Copyright (c) 1999 Association of Mizar Users
environ vocabulary FUNCT_2, MARGREL1, BVFUNC_1, ZF_LANG, FUNCT_1, RELAT_1; notation TARSKI, XBOOLE_0, SUBSET_1, MARGREL1, VALUAT_1, RELAT_1, FUNCT_1, FRAENKEL, BINARITH, BVFUNC_1; constructors BINARITH, BVFUNC_1; clusters MARGREL1, VALUAT_1, BINARITH, FRAENKEL; requirements SUBSET, BOOLE; theorems FUNCT_1, FUNCT_2, MARGREL1, BINARITH, BVFUNC_1, VALUAT_1; begin ::Chap. 1 Propositional Calculus reserve Y for non empty set; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds a=I_el(Y) & b=I_el(Y) iff (a '&' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); now assume A1:a '&' b=I_el(Y); per cases; suppose a=I_el(Y) & b=I_el(Y); hence a=I_el(Y) & b=I_el(Y); suppose a=I_el(Y) & b<>I_el(Y); hence a=I_el(Y) & b=I_el(Y) by A1,BVFUNC_1:9; suppose a<>I_el(Y) & b=I_el(Y); hence a=I_el(Y) & b=I_el(Y) by A1,BVFUNC_1:9; suppose A2:a<>I_el(Y) & b<>I_el(Y); for x being Element of Y holds Pj(a,x)=TRUE proof let x be Element of Y; Pj(a '&' b,x)=TRUE by A1,BVFUNC_1:def 14; then Pj(a,x) '&' Pj(b,x)=TRUE by VALUAT_1:def 6; hence thesis by MARGREL1:45; end; hence a=I_el(Y) & b=I_el(Y) by A2,BVFUNC_1:def 14; end; hence thesis by BVFUNC_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) st a=I_el(Y) & (a 'imp' b)=I_el(Y) holds b=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:a=I_el(Y) & (a 'imp' b)=I_el(Y); for x being Element of Y holds Pj(b,x)=TRUE proof let x be Element of Y; A2:Pj(a,x)=TRUE by A1,BVFUNC_1:def 14; Pj(a 'imp' b,x)=TRUE by A1,BVFUNC_1:def 14; then ('not' Pj(a,x)) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; then FALSE 'or' Pj(b,x)=TRUE by A2,MARGREL1:41; hence thesis by BINARITH:7; end; hence b=I_el(Y) by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) st a=I_el(Y) holds (a 'or' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:a=I_el(Y); for x being Element of Y holds Pj(a 'or' b,x)=TRUE proof let x be Element of Y; Pj(a,x)=TRUE by A1,BVFUNC_1:def 14; then Pj(a 'or' b,x) =TRUE 'or' Pj(b,x) by BVFUNC_1:def 7 .=TRUE by BINARITH:19; hence thesis; end; hence a 'or' b=I_el(Y) by BVFUNC_1:def 14; end; canceled; theorem for a,b being Element of Funcs(Y,BOOLEAN) st b=I_el(Y) holds (a 'imp' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:b=I_el(Y); for x being Element of Y holds Pj(a 'imp' b,x)=TRUE proof let x be Element of Y; Pj(b,x)=TRUE by A1,BVFUNC_1:def 14; then Pj(a 'imp' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) st ('not' a)=I_el(Y) holds (a 'imp' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:'not' a=I_el(Y); for x being Element of Y holds Pj(a 'imp' b,x)=TRUE proof let x be Element of Y; Pj('not' a,x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x)=TRUE by VALUAT_1:def 5; then Pj(a 'imp' b,x) =TRUE 'or' Pj(b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a being Element of Funcs(Y,BOOLEAN) holds 'not' (a '&' 'not' a)=I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(a '&' 'not' a,x) = Pj(O_el(Y),x) proof let x be Element of Y; A2:Pj(a '&' 'not' a,x) =Pj(a,x) '&' Pj('not' a,x) by VALUAT_1:def 6 .=Pj(a,x) '&' 'not' Pj(a,x) by VALUAT_1:def 5; A3:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; A4:Pj(O_el(Y),x)=FALSE by BVFUNC_1:def 13; now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence thesis by A2,A3,A4,MARGREL1:45; case Pj(a,x)=FALSE; hence thesis by A2,A4,MARGREL1:45; end; hence thesis; end; consider k3 being Function such that A5: (a '&' 'not' a)=k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A6: O_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; Y=dom k3 & Y=dom k4 & (for u being set st u in Y holds k3.u=k4.u)by A1,A5,A6; then (a '&' 'not' a)=O_el(Y) by A5,A6,FUNCT_1:9; hence thesis by BVFUNC_1:5; end; theorem :: Identity law for a being Element of Funcs(Y,BOOLEAN) holds (a 'imp' a)=I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(a 'imp' a,x) = Pj(I_el(Y),x) proof let x be Element of Y; A2:Pj(a 'imp' a,x) = ('not' Pj(a,x)) 'or' Pj(a,x) by BVFUNC_1:def 11; A3:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; A4:Pj(I_el(Y),x)=TRUE by BVFUNC_1:def 14; now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence thesis by A2,A4,BINARITH:19; case Pj(a,x)=FALSE; hence thesis by A2,A3,A4,BINARITH:19; end; hence thesis; end; consider k3 being Function such that A5: (a 'imp' a)=k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A6: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A5,A6; hence thesis by A5,A6,FUNCT_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b)=I_el(Y) iff ('not' b 'imp' 'not' a)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:now assume A2:(a 'imp' b)=I_el(Y); for x being Element of Y holds Pj('not' b 'imp' 'not' a,x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)=TRUE by A2,BVFUNC_1:def 14; then A3:('not' Pj(a,x)) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; A4: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; now per cases by A3,A4,BINARITH:7; case A5:('not' Pj(a,x))=TRUE; Pj('not' b 'imp' 'not' a,x) =('not' Pj('not' b,x)) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .=('not' Pj('not' b,x)) 'or' TRUE by A5,VALUAT_1:def 5 .=TRUE by BINARITH:19; hence thesis; case A6:Pj(b,x)=TRUE; Pj('not' b,x)='not' Pj(b,x) by VALUAT_1:def 5; then Pj('not' b 'imp' 'not' a,x) =('not' 'not' Pj(b,x)) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .=TRUE 'or' Pj('not' a,x) by A6,MARGREL1:40 .=TRUE by BINARITH:19; hence thesis; end; hence thesis; end; hence 'not' b 'imp' 'not' a=I_el(Y) by BVFUNC_1:def 14; end; now assume A7:('not' b 'imp' 'not' a)=I_el(Y); for x being Element of Y holds Pj(a 'imp' b,x)=TRUE proof let x be Element of Y; Pj('not' b 'imp' 'not' a,x)=TRUE by A7,BVFUNC_1:def 14; then ('not' Pj('not' b,x)) 'or' Pj('not' a,x)=TRUE by BVFUNC_1:def 11; then ('not' 'not' Pj(b,x)) 'or' Pj('not' a,x)=TRUE by VALUAT_1:def 5; then ('not' 'not' Pj(b,x)) 'or' 'not' Pj(a,x)=TRUE by VALUAT_1:def 5; then A8:Pj(b,x) 'or' 'not' Pj(a,x)=TRUE by MARGREL1:40; A9: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; now per cases by A8,A9,BINARITH:7; case ('not' Pj(a,x))=TRUE; then Pj(a 'imp' b,x) =TRUE 'or' Pj(b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; hence thesis; case Pj(b,x)=TRUE; then Pj(a 'imp' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; hence thesis; end; hence thesis; end; hence a 'imp' b=I_el(Y) by BVFUNC_1:def 14; end; hence thesis by A1; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) st (a 'imp' b)=I_el(Y) & (b 'imp' c)=I_el(Y) holds (a 'imp' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:(a 'imp' b)=I_el(Y) & (b 