environ vocabulary JORDAN8, PSCOMP_1, BOOLE, JORDAN1A, JORDAN9, GOBOARD1, GOBOARD5, JORDAN6, SPRECT_2, JORDAN3, FINSEQ_5, JORDAN2C, GROUP_2, REALSET1, JORDAN1E, SQUARE_1, FINSEQ_4, TOPREAL2, CONNSP_1, COMPTS_1, TOPREAL1, SPPOL_1, FINSEQ_1, TREES_1, EUCLID, RELAT_1, MCART_1, MATRIX_1, GOBOARD9, PRE_TOPC, RELAT_2, SEQM_3, SUBSET_1, FUNCT_1, ARYTM_1, FINSEQ_6, GOBOARD2, GRAPH_2, ORDINAL2, LATTICES, SEQ_2, FUNCT_5, ARYTM; notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, REAL_1, NAT_1, SQUARE_1, FUNCT_1, FUNCT_2, FINSEQ_1, FINSEQ_4, FINSEQ_5, SEQ_4, MATRIX_1, REALSET1, FINSEQ_6, GRAPH_2, STRUCT_0, PRE_TOPC, RCOMP_1, TOPREAL2, BINARITH, CONNSP_1, COMPTS_1, EUCLID, PSCOMP_1, SPRECT_2, GOBOARