Journal of Formalized Mathematics
Volume 10, 1998
University of Bialystok
Copyright (c) 1998
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Jaroslaw Gryko
- Received April 17, 1998
- MML identifier: WAYBEL18
- [
Mizar article,
MML identifier index
]
environ
vocabulary BOOLE, FUNCT_1, RELAT_1, SETFAM_1, CANTOR_1, TARSKI, PRE_TOPC,
PRALG_1, PBOOLE, FUNCOP_1, WAYBEL_3, CARD_3, RLVECT_2, FUNCT_4, BORSUK_1,
ORDINAL2, FUNCTOR0, PARTFUN1, FUNCT_6, FUNCT_3, GROUP_6, SUBSET_1,
WAYBEL_1, SGRAPH1, T_0TOPSP, TOPS_2, METRIC_1, RELAT_2, ORDERS_1,
WAYBEL11, YELLOW_9, YELLOW_1, LATTICE3, FILTER_1, WAYBEL_0, QUANTAL1,
YELLOW_0, FINSET_1, BHSP_3, WAYBEL_8, LATTICES, CAT_1, WAYBEL_9,
COMPTS_1, WAYBEL18, RLVECT_3;
notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1,
T_0TOPSP, STRUCT_0, FUNCT_1, FUNCT_2, PRE_TOPC, FUNCT_3, FUNCT_6,
FUNCT_7, PBOOLE, CARD_3, PRALG_1, ORDERS_1, LATTICE3, YELLOW_1, PRE_CIRC,
CANTOR_1, FINSET_1, PRALG_3, TOPS_2, BORSUK_1, TMAP_1, GRCAT_1, YELLOW_0,
YELLOW_2, YELLOW_9, WAYBEL_0, WAYBEL_3, WAYBEL_8, WAYBEL_9, WAYBEL11;
constructors PRALG_3, CANTOR_1, WAYBEL_1, WAYBEL_3, ENUMSET1, T_0TOPSP,
GRCAT_1, TOPS_2, FUNCT_7, WAYBEL_8, WAYBEL11, TMAP_1, WAYBEL_5, YELLOW_9,
LATTICE3, BORSUK_1;
clusters STRUCT_0, PRE_TOPC, FUNCT_1, LATTICE3, YELLOW_1, WAYBEL_0, WAYBEL_3,
WAYBEL_8, WAYBEL11, YELLOW_9, FUNCOP_1, RELSET_1, SUBSET_1, BORSUK_1,
XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Preliminaries
theorem :: WAYBEL18:1
for x,y,z,Z being set holds
Z c= {x,y,z} iff Z = {} or Z = {x} or Z = {y} or Z = {z} or Z = {x,y} or
Z = {y,z} or Z = {x,z} or Z = {x,y,z};
theorem :: WAYBEL18:2
for X being set, A,B being Subset-Family of X st B = A \ {{}} or A = B \/ {{}}
holds UniCl A = UniCl B;
theorem :: WAYBEL18:3
for T being TopSpace, K being Subset-Family of T
holds K is Basis of T iff K \ {{}} is Basis of T;
definition let F be Relation;
attr F is TopSpace-yielding means
:: WAYBEL18:def 1
for x being set st x in rng F holds x is TopStruct;
end;
definition
cluster TopSpace-yielding -> 1-sorted-yielding Function;
end;
definition let I be set;
cluster TopSpace-yielding ManySortedSet of I;
end;
definition let I be set;
cluster TopSpace-yielding non-Empty ManySortedSet of I;
end;
definition let J be non empty set;
let A be TopSpace-yielding ManySortedSet of J;
let j be Element of J;
redefine func A.j -> TopStruct;
end;
definition let I be set; let J be TopSpace-yielding ManySortedSet of I;
func product_prebasis J -> Subset-Family of product Carrier J means
:: WAYBEL18:def 2
for x being Subset of product Carrier J holds
x in it iff ex i being set, T being TopStruct,
V being Subset of T st i in I &
V is open & T = J.i & x = product ((Carrier J) +* (i,V));
end;
theorem :: WAYBEL18:4
for X be set, A be Subset-Family of X holds
TopStruct (#X,UniCl FinMeetCl A#) is TopSpace-like;
definition let I be set;
let J be TopSpace-yielding non-Empty ManySortedSet of I;
func product J -> strict TopSpace means
:: WAYBEL18:def 3
the carrier of it = product Carrier J &
product_prebasis J is prebasis of it;
end;
definition let I be set;
let J be TopSpace-yielding non-Empty ManySortedSet of I;
cluster product J -> non empty;
end;
definition let I be non empty set;
let J be TopSpace-yielding non-Empty ManySortedSet of I;
let i be Element of I;
redefine func J.i -> non empty TopStruct;
end;
definition let I be set;
let J be TopSpace-yielding non-Empty ManySortedSet of I;
cluster -> Function-like Relation-like Element of product J;
end;
definition
let I be non empty set;
let J be TopSpace-yielding non-Empty ManySortedSet of I;
let x be Element of product J; let i be Element of I;
redefine func x.i -> Element of J.i;
end;
definition let I be non empty set;
let J be TopSpace-yielding non-Empty ManySortedSet of I;
let i be Element of I;
func proj(J,i) -> map of product J, J.i equals
:: WAYBEL18:def 4
proj(Carrier J,i);
end;
theorem :: WAYBEL18:5
for I being non empty set,
J being TopSpace-yielding non-Empty ManySortedSet of I,
i being Element of I, P being Subset of J.i holds
proj(J,i)"P = product ((Carrier J) +* (i,P));
theorem :: WAYBEL18:6
for I being non empty set,
J being TopSpace-yielding non-Empty ManySortedSet of I,
i being Element of I holds proj(J,i) is continuous;
theorem :: WAYBEL18:7
for X being non empty TopSpace, I being non empty set,
J being TopSpace-yielding non-Empty ManySortedSet of I,
f being map of X, product J holds
f is continuous iff
for i being Element of I holds proj(J,i)*f is continuous;
begin :: Main Part
definition let Z be TopStruct;
attr Z is injective means
:: WAYBEL18:def 5 ::p.121 definition 3.1.