'imp' c)=I_el(Y); for x being Element of Y holds Pj(a 'imp' c,x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)=TRUE by A1,BVFUNC_1:def 14; then A2:('not' Pj(a,x)) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; A3: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; Pj(b 'imp' c,x)=TRUE by A1,BVFUNC_1:def 14; then A4:('not' Pj(b,x)) 'or' Pj(c,x)=TRUE by BVFUNC_1:def 11; A5: ('not' Pj(b,x))=TRUE or ('not' Pj(b,x))=FALSE by MARGREL1:39; A6:Pj(a 'imp' c,x)=('not' Pj(a,x)) 'or' Pj(c,x) by BVFUNC_1:def 11; now per cases by A2,A3,A4,A5,BINARITH:7; case ('not' Pj(a,x))=TRUE & ('not' Pj(b,x))=TRUE; hence thesis by A6,BINARITH:19; case ('not' Pj(a,x))=TRUE & Pj(c,x)=TRUE; hence thesis by A6,BINARITH:19; case A7:Pj(b,x)=TRUE & ('not' Pj(b,x))=TRUE; then Pj(b,x)=FALSE by MARGREL1:41; hence thesis by A7,MARGREL1:43; case Pj(b,x)=TRUE & Pj(c,x)=TRUE; hence thesis by A6,BINARITH:19; end; hence thesis; end; hence a 'imp' c = I_el(Y) by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) st (a 'imp' b)=I_el(Y) & (a 'imp' 'not' b)=I_el(Y) holds 'not' a=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:(a 'imp' b)=I_el(Y) & (a 'imp' 'not' b)=I_el(Y); for x being Element of Y holds Pj('not' a,x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)=TRUE by A1,BVFUNC_1:def 14; then A2:('not' Pj(a,x)) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; A3: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; Pj(a 'imp' 'not' b,x)=TRUE by A1,BVFUNC_1:def 14; then A4:('not' Pj(a,x)) 'or' Pj('not' b,x)=TRUE by BVFUNC_1:def 11; now per cases by A2,A3,A4,BINARITH:7; case ('not' Pj(a,x))=TRUE & ('not' Pj(a,x))=TRUE; hence thesis by VALUAT_1:def 5; case ('not' Pj(a,x))=TRUE & Pj('not' b,x)=TRUE; hence thesis by VALUAT_1:def 5; case Pj(b,x)=TRUE & ('not' Pj(a,x))=TRUE; hence thesis by VALUAT_1:def 5; case A5:Pj(b,x)=TRUE & Pj('not' b,x)=TRUE; then 'not' Pj(b,x)=TRUE by VALUAT_1:def 5; then Pj(b,x)=FALSE by MARGREL1:41; hence thesis by A5,MARGREL1:43; end; hence thesis; end; hence 'not' a = I_el(Y) by BVFUNC_1:def 14; end; theorem for a being Element of Funcs(Y,BOOLEAN) holds ('not' a 'imp' a) 'imp' a = I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(('not' a 'imp' a) 'imp' a,x) = Pj(I_el(Y),x) proof let x be Element of Y; A2:'not' ('not' Pj('not' a,x) 'or' Pj(a,x)) = 'not' ('not' 'not' Pj(a,x) 'or' Pj(a,x)) by VALUAT_1:def 5 .= 'not' (Pj(a,x) 'or' Pj(a,x)) by MARGREL1:40 .= 'not' Pj(a,x) by BINARITH:21; A3:Pj(('not' a 'imp' a) 'imp' a,x) =('not' Pj('not' a 'imp' a,x)) 'or' Pj(a,x) by BVFUNC_1:def 11 .='not' Pj(a,x) 'or' Pj(a,x) by A2,BVFUNC_1:def 11; A4:Pj(I_el(Y),x)=TRUE by BVFUNC_1:def 14; now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence thesis by A3,A4,BINARITH:19; case Pj(a,x)=FALSE; then Pj(('not' a 'imp' a) 'imp' a,x) =TRUE 'or' FALSE by A3,MARGREL1:41 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; hence thesis; end; consider k3 being Function such that A5: (('not' a 'imp' a) 'imp' a)=k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A6: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; Y=dom k3 & Y=dom k4 & (for u being set st u in Y holds k3.u=k4.u)by A1,A5,A6; hence (('not' a 'imp' a) 'imp' a)=I_el(Y) by A5,A6,FUNCT_1:9; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ('not' (b '&' c) 'imp' 'not' (a '&' c)) =I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((a 'imp' b) 'imp' ('not' (b '&' c) 'imp' 'not' (a '&' c)),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2:Pj((a 'imp' b) 'imp' ('not' (b '&' c) 'imp' 'not' (a '&' c)),x) = 'not' Pj(a 'imp' b,x) 'or' Pj('not' (b '&' c) 'imp' 'not' (a '&' c),x) by BVFUNC_1:def 11 .= 'not' Pj(a 'imp' b,x) 'or' (('not' Pj('not' (b '&' c),x)) 'or' Pj('not' (a '&' c),x)) by BVFUNC_1:def 11; A3:'not' Pj('not' (b '&' c),x) ='not' 'not' Pj((b '&' c),x) by VALUAT_1:def 5 .=Pj(b '&' c,x) by MARGREL1:40 .=Pj(b,x) '&' Pj(c,x) by VALUAT_1:def 6; A4:Pj('not' (a '&' c),x) =Pj(('not' a) 'or' ('not' c),x) by BVFUNC_1:17 .=Pj('not' a,x) 'or' Pj('not' c,x) by BVFUNC_1:def 7 .='not' Pj(a,x) 'or' Pj('not' c,x) by VALUAT_1:def 5 .='not' Pj(a,x) 'or' 'not' Pj(c,x) by VALUAT_1:def 5; A5:'not' Pj(a 'imp' b,x) ='not' (('not' Pj(a,x)) 'or' Pj(b,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x)) '&' 'not' Pj(b,x) by BINARITH:10 .=Pj(a,x) '&' 'not' Pj(b,x) by MARGREL1:40; A6:('not' Pj('not' (b '&' c),x)) 'or' Pj('not' (a '&' c),x) =(('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(c,x)) by A3,A4,BINARITH:23 .=(('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(c,x) 'or' Pj(c,x))) by BINARITH:20; now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; then ('not' Pj(a,x) 'or' ('not' Pj(c,x) 'or' Pj(c,x))) =TRUE by BINARITH:19; then (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(c,x) 'or' Pj(c,x))) = (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(b,x)) by MARGREL1:50; then A7:'not' Pj(a 'imp' b,x) 'or' (('not' Pj('not' (b '&' c),x)) 'or' Pj('not' (a '&' c),x)) =((('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(b,x)) 'or' Pj(a,x)) '&' ((('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by A5,A6,BINARITH:23 .=((('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(b,x)) 'or' Pj(a,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:20 .=((('not' Pj(c,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x)) 'or' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:20 .=(('not' Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(a,x))) 'or' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:20; A8: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; then 'not' Pj(a 'imp' b,x) 'or' (('not' Pj('not' (b '&' c),x)) 'or' Pj( 'not' (a '&' c),x)) =(TRUE 'or' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' TRUE) by A7,A8,BINARITH:19 .=TRUE '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis by A2,BVFUNC_1:def 14; end; consider k3 being Function such that A9:((a 'imp' b) 'imp' ('not' (b '&' c) 'imp' 'not' (a '&' c))) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A10: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A9,A10; hence thesis by A9,A10,FUNCT_1:9; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ((b 'imp' c) 'imp' (a 'imp' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((a 'imp' b) 'imp' ((b 'imp' c) 'imp' (a 'imp' c)),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2:Pj((a 'imp' b) 'imp' ((b 'imp' c) 'imp' (a 'imp' c)),x) =('not' Pj(a 'imp' b,x)) 'or' Pj((b 'imp' c) 'imp' (a 'imp' c),x) by BVFUNC_1:def 11 .=('not' Pj(a 'imp' b,x)) 'or' ('not' Pj(b 'imp' c,x) 'or' Pj(a 'imp' c,x)) by BVFUNC_1:def 11; A3:'not' Pj(a 'imp' b,x) ='not' ('not' Pj(a,x) 'or' Pj(b,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) by BINARITH:10 .=Pj(a,x) '&' 'not' Pj(b,x) by MARGREL1:40; A4:'not' Pj(b 'imp' c,x) ='not' ('not' Pj(b,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(b,x) '&' 'not' Pj(c,x)) by BINARITH:10 .=Pj(b,x) '&' 'not' Pj(c,x) by MARGREL1:40; A5:Pj(a 'imp' c,x) ='not' Pj(a,x) 'or' Pj(c,x) by BVFUNC_1:def 11; A6: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; A7: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A8: now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; ('not' Pj(a 'imp' b,x)) 'or' ('not' Pj(b 'imp' c,x) 'or' Pj(a 'imp' c,x)) =(((Pj(b,x) '&' 'not' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' Pj(a,x)) '&' (((Pj(b,x) '&' 'not' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' 'not' Pj(b,x)) by A3,A4,A5,BINARITH:23 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' ((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x))) '&' (((Pj(b,x) '&' 'not' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' 'not' Pj(b,x)) by BINARITH:20 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' (Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(a,x)))) '&' ((('not' Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x))) 'or' 'not' Pj(b,x)) by BINARITH:20 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' (Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(a,x)))) '&' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' (('not' Pj(c,x) '&' Pj(b,x)) 'or' 'not' Pj(b,x))) by BINARITH:20 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' (Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(a,x)))) '&' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' (('not' Pj(b,x) 'or' 'not' Pj(c,x)) '&' ('not' Pj(b,x) 'or' Pj(b,x)))) by BINARITH:23 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' TRUE) '&' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' (('not' Pj(b,x) 'or' 'not' Pj(c,x)) '&' TRUE)) by A6,A7,BINARITH:19 .=TRUE '&' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' (('not' Pj(b,x) 'or' 'not' Pj(c,x)) '&' TRUE)) by BINARITH:19 .=(('not' Pj(a,x) 'or' Pj(c,x)) 'or' (TRUE '&' ('not' Pj(b,x) 'or' 'not' Pj(c,x)))) by MARGREL1:50 .=('not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(c,x) 'or' 'not' Pj(b,x)) by MARGREL1:50 .=(('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) 'or' 'not' Pj(b,x) by BINARITH:20 .=('not' Pj(a,x) 'or' TRUE) 'or' 'not' Pj(b,x) by A8,BINARITH:20 .=TRUE 'or' 'not' Pj(b,x) by BINARITH:19 .=TRUE by BINARITH:19; hence thesis by A2,BVFUNC_1:def 14; end; consider k3 being Function such that A9:((a 'imp' b) 'imp' ((b 'imp' c) 'imp' (a 'imp' c))) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A10: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A9,A10; hence thesis by A9,A10,FUNCT_1:9; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) st (a 'imp' b)=I_el(Y) holds (b 'imp' c) 'imp' (a 'imp' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:a 'imp' b=I_el(Y); for x being Element of Y holds Pj((b 'imp' c) 'imp' (a 'imp' c),x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)=TRUE by A1,BVFUNC_1:def 14; then A2:'not' Pj(a,x) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; A3: 'not' Pj(a,x)=TRUE or 'not' Pj(a,x)=FALSE by MARGREL1:39; A4:Pj((b 'imp' c) 'imp' (a 'imp' c),x) =('not' Pj(b 'imp' c,x)) 'or' Pj(a 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' Pj(c,x)) 'or' Pj(a 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(b,x) '&' 'not' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x)) by BINARITH:10 .=('not' Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x)) by MARGREL1:40; A5: now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; now per cases by A2,A3,BINARITH:7; case 'not' Pj(a,x)=TRUE; then Pj((b 'imp' c) 'imp' (a 'imp' c),x) =TRUE 'or' (Pj(b,x) '&' 'not' Pj(c,x)) by A4,BINARITH:19 .=TRUE by BINARITH:19; hence thesis; case Pj(b,x)=TRUE; then Pj((b 'imp' c) 'imp' (a 'imp' c),x) =('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x) by A4,MARGREL1:50 .='not' Pj(a,x) 'or' TRUE by A5,BINARITH:20 .=TRUE by BINARITH:19; hence thesis; end; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds b 'imp' (a 'imp' b) =I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(b 'imp' (a 'imp' b),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; Pj(b 'imp' (a 'imp' b),x) =('not' Pj(b,x)) 'or' Pj(a 'imp' b,x) by BVFUNC_1:def 11 .=('not' Pj(b,x)) 'or' (Pj(b,x) 'or' 'not' Pj(a,x)) by BVFUNC_1:def 11 .=TRUE 'or' 'not' Pj(a,x) by A2,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A3:(b 'imp' (a 'imp' b)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A4: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A3,A4; hence thesis by A3,A4,FUNCT_1:9; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'imp' b) 'imp' c) 'imp' (b 'imp' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(((a 'imp' b) 'imp' c) 'imp' (b 'imp' c),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; Pj(((a 'imp' b) 'imp' c) 'imp' (b 'imp' c),x) ='not' Pj((a 'imp' b) 'imp' c,x) 'or' Pj(b 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a 'imp' b,x) 'or' Pj(c,x)) 'or' Pj(b 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a 'imp' b,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(a 'imp' b,x) '&' 'not' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:10 .=(Pj(a 'imp' b,x) '&' 'not' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by MARGREL1:40 .=('not' Pj(c,x) '&' ('not' Pj(a,x) 'or' Pj(b,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .=(('not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' ('not' Pj(c,x) '&' Pj(b,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:22 .=('not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' (('not' Pj(c,x) '&' Pj(b,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BINARITH:20 .=('not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' (('not' Pj(b,x) 'or' ('not' Pj(c,x) '&' Pj(b,x))) 'or' Pj(c,x)) by BINARITH:20 .=('not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' ((('not' Pj(b,x) 'or' 'not' Pj(c,x)) '&' TRUE) 'or' Pj(c,x)) by A2,BINARITH:23 .=('not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' (('not' Pj(b,x) 'or' 'not' Pj(c,x)) 'or' Pj(c,x)) by MARGREL1:50 .=('not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' ('not' Pj(b,x) 'or' TRUE) by A3,BINARITH:20 .=('not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' TRUE by BINARITH:19 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A4:(((a 'imp' b) 'imp' c) 'imp' (b 'imp' c)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A5: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A4,A5; hence thesis by A4,A5,FUNCT_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds b 'imp' ((b 'imp' a) 'imp' a)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(b 'imp' ((b 'imp' a) 'imp' a),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; Pj(b 'imp' ((b 'imp' a) 'imp' a),x) =('not' Pj(b,x)) 'or' Pj((b 'imp' a) 'imp' a,x) by BVFUNC_1:def 11 .=('not' Pj(b,x)) 'or' ('not' Pj(b 'imp' a,x) 'or' Pj(a,x)) by BVFUNC_1:def 11 .=('not' Pj(b,x)) 'or' ('not' ('not' Pj(b,x) 'or' Pj(a,x)) 'or' Pj(a,x)) by BVFUNC_1:def 11 .=('not' Pj(b,x)) 'or' (('not' 'not' Pj(b,x) '&' 'not' Pj(a,x)) 'or' Pj(a,x)) by BINARITH:10 .=('not' Pj(b,x)) 'or' (Pj(a,x) 'or' (Pj(b,x) '&' 'not' Pj(a,x))) by MARGREL1:40 .=('not' Pj(b,x)) 'or' ((Pj(a,x) 'or' Pj(b,x)) '&' TRUE) by A3,BINARITH:23 .=('not' Pj(b,x)) 'or' (Pj(a,x) 'or' Pj(b,x)) by MARGREL1:50 .=('not' Pj(b,x) 'or' Pj(b,x)) 'or' Pj(a,x) by BINARITH:20 .=TRUE by A2,BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A4:(b 'imp' ((b 'imp' a) 'imp' a)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A5: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A4,A5; hence thesis by A4,A5,FUNCT_1:9; end; theorem :: Contraposition for a,b,c being Element of Funcs(Y,BOOLEAN) holds (c 'imp' (b 'imp' a)) 'imp' (b 'imp' (c 'imp' a))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((c 'imp' (b 'imp' a)) 'imp' (b 'imp' (c 'imp' a)),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A4: now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; Pj((c 'imp' (b 'imp' a)) 'imp' (b 'imp' (c 'imp' a)),x) =('not' Pj(c 'imp' (b 'imp' a),x)) 'or' Pj(b 'imp' (c 'imp' a),x) by BVFUNC_1:def 11 .=('not' ('not' Pj(c,x) 'or' Pj(b 'imp' a,x))) 'or' Pj(b 'imp' (c 'imp' a),x) by BVFUNC_1:def 11 .=('not' ('not' Pj(c,x) 'or' ('not' Pj(b,x) 'or' Pj(a,x)))) 'or' Pj(b 'imp' (c 'imp' a),x) by BVFUNC_1:def 11 .=('not' ('not' Pj(c,x) 'or' ('not' Pj(b,x) 'or' Pj(a,x)))) 'or' ('not' Pj(b,x) 'or' Pj(c 'imp' a,x)) by BVFUNC_1:def 11 .=('not' ('not' Pj(c,x) 'or' ('not' Pj(b,x) 'or' Pj(a,x)))) 'or' ('not' Pj(b,x) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) by BVFUNC_1:def 11 .=(('not' 'not' Pj(c,x) '&' 'not' ('not' Pj(b,x) 'or' Pj(a,x)))) 'or' ('not' Pj(b,x) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) by BINARITH:10 .=((Pj(c,x) '&' 'not' ('not' Pj(b,x) 'or' Pj(a,x)))) 'or' ('not' Pj(b,x) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) by MARGREL1:40 .=((Pj(c,x) '&' ('not' 'not' Pj(b,x) '&' 'not' Pj(a,x)))) 'or' ('not' Pj(b,x) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) by BINARITH:10 .=('not' Pj(b,x) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) 'or' ((Pj(c,x) '&' (Pj(b,x) '&' 'not' Pj(a,x)))) by MARGREL1:40 .=(('not' Pj(c,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(b,x) '&' (Pj(c,x) '&' 'not' Pj(a,x))) by MARGREL1:52 .=((('not' Pj(c,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) '&' ((('not' Pj(c,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(c,x) '&' 'not' Pj(a,x))) by BINARITH:23 .=(('not' Pj(c,x) 'or' Pj(a,x)) 'or' TRUE) '&' ((('not' Pj(c,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(c,x) '&' 'not' Pj(a,x))) by A2,BINARITH:20 .=TRUE '&' ((('not' Pj(c,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(c,x) '&' 'not' Pj(a,x))) by BINARITH:19 .=((('not' Pj(c,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(c,x) '&' 'not' Pj(a,x))) by MARGREL1:50 .=(((Pj(a,x) 'or' 'not' Pj(b,x)) 'or' 'not' Pj(c,x)) 'or' (Pj(c,x) '&' 'not' Pj(a,x))) by BINARITH:20 .=((Pj(a,x) 'or' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' (Pj(c,x) '&' 'not' Pj(a,x)))) by BINARITH:20 .=((Pj(a,x) 'or' 'not' Pj(b,x)) 'or' (TRUE '&' ('not' Pj(c,x) 'or' 'not' Pj(a,x)))) by A4,BINARITH:23 .=('not' Pj(b,x) 'or' Pj(a,x)) 'or' ('not' Pj(c,x) 'or' 'not' Pj(a,x)) by MARGREL1:50 .=(('not' Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(c,x) by BINARITH:20 .=('not' Pj(b,x) 'or' TRUE) 'or' 'not' Pj(c,x) by A3,BINARITH:20 .=TRUE 'or' 'not' Pj(c,x) by BINARITH:19 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A5:((c 'imp' (b 'imp' a)) 'imp' (b 'imp' (c 'imp' a))) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A6: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A5,A6; hence thesis by A5,A6,FUNCT_1:9; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (b 'imp' c) 'imp' ((a 'imp' b) 'imp' (a 'imp' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((b 'imp' c) 'imp' ((a 'imp' b) 'imp' (a 'imp' c)),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; A4: now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; Pj((b 'imp' c) 'imp' ((a 'imp' b) 'imp' (a 'imp' c)),x) ='not' Pj(b 'imp' c,x) 'or' Pj((a 'imp' b) 'imp' (a 'imp' c),x) by BVFUNC_1:def 11 .='not' Pj(b 'imp' c,x) 'or' ('not' Pj(a 'imp' b,x) 'or' Pj(a 'imp' c,x)) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(a 'imp' b,x) 'or' Pj(a 'imp' c,x)) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj(a 'imp' c,x)) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by BVFUNC_1:def 11 .=('not' 'not' Pj(b,x) '&' 'not' Pj(c,x)) 'or' ('not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by BINARITH:10 .=('not' 'not' Pj(b,x) '&' 'not' Pj(c,x)) 'or' (('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by BINARITH:10 .=(Pj(b,x) '&' 'not' Pj(c,x)) 'or' (('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by MARGREL1:40 .=((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' (Pj(b,x) '&' 'not' Pj(c,x)) by MARGREL1:40 .=(((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' 'not' Pj(c,x)) '&' (((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' Pj(b,x)) by BINARITH:23 .=((Pj(a,x) '&' 'not' Pj(b,x)) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x))) '&' (((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' Pj(b,x)) by BINARITH:20 .=((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' TRUE)) '&' (((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' Pj(b,x)) by A4,BINARITH:20 .=((Pj(a,x) '&' 'not' Pj(b,x)) 'or' TRUE) '&' (((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' Pj(b,x)) by BINARITH:19 .=TRUE '&' (((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' Pj(b,x)) by BINARITH:19 .=(('not' Pj(b,x) '&' Pj(a,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' Pj(b,x) by MARGREL1:50 .=((('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(b,x)) '&' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' Pj(a,x))) 'or' Pj(b,x) by BINARITH:23 .