (a 'imp' b)=I_el(Y) holds b=I_el(Y); theorem :: BVFUNC_5:3 for a,b being Element of Funcs(Y,BOOLEAN) st a=I_el(Y) holds (a 'or' b)=I_el(Y); canceled; theorem :: BVFUNC_5:5 for a,b being Element of Funcs(Y,BOOLEAN) st b=I_el(Y) holds (a 'imp' b)=I_el(Y); theorem :: BVFUNC_5:6 for a,b being Element of Funcs(Y,BOOLEAN) st ('not' a)=I_el(Y) holds (a 'imp' b)=I_el(Y); theorem :: BVFUNC_5:7 for a being Element of Funcs(Y,BOOLEAN) holds 'not' (a '&' 'not' a)=I_el(Y); theorem :: BVFUNC_5:8 :: Identity law for a being Element of Funcs(Y,BOOLEAN) holds (a 'imp' a)=I_el(Y); theorem :: BVFUNC_5:9 for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b)=I_el(Y) iff ('not' b 'imp' 'not' a)=I_el(Y); theorem :: BVFUNC_5:10 for a,b,c being Element of Funcs(Y,BOOLEAN) st (a 'imp' b)=I_el(Y) & (b 'imp' c)=I_el(Y) holds (a 'imp' c)=I_el(Y); theorem :: BVFUNC_5:11 for a,b being Element of Funcs(Y,BOOLEAN) st (a 'imp' b)=I_el(Y) & (a 'imp' 'not' b)=I_el(Y) holds 'not' a=I_el(Y); theorem :: BVFUNC_5:12 for a being Element of Funcs(Y,BOOLEAN) holds ('not' a 'imp' a) 'imp' a = I_el(Y); theorem :: BVFUNC_5:13 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ('not' (b '&' c) 'imp' 'not' (a '&' c)) =I_el(Y); theorem :: BVFUNC_5:14 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ((b 'imp' c) 'imp' (a 'imp' c))=I_el(Y); theorem :: BVFUNC_5:15 for a,b,c being Element of Funcs(Y,BOOLEAN) st (a 'imp' b)=I_el(Y) holds (b 'imp' c) 'imp' (a 'imp' c)=I_el(Y); theorem :: BVFUNC_5:16 for a,b being Element of Funcs(Y,BOOLEAN) holds b 'imp' (a 'imp' b) =I_el(Y); theorem :: BVFUNC_5:17 for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'imp' b) 'imp' c) 'imp' (b 'imp' c)=I_el(Y); theorem :: BVFUNC_5:18 for a,b being Element of Funcs(Y,BOOLEAN) holds b 'imp' ((b 'imp' a) 'imp' a)=I_el(Y); theorem :: BVFUNC_5:19 :: Contraposition for a,b,c being Element of Funcs(Y,BOOLEAN) holds (c 'imp' (b 'imp' a)) 'imp' (b 'imp' (c 'imp' a))=I_el(Y); theorem :: BVFUNC_5:20 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (b 'imp' c) 'imp' ((a 'imp' b) 'imp' (a 'imp' c))=I_el(Y); theorem :: BVFUNC_5:21 :: A Hilbert axiom for a,b,c being Element of Funcs(Y,BOOLEAN) holds (b 'imp' (b 'imp' c)) 'imp' (b 'imp' c)=I_el(Y); theorem :: BVFUNC_5:22 :: Frege's law for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) 'imp' ((a 'imp' b) 'imp' (a 'imp' c))=I_el(Y); theorem :: BVFUNC_5:23 for a,b being Element of Funcs(Y,BOOLEAN) holds a=I_el(Y) implies (a 'imp' b) 'imp' b=I_el(Y); theorem :: BVFUNC_5:24 for a,b,c being Element of Funcs(Y,BOOLEAN) holds c 'imp' (b 'imp' a)=I_el(Y) implies b 'imp' (c 'imp' a)=I_el(Y); theorem :: BVFUNC_5:25 for a,b,c being Element of Funcs(Y,BOOLEAN) holds c 'imp' (b 'imp' a)=I_el(Y) & b=I_el(Y) implies c 'imp' a=I_el(Y); theorem :: BVFUNC_5:26 for a,b,c being Element of Funcs(Y,BOOLEAN) holds c 'imp' (b 'imp' a)=I_el(Y) & b=I_el(Y) & c = I_el(Y) implies a=I_el(Y); theorem :: BVFUNC_5:27 for b,c being Element of Funcs(Y,BOOLEAN) holds b 'imp' (b 'imp' c)=I_el(Y) implies b 'imp' c = I_el(Y); theorem :: BVFUNC_5:28 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) = I_el(Y) implies (a 'imp' b) 'imp' (a 'imp' c) = I_el(Y); theorem :: BVFUNC_5:29 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) = I_el(Y) & a 'imp' b = I_el(Y) implies a 'imp' c = I_el(Y); theorem :: BVFUNC_5:30 for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) = I_el(Y) & a 'imp' b = I_el(Y) & a = I_el(Y) implies c = I_el(Y); theorem :: BVFUNC_5:31 for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds a 'imp' (b 'imp' c) = I_el(Y) & a 'imp' (c 'imp' d) = I_el(Y) implies a 'imp' (b 'imp' d) = I_el(Y); theorem :: BVFUNC_5:32 for a,b being Element of Funcs(Y,BOOLEAN) holds ('not' a 'imp' 'not' b) 'imp' (b 'imp' a) = I_el(Y); theorem :: BVFUNC_5:33 for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ('not' b 'imp' 'not' a)=I_el(Y); theorem :: BVFUNC_5:34 for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' 'not' b) 'imp' (b 'imp' 'not' a)=I_el(Y); theorem :: BVFUNC_5:35 for a,b being Element of Funcs(Y,BOOLEAN) holds ('not' a 'imp' b) 'imp' ('not' b 'imp' a)=I_el(Y); theorem :: BVFUNC_5:36 for a being Element of Funcs(Y,BOOLEAN) holds (a 'imp' 'not' a) 'imp' 'not' a=I_el(Y); theorem :: BVFUNC_5:37 for a,b being Element of Funcs(Y,BOOLEAN) holds 'not' a 'imp' (a 'imp' b)=I_el(Y); theorem :: BVFUNC_5:38 ::De'Morgan for a,b,c being Element of Funcs(Y,BOOLEAN) holds 'not' (a '&' b '&' c)=('not' a) 'or' ('not' b) 'or' ('not' c); theorem :: BVFUNC_5:39 ::De'Morgan for a,b,c being Element of Funcs(Y,BOOLEAN) holds 'not' (a 'or' b 'or' c)=('not' a) '&' ('not' b) '&' ('not' c); theorem :: BVFUNC_5:40 ::Distributive for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds a 'or' (b '&' c '&' d) = (a 'or' b) '&' (a 'or' c) '&' (a 'or' d); theorem :: BVFUNC_5:41 ::Distributive for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds a '&' (b 'or' c 'or' d) = (a '&' b) 'or' (a '&' c) 'or' (a '&' d);