environ vocabulary ARYTM, PRE_TOPC, METRIC_1, ABSVALUE, ARYTM_1, FUNCT_1, RCOMP_1, BOOLE, GROUP_1, SEQ_1, ORDINAL2, RELAT_1, POWER, LIMFUNC1, FINSET_1, COMPTS_1, SETFAM_1, TOPMETR, PCOMPS_1, ARYTM_3, TARSKI, SEQM_3, SEQ_2; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, ORDINAL2, REAL_1, NAT_1, RELAT_1, FUNCT_2, METRIC_1, FINSET_1, BINOP_1, STRUCT_0, PRE_TOPC, TOPS_2, COMPTS_1, PCOMPS_1, ABSVALUE, SEQ_1, SEQ_2, SEQM_3, LIMFUNC1, POWER, RCOMP_1, NEWTON, TOPMETR; constructors REAL_1, NAT_1, TOPS_2, COMPTS_1, ABSVALUE, SEQ_2, SEQM_3, LIMFUNC1, POWER, RCOMP_1, NEWTON, TOPMETR, PARTFUN1, SEQ_4, MEMBERED, XBOOLE_0; clusters PRE_TOPC, FINSET_1, XREAL_0, METRIC_1, RELSET_1, SEQ_1, SEQM_3, ARYTM_3, NEWTON, MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve a,b,x,y,z for real number, i,k,n,m for Nat; reserve p,q,w for Real; theorem :: HEINE:1 for A being SubSpace of RealSpace, p,q being Point of A st x = p & y = q holds dist(p,q) = abs( x - y ); theorem :: HEINE:2 x <= y & y <= z implies [. x,y .] \/ [. y,z .] = [. x,z .]; theorem :: HEINE:3 x >= 0 & a + x <= b implies a <= b; theorem :: HEINE:4 x >= 0 & a - x >= b implies a >= b; theorem :: HEINE:5 x > 0 implies x|^k > 0; reserve seq for Real_Sequence; theorem :: HEINE:6 seq is increasing & rng seq c= NAT implies n <= seq.n; definition let seq,k; func k to_power seq -> Real_Sequence means :: HEINE:def 1 for n holds it.n = k to_power (seq.n); end; theorem :: HEINE:7 2|^n >= n + 1; theorem :: HEINE:8 2|^n > n; theorem :: HEINE:9 seq is divergent_to+infty implies 2 to_power seq is divergent_to+infty; theorem :: HEINE:10 for T being TopSpace st the carrier of T is finite holds T is compact; :: HEINE - BOREL THEOREM theorem :: HEINE:11 a <= b implies Closed-Interval-TSpace(a,b) is compact;