=((('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(b,x)) '&' (Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(a,x)))) 'or' Pj(b,x) by BINARITH:20 .=((('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(b,x)) '&' TRUE) 'or' Pj(b,x) by A2,BINARITH:19 .=(('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(b,x)) 'or' Pj(b,x) by MARGREL1:50 .=('not' Pj(a,x) 'or' Pj(c,x)) 'or' TRUE by A3,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A5:((b 'imp' c) 'imp' ((a 'imp' b) 'imp' (a 'imp' c))) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A6: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A5,A6; hence thesis by A5,A6,FUNCT_1:9; end; theorem :: A Hilbert axiom for a,b,c being Element of Funcs(Y,BOOLEAN) holds (b 'imp' (b 'imp' c)) 'imp' (b 'imp' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((b 'imp' (b 'imp' c)) 'imp' (b 'imp' c),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; Pj((b 'imp' (b 'imp' c)) 'imp' (b 'imp' c),x) ='not' Pj(b 'imp' (b 'imp' c),x) 'or' Pj(b 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' Pj(b 'imp' c,x)) 'or' Pj(b 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' Pj(b 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(b,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(b,x) '&' 'not' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:10 .=('not' 'not' Pj(b,x) '&' ('not' 'not' Pj(b,x) '&' 'not' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:10 .=(Pj(b,x) '&' ('not' 'not' Pj(b,x) '&' 'not' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by MARGREL1:40 .=(Pj(b,x) '&' (Pj(b,x) '&' 'not' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by MARGREL1:40 .=((Pj(b,x) '&' Pj(b,x)) '&' 'not' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by MARGREL1:52 .=('not' Pj(b,x) 'or' Pj(c,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x)) by BINARITH:16 .=((Pj(c,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) '&' (('not' Pj(b,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by BINARITH:23 .=(Pj(c,x) 'or' TRUE) '&' (('not' Pj(b,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by A2,BINARITH:20 .=TRUE '&' (('not' Pj(b,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by BINARITH:19 .=(('not' Pj(b,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by MARGREL1:50 .='not' Pj(b,x) 'or' TRUE by A3,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A4:((b 'imp' (b 'imp' c)) 'imp' (b 'imp' c)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A5: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A4,A5; hence thesis by A4,A5,FUNCT_1:9; end; theorem :: Frege's law for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) 'imp' ((a 'imp' b) 'imp' (a 'imp' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((a 'imp' (b 'imp' c)) 'imp' ((a 'imp' b) 'imp' (a 'imp' c)),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; A4: now per cases by MARGREL1:39; case Pj(c,x)=TRUE; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE by BINARITH:19; case Pj(c,x)=FALSE; then 'not' Pj(c,x) 'or' Pj(c,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(c,x) 'or' Pj(c,x))=TRUE; end; Pj((a 'imp' (b 'imp' c)) 'imp' ((a 'imp' b) 'imp' (a 'imp' c)),x) ='not' Pj(a 'imp' (b 'imp' c),x) 'or' Pj((a 'imp' b) 'imp' (a 'imp' c),x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj(b 'imp' c,x)) 'or' Pj((a 'imp' b) 'imp' (a 'imp' c),x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' Pj((a 'imp' b) 'imp' (a 'imp' c),x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(a 'imp' b,x) 'or' Pj(a 'imp' c,x)) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj(a 'imp' c,x)) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by BINARITH:10 .=('not' 'not' Pj(a,x) '&' ('not' 'not' Pj(b,x) '&' 'not' Pj(c,x))) 'or' ('not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by BINARITH:10 .=('not' 'not' Pj(a,x) '&' ('not' 'not' Pj(b,x) '&' 'not' Pj(c,x))) 'or' (('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by BINARITH:10 .=(Pj(a,x) '&' ('not' 'not' Pj(b,x) '&' 'not' Pj(c,x))) 'or' (('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by MARGREL1:40 .=(Pj(a,x) '&' (Pj(b,x) '&' 'not' Pj(c,x))) 'or' (('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by MARGREL1:40 .=(Pj(a,x) '&' (Pj(b,x) '&' 'not' Pj(c,x))) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) by MARGREL1:40 .=(Pj(a,x) '&' (Pj(b,x) '&' 'not' Pj(c,x))) 'or' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x)) '&' ((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x))) by BINARITH:23 .=(Pj(a,x) '&' (Pj(b,x) '&' 'not' Pj(c,x))) 'or' ((Pj(c,x) 'or' TRUE) '&' ((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x))) by A2,BINARITH:20 .=(Pj(a,x) '&' (Pj(b,x) '&' 'not' Pj(c,x))) 'or' (TRUE '&' ((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x))) by BINARITH:19 .=((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(a,x) '&' (Pj(b,x) '&' 'not' Pj(c,x))) by MARGREL1:50 .=(((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' Pj(a,x)) '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x))) by BINARITH:23 .=(((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x))) by BINARITH:20 .=((Pj(c,x) 'or' TRUE) 'or' 'not' Pj(b,x)) '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x))) by A2,BINARITH:20 .=(TRUE 'or' 'not' Pj(b,x)) '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x))) by BINARITH:19 .=TRUE '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x))) by BINARITH:19 .=(((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' (Pj(b,x) '&' 'not' Pj(c,x))) by MARGREL1:50 .=(((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' 'not' Pj(c,x)) by BINARITH:23 .=((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' TRUE) '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' 'not' Pj(c,x)) by A3,BINARITH:20 .=TRUE '&' (((Pj(c,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) 'or' 'not' Pj(c,x)) by BINARITH:19 .=(('not' Pj(b,x) 'or' (Pj(c,x) 'or' 'not' Pj(a,x))) 'or' 'not' Pj(c,x)) by MARGREL1:50 .=((('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by BINARITH:20 .=(('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' TRUE) by A4,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A5:((a 'imp' (b 'imp' c)) 'imp' ((a 'imp' b) 'imp' (a 'imp' c))) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A6: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A5,A6; hence thesis by A5,A6,FUNCT_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds a=I_el(Y) implies (a 'imp' b) 'imp' b=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:a=I_el(Y); for x being Element of Y holds Pj((a 'imp' b) 'imp' b,x)=TRUE proof let x be Element of Y; A2:Pj(a,x)=TRUE by A1,BVFUNC_1:def 14; A3: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; Pj((a 'imp' b) 'imp' b,x) ='not' Pj(a 'imp' b,x) 'or' Pj(b,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj(b,x) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' Pj(b,x) by BINARITH:10 .