for X being non empty TopSpace
for f being map of X, Z st f is continuous holds
for Y being non empty TopSpace st X is SubSpace of Y
ex g being map of Y,Z st g is continuous & g|(the carrier of X) = f;
end;
theorem :: WAYBEL18:8 ::p.121 lemma 3.2.(i)
for I being non empty set, J being TopSpace-yielding non-Empty
ManySortedSet of I st for i being Element of I holds J.i is injective holds
product J is injective;
theorem :: WAYBEL18:9 ::p.121 lemma 3.2.(ii)
for T being non empty TopSpace st T is injective
for S being non empty SubSpace of T st S is_a_retract_of T holds
S is injective;
definition let X be 1-sorted, Y be TopStruct, f be map of X,Y;
func Image f -> SubSpace of Y equals
:: WAYBEL18:def 6
Y|(rng f);
end;
definition let X be non empty 1-sorted,
Y be non empty TopStruct,
f be map of X,Y;
cluster Image f -> non empty;
end;
theorem :: WAYBEL18:10
for X being 1-sorted, Y being TopStruct,
f being map of X,Y holds
the carrier of Image f = rng f;
definition let X be 1-sorted, Y be non empty TopStruct,
f be map of X,Y;
func corestr(f) -> map of X,Image f equals
:: WAYBEL18:def 7
f;
end;
theorem :: WAYBEL18:11
for X, Y being non empty TopSpace, f being map of X,Y st
f is continuous holds
corestr f is continuous;
definition let X be 1-sorted,Y be non empty TopStruct; let f be map of X,Y;
cluster corestr f -> onto;
end;
definition let X,Y be TopStruct;
pred X is_Retract_of Y means
:: WAYBEL18:def 8
ex f being map of Y,Y st f is continuous & f*f = f &
Image f, X are_homeomorphic;
end;
theorem :: WAYBEL18:12 ::p.121 lemma 3.2.(iii)
for T,S being non empty TopSpace st T is injective
for f being map of T,S st corestr(f) is_homeomorphism holds
T is_Retract_of S;
definition
func Sierpinski_Space -> strict TopStruct means
:: WAYBEL18:def 9
the carrier of it = {0,1} &
the topology of it = {{}, {1}, {0,1} };
end;
definition
cluster Sierpinski_Space -> non empty TopSpace-like;
end;
definition
cluster Sierpinski_Space -> discerning;
end;
definition ::p.122 lemma 3.3.
cluster Sierpinski_Space -> injective;
end;
definition let I be set; let S be non empty 1-sorted;
cluster I --> S -> non-Empty;
end;
definition let I be set; let T be TopStruct;
cluster I --> T -> TopSpace-yielding;
end;
definition let I be set; let L be reflexive RelStr;
cluster I --> L -> reflexive-yielding;
end;
definition let I be non empty set; let L be non empty antisymmetric RelStr;
cluster product (I --> L) -> antisymmetric;
end;
definition let I be non empty set; let L be non empty transitive RelStr;
cluster product (I --> L) -> transitive;
end;
theorem :: WAYBEL18:13
for T being Scott TopAugmentation of BoolePoset 1
holds the topology of T = the topology of Sierpinski_Space;
theorem :: WAYBEL18:14
for I being non empty set holds
{product ((Carrier (I --> Sierpinski_Space))+*(i,{1}))
where i is Element of I: not contradiction }
is prebasis of product (I --> Sierpinski_Space);
definition let I be non empty set; let L be complete LATTICE;
cluster product (I --> L) -> with_suprema complete;
end;
definition let I be non empty set; let X be algebraic lower-bounded LATTICE;
cluster product (I --> X) -> algebraic;
end;
theorem :: WAYBEL18:15
for X being non empty set
ex f being map of BoolePoset X, product (X --> BoolePoset 1) st
f is isomorphic & for Y being Subset of X holds f.Y = chi(Y,X);
theorem :: WAYBEL18:16 ::p.122 lemma 3.4.(i)
for I being non empty set
for T being Scott TopAugmentation of product (I --> BoolePoset 1) holds
the topology of T = the topology of product (I --> Sierpinski_Space);
theorem :: WAYBEL18:17
for T,S being non empty TopSpace st the carrier of T = the carrier of S &
the topology of T = the topology of S & T is injective holds S is injective;
theorem :: WAYBEL18:18 ::p.122 lemma 3.4.(i) part II
for I being non empty set
for T being Scott TopAugmentation of product (I --> BoolePoset 1)
holds T is injective;
theorem :: WAYBEL18:19 ::p.122 lemma 3.4.(ii)
for T being T_0-TopSpace ex M being non empty set,
f being map of T, product (M --> Sierpinski_Space) st
corestr(f) is_homeomorphism;
theorem :: WAYBEL18:20 ::p.122 lemma 3.4.(iii)
for T being T_0-TopSpace st T is injective ex M being non empty set st
T is_Retract_of product (M --> Sierpinski_Space);
Back to top