=Pj(b,x) 'or' (Pj(a,x) '&' 'not' Pj(b,x)) by MARGREL1:40 .=(Pj(b,x) 'or' TRUE) '&' TRUE by A2,A3,BINARITH:23 .=Pj(b,x) 'or' TRUE by MARGREL1:50 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds c 'imp' (b 'imp' a)=I_el(Y) implies b 'imp' (c 'imp' a)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:c 'imp' (b 'imp' a)=I_el(Y); for x being Element of Y holds Pj(b 'imp' (c 'imp' a),x)=TRUE proof let x be Element of Y; Pj(c 'imp' (b 'imp' a),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(c,x) 'or' Pj(b 'imp' a,x)=TRUE by BVFUNC_1:def 11; then A2: 'not' Pj(c,x) 'or' ('not' Pj(b,x) 'or' Pj(a,x))=TRUE by BVFUNC_1:def 11; Pj(b 'imp' (c 'imp' a),x) ='not' Pj(b,x) 'or' Pj(c 'imp' a,x) by BVFUNC_1:def 11 .='not' Pj(b,x) 'or' ('not' Pj(c,x) 'or' Pj(a,x)) by BVFUNC_1:def 11 .=TRUE by A2,BINARITH:20; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds c 'imp' (b 'imp' a)=I_el(Y) & b=I_el(Y) implies c 'imp' a=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:c 'imp' (b 'imp' a)=I_el(Y) & b=I_el(Y); for x being Element of Y holds Pj(c 'imp' a,x)=TRUE proof let x be Element of Y; Pj(c 'imp' (b 'imp' a),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(c,x) 'or' Pj(b 'imp' a,x)=TRUE by BVFUNC_1:def 11; then A2:'not' Pj(c,x) 'or' ('not' Pj(b,x) 'or' Pj(a,x))=TRUE by BVFUNC_1: def 11; Pj(b,x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(c,x) 'or' (FALSE 'or' Pj(a,x))=TRUE by A2,MARGREL1:41; then 'not' Pj(c,x) 'or' Pj(a,x)=TRUE by BINARITH:7; hence thesis by BVFUNC_1:def 11; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds c 'imp' (b 'imp' a)=I_el(Y) & b=I_el(Y) & c = I_el(Y) implies a=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:c 'imp' (b 'imp' a)=I_el(Y) & b=I_el(Y) & c = I_el(Y); for x being Element of Y holds Pj(a,x)=TRUE proof let x be Element of Y; Pj(c 'imp' (b 'imp' a),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(c,x) 'or' Pj(b 'imp' a,x)=TRUE by BVFUNC_1:def 11; then A2:'not' Pj(c,x) 'or' ('not' Pj(b,x) 'or' Pj(a,x))=TRUE by BVFUNC_1: def 11; Pj(b,x)=TRUE by A1,BVFUNC_1:def 14; then 'not' TRUE 'or' (FALSE 'or' Pj(a,x))=TRUE by A1,A2,MARGREL1:41; then FALSE 'or' (FALSE 'or' Pj(a,x))=TRUE by MARGREL1:41; then FALSE 'or' Pj(a,x)=TRUE by BINARITH:7; hence thesis by BINARITH:7; end; hence thesis by BVFUNC_1:def 14; end; theorem for b,c being Element of Funcs(Y,BOOLEAN) holds b 'imp' (b 'imp' c)=I_el(Y) implies b 'imp' c = I_el(Y) proof let b,c be Element of Funcs(Y,BOOLEAN); assume A1:b 'imp' (b 'imp' c)=I_el(Y); for x being Element of Y holds Pj(b 'imp' c,x)=TRUE proof let x be Element of Y; Pj(b 'imp' (b 'imp' c),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(b,x) 'or' Pj(b 'imp' c,x)=TRUE by BVFUNC_1:def 11; then 'not' Pj(b,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))=TRUE by BVFUNC_1:def 11; then ('not' Pj(b,x) 'or' 'not' Pj(b,x)) 'or' Pj(c,x)=TRUE by BINARITH:20; then A2:'not' Pj(b,x) 'or' Pj(c,x)=TRUE by BINARITH:21; A3: 'not' Pj(b,x)=TRUE or 'not' Pj(b,x)=FALSE by MARGREL1:39; A4:Pj(b 'imp' c,x)='not' Pj(b,x) 'or' Pj(c,x) by BVFUNC_1:def 11; now per cases by A2,A3,BINARITH:7; case 'not' Pj(b,x)=TRUE; hence thesis by A4,BINARITH:19; case Pj(c,x)=TRUE; hence thesis by A4,BINARITH:19; end; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) = I_el(Y) implies (a 'imp' b) 'imp' (a 'imp' c) = I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:a 'imp' (b 'imp' c)=I_el(Y); for x being Element of Y holds Pj((a 'imp' b) 'imp' (a 'imp' c),x)=TRUE proof let x be Element of Y; Pj(a 'imp' (b 'imp' c),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x) 'or' Pj(b 'imp' c,x)=TRUE by BVFUNC_1:def 11; then A2:'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))=TRUE by BVFUNC_1:def 11 ; A3: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; Pj((a 'imp' b) 'imp' (a 'imp' c),x) ='not' Pj(a 'imp' b,x) 'or' Pj(a 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj(a 'imp' c,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x)) by BINARITH:10 .=('not' Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x)) by MARGREL1:40 .=(('not' Pj(a,x) 'or' Pj(c,x)) 'or' Pj(a,x)) '&' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not' Pj(b,x)) by BINARITH:23 .=TRUE '&' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' Pj(a,x)) by A2,BINARITH:20 .=(Pj(c,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x) by MARGREL1:50 .=Pj(c,x) 'or' TRUE by A3,BINARITH:20 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) = I_el(Y) & a 'imp' b = I_el(Y) implies a 'imp' c = I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:(a 'imp' (b 'imp' c))=I_el(Y) & a 'imp' b = I_el(Y); for x being Element of Y holds Pj(a 'imp' c,x)=TRUE proof let x be Element of Y; Pj(a 'imp' (b 'imp' c),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x) 'or' Pj(b 'imp' c,x)=TRUE by BVFUNC_1:def 11; then A2:'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))=TRUE by BVFUNC_1:def 11 ; Pj(a 'imp' b,x)=TRUE by A1,BVFUNC_1:def 14; then A3:'not' Pj(a,x) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; A4:'not' Pj(a,x)=TRUE or 'not' Pj(a,x)=FALSE by MARGREL1:39; A5:Pj(a 'imp' c,x) ='not' Pj(a,x) 'or' Pj(c,x) by BVFUNC_1:def 11; now per cases by A2,A3,A4,BINARITH:7; case 'not' Pj(a,x)=TRUE & 'not' Pj(a,x)=TRUE; hence thesis by A5,BINARITH:19; case 'not' Pj(a,x)=TRUE & ('not' Pj(b,x) 'or' Pj(c,x))=TRUE; hence thesis by A5,BINARITH:19; case Pj(b,x)=TRUE & 'not' Pj(a,x)=TRUE; hence thesis by A5,BINARITH:19; case Pj(b,x)=TRUE & ('not' Pj(b,x) 'or' Pj(c,x))=TRUE; then FALSE 'or' Pj(c,x)=TRUE by MARGREL1:41; then Pj(c,x)=TRUE by BINARITH:7; hence thesis by A5,BINARITH:19; end; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) = I_el(Y) & a 'imp' b = I_el(Y) & a = I_el(Y) implies c = I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:(a 'imp' (b 'imp' c)) = I_el(Y) & a 'imp' b = I_el(Y) & a = I_el(Y); for x being Element of Y holds Pj(c,x)=TRUE proof let x be Element of Y; Pj(a 'imp' (b 'imp' c),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x) 'or' Pj(b 'imp' c,x)=TRUE by BVFUNC_1:def 11; then A2:'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))=TRUE by BVFUNC_1: def 11; A3:Pj(a,x)=TRUE by A1,BVFUNC_1:def 14; Pj(a 'imp' b,x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; then FALSE 'or' Pj(b,x)=TRUE by A3,MARGREL1:41; then Pj(b,x)=TRUE by BINARITH:7; then FALSE 'or' ('not' TRUE 'or' Pj(c,x))=TRUE by A2,A3,MARGREL1:41; then FALSE 'or' (FALSE 'or' Pj(c,x))=TRUE by MARGREL1:41; then (FALSE 'or' Pj(c,x))=TRUE by BINARITH:7; hence thesis by BINARITH:7; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds a 'imp' (b 'imp' c) = I_el(Y) & a 'imp' (c 'imp' d) = I_el(Y) implies a 'imp' (b 'imp' d) = I_el(Y) proof let a,b,c,d be Element of Funcs(Y,BOOLEAN); assume A1:a 'imp' (b 'imp' c) = I_el(Y) & a 'imp' (c 'imp' d) = I_el(Y); for x being Element of Y holds Pj(a 'imp' (b 'imp' d),x)=TRUE proof let x be Element of Y; Pj(a 'imp' (b 'imp' c),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x) 'or' Pj(b 'imp' c,x)=TRUE by BVFUNC_1:def 11; then A2:'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))=TRUE by BVFUNC_1: def 11; A3:'not' Pj(a,x)=TRUE or 'not' Pj(a,x)=FALSE by MARGREL1:39; Pj(a 'imp' (c 'imp' d),x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x) 'or' Pj(c 'imp' d,x)=TRUE by BVFUNC_1:def 11; then A4: 'not' Pj(a,x) 'or' ('not' Pj(c,x) 'or' Pj(d,x))=TRUE by BVFUNC_1:def 11; A5:Pj(a 'imp' (b 'imp' d),x) ='not' Pj(a,x) 'or' Pj(b 'imp' d,x) by BVFUNC_1:def 11 .='not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(d,x)) by BVFUNC_1:def 11; now per cases by A2,A3,A4,BINARITH:7; case 'not' Pj(a,x)=TRUE & 'not' Pj(a,x)=TRUE; hence thesis by A5,BINARITH:19; case 'not' Pj(a,x)=TRUE & ('not' Pj(c,x) 'or' Pj(d,x))=TRUE; hence thesis by A5,BINARITH:19; case ('not' Pj(b,x) 'or' Pj(c,x))=TRUE & 'not' Pj(a,x)=TRUE; hence thesis by A5,BINARITH:19; case A6:('not' Pj(b,x) 'or' Pj(c,x))=TRUE & ('not' Pj(c,x) 'or' Pj(d,x))=TRUE; A7: 'not' Pj(b,x)=TRUE or 'not' Pj(b,x)=FALSE by MARGREL1:39; A8: 'not' Pj(c,x)=TRUE or 'not' Pj(c,x)=FALSE by MARGREL1:39; now per cases by A6,A7,A8,BINARITH:7; case 'not' Pj(b,x)=TRUE & 'not' Pj(c,x)=TRUE; then Pj(a 'imp' (b 'imp' d),x) ='not' Pj(a,x) 'or' TRUE by A5,BINARITH:19 .=TRUE by BINARITH:19; hence thesis; case 'not' Pj(b,x)=TRUE & Pj(d,x)=TRUE; then Pj(a 'imp' (b 'imp' d),x) ='not' Pj(a,x) 'or' TRUE by A5,BINARITH:19 .=TRUE by BINARITH:19; hence thesis; case A9:Pj(c,x)=TRUE & 'not' Pj(c,x)=TRUE; then Pj(c,x)=FALSE by MARGREL1:41; hence thesis by A9,MARGREL1:43; case Pj(c,x)=TRUE & Pj(d,x)=TRUE; then Pj(a 'imp' (b 'imp' d),x) ='not' Pj(a,x) 'or' TRUE by A5,BINARITH:19 .=TRUE by BINARITH:19; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds ('not' a 'imp' 'not' b) 'imp' (b 'imp' a) = I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(('not' a 'imp' 'not' b) 'imp' (b 'imp' a),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; Pj(('not' a 'imp' 'not' b) 'imp' (b 'imp' a),x) ='not' Pj('not' a 'imp' 'not' b,x) 'or' Pj(b 'imp' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj('not' a,x) 'or' Pj('not' b,x)) 'or' Pj(b 'imp' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj('not' a,x) 'or' Pj('not' b,x)) 'or' ('not' Pj(b,x) 'or' Pj(a,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj('not' a,x) '&' 'not' Pj('not' b,x)) 'or' ('not' Pj(b,x) 'or' Pj(a,x)) by BINARITH:10 .=('not' Pj(b,x) 'or' Pj(a,x)) 'or' (Pj('not' a,x) '&' 'not' Pj('not' b,x)) by MARGREL1:40 .=(('not' Pj(b,x) 'or' Pj(a,x)) 'or' Pj('not' a,x)) '&' (('not' Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj('not' b,x)) by BINARITH:23 .=('not' Pj(b,x) 'or' (Pj(a,x) 'or' Pj('not' a,x))) '&' (('not' Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj('not' b,x)) by BINARITH:20 .=('not' Pj(b,x) 'or' TRUE) '&' (('not' Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj('not' b,x)) by A2,VALUAT_1:def 5 .=TRUE '&' (('not' Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj('not' b,x)) by BINARITH:19 .=((Pj(a,x) 'or' 'not' Pj(b,x)) 'or' 'not' Pj('not' b,x)) by MARGREL1:50 .=(Pj(a,x) 'or' ('not' Pj(b,x) 'or' 'not' Pj('not' b,x))) by BINARITH:20 .=(Pj(a,x) 'or' ('not' Pj(b,x) 'or' 'not' 'not' Pj(b,x))) by VALUAT_1:def 5 .=(Pj(a,x) 'or' TRUE) by A3,MARGREL1:40 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A4:(('not' a 'imp' 'not' b) 'imp' (b 'imp' a)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A5: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A4,A5; hence thesis by A4,A5,FUNCT_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ('not' b 'imp' 'not' a)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((a 'imp' b) 'imp' ('not' b 'imp' 'not' a),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; Pj((a 'imp' b) 'imp' ('not' b 'imp' 'not' a),x) ='not' Pj(a 'imp' b,x) 'or' Pj('not' b 'imp' 'not' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj('not' b 'imp' 'not' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj('not' b,x) 'or' Pj('not' a,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj('not' b,x) 'or' Pj('not' a,x)) by BINARITH:10 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj('not' b,x) 'or' Pj('not' a,x)) by MARGREL1:40 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' 'not' Pj(b,x) 'or' Pj('not' a,x)) by VALUAT_1:def 5 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' (Pj(b,x) 'or' Pj('not' a,x)) by MARGREL1:40 .=(Pj(b,x) 'or' 'not' Pj(a,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x)) by VALUAT_1:def 5 .=((Pj(b,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x)) '&' ((Pj(b,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) by BINARITH:23 .=(Pj(b,x) 'or' TRUE) '&' ((Pj(b,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) by A2,BINARITH:20 .=TRUE '&' ((Pj(b,x) 'or' 'not' Pj(a,x)) 'or' 'not' Pj(b,x)) by BINARITH:19 .=(('not' Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by MARGREL1:50 .=('not' Pj(a,x) 'or' TRUE) by A3,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A4:((a 'imp' b) 'imp' ('not' b 'imp' 'not' a)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A5: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A4,A5; hence thesis by A4,A5,FUNCT_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' 'not' b) 'imp' (b 'imp' 'not' a)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((a 'imp' 'not' b) 'imp' (b 'imp' 'not' a),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; Pj((a 'imp' 'not' b) 'imp' (b 'imp' 'not' a),x) ='not' Pj(a 'imp' 'not' b,x) 'or' Pj(b 'imp' 'not' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj('not' b,x)) 'or' Pj(b 'imp' 'not' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj('not' b,x)) 'or' ('not' Pj(b,x) 'or' Pj('not' a,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' Pj('not' b,x)) 'or' ('not' Pj(b,x) 'or' Pj('not' a,x)) by BINARITH:10 .=(Pj(a,x) '&' 'not' Pj('not' b,x)) 'or' ('not' Pj(b,x) 'or' Pj('not' a,x)) by MARGREL1:40 .=(Pj(a,x) '&' 'not' 'not' Pj(b,x)) 'or' ('not' Pj(b,x) 'or' Pj('not' a,x)) by VALUAT_1:def 5 .=(Pj(a,x) '&' Pj(b,x)) 'or' ('not' Pj(b,x) 'or' Pj('not' a,x)) by MARGREL1:40 .=('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by VALUAT_1:def 5 .=(('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x)) '&' (('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) by BINARITH:23 .=('not' Pj(b,x) 'or' TRUE) '&' (('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) by A2,BINARITH:20 .=TRUE '&' (('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) by BINARITH:19 .=(('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by MARGREL1:50 .=('not' Pj(a,x) 'or' TRUE) by A3,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A4:((a 'imp' 'not' b) 'imp' (b 'imp' 'not' a)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A5: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A4,A5; hence thesis by A4,A5,FUNCT_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds ('not' a 'imp' b) 'imp' ('not' b 'imp' a)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj(('not' a 'imp' b) 'imp' ('not' b 'imp' a),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; A3: now per cases by MARGREL1:39; case Pj(b,x)=TRUE; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE by BINARITH:19; case Pj(b,x)=FALSE; then 'not' Pj(b,x) 'or' Pj(b,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(b,x) 'or' Pj(b,x))=TRUE; end; Pj(('not' a 'imp' b) 'imp' ('not' b 'imp' a),x) ='not' Pj('not' a 'imp' b,x) 'or' Pj('not' b 'imp' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj('not' a,x) 'or' Pj(b,x)) 'or' Pj('not' b 'imp' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj('not' a,x) 'or' Pj(b,x)) 'or' ('not' Pj('not' b,x) 'or' Pj(a,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj('not' a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj('not' b,x) 'or' Pj(a,x)) by BINARITH:10 .=(Pj('not' a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj('not' b,x) 'or' Pj(a,x)) by MARGREL1:40 .=('not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj('not' b,x) 'or' Pj(a,x)) by VALUAT_1:def 5 .=('not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' 'not' Pj(b,x) 'or' Pj(a,x)) by VALUAT_1:def 5 .=(Pj(b,x) 'or' Pj(a,x)) 'or' ('not' Pj(a,x) '&' 'not' Pj(b,x)) by MARGREL1:40 .=((Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj(a,x)) '&' ((Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) by BINARITH:23 .=(Pj(b,x) 'or' TRUE) '&' ((Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) by A2,BINARITH:20 .=TRUE '&' ((Pj(b,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) by BINARITH:19 .=((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by MARGREL1:50 .=(Pj(a,x) 'or' TRUE) by A3,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A4:(('not' a 'imp' b) 'imp' ('not' b 'imp' a)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A5: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A4,A5; hence thesis by A4,A5,FUNCT_1:9; end; theorem for a being Element of Funcs(Y,BOOLEAN) holds (a 'imp' 'not' a) 'imp' 'not' a=I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj((a 'imp' 'not' a) 'imp' 'not' a,x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; Pj((a 'imp' 'not' a) 'imp' 'not' a,x) ='not' Pj(a 'imp' 'not' a,x) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .='not' ('not' Pj(a,x) 'or' Pj('not' a,x)) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' Pj('not' a,x)) 'or' Pj('not' a,x) by BINARITH:10 .=(Pj(a,x) '&' 'not' Pj('not' a,x)) 'or' Pj('not' a,x) by MARGREL1:40 .=(Pj(a,x) '&' 'not' 'not' Pj(a,x)) 'or' Pj('not' a,x) by VALUAT_1:def 5 .=(Pj(a,x) '&' Pj(a,x)) 'or' Pj('not' a,x) by MARGREL1:40 .=Pj(a,x) 'or' Pj('not' a,x) by BINARITH:16 .=TRUE by A2,VALUAT_1:def 5; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A3:((a 'imp' 'not' a) 'imp' 'not' a) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A4: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A3,A4; hence thesis by A3,A4,FUNCT_1:9; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds 'not' a 'imp' (a 'imp' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); A1:for x being Element of Y holds Pj('not' a 'imp' (a 'imp' b),x) = Pj(I_el(Y),x) proof let x be Element of Y; A2: now per cases by MARGREL1:39; case Pj(a,x)=TRUE; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE by BINARITH:19; case Pj(a,x)=FALSE; then 'not' Pj(a,x) 'or' Pj(a,x) =TRUE 'or' FALSE by MARGREL1:41 .=TRUE by BINARITH:19; hence ('not' Pj(a,x) 'or' Pj(a,x))=TRUE; end; Pj('not' a 'imp' (a 'imp' b),x) ='not' Pj('not' a,x) 'or' Pj(a 'imp' b,x) by BVFUNC_1:def 11 .='not' Pj('not' a,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x)) by BVFUNC_1:def 11 .='not' 'not' Pj(a,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x)) by VALUAT_1:def 5 .=Pj(a,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x)) by MARGREL1:40 .=TRUE 'or' Pj(b,x) by A2,BINARITH:20 .=TRUE by BINARITH:19; hence thesis by BVFUNC_1:def 14; end; consider k3 being Function such that A3:('not' a 'imp' (a 'imp' b)) =k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A4: I_el(Y)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A3,A4; hence thesis by A3,A4,FUNCT_1:9; end; theorem ::De'Morgan for a,b,c being Element of Funcs(Y,BOOLEAN) holds 'not' (a '&' b '&' c)=('not' a) 'or' ('not' b) 'or' ('not' c) proof let a,b,c be Element of Funcs(Y,BOOLEAN); 'not' (a '&' b '&' c) ='not' (a '&' b) 'or' ('not' c) by BVFUNC_1:17 .=('not' a) 'or' ('not' b) 'or' ('not' c) by BVFUNC_1:17; hence thesis; end; theorem ::De'Morgan for a,b,c being Element of Funcs(Y,BOOLEAN) holds 'not' (a 'or' b 'or' c)=('not' a) '&' ('not' b) '&' ('not' c) proof let a,b,c be Element of Funcs(Y,BOOLEAN); 'not' (a 'or' b 'or' c) ='not' (a 'or' b) '&' ('not' c) by BVFUNC_1:16 .=('not' a) '&' ('not' b) '&' ('not' c) by BVFUNC_1:16; hence thesis; end; theorem ::Distributive for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds a 'or' (b '&' c '&' d) = (a 'or' b) '&' (a 'or' c) '&' (a 'or' d) proof let a,b,c,d be Element of Funcs(Y,BOOLEAN); a 'or' (b '&' c '&' d) =(a 'or' (b '&' c)) '&' (a 'or' d) by BVFUNC_1:14 .=((a 'or' b) '&' (a 'or' c)) '&' (a 'or' d) by BVFUNC_1:14; hence thesis; end; theorem ::Distributive for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds a '&' (b 'or' c 'or' d) = (a '&' b) 'or' (a '&' c) 'or' (a '&' d) proof let a,b,c,d be Element of Funcs(Y,BOOLEAN); a '&' (b 'or' c 'or' d) =(a '&' (b 'or' c)) 'or' (a '&' d) by BVFUNC_1:15 .=(a '&' b) 'or' (a '&' c) 'or' (a '&' d) by BVFUNC_1:15; hence thesis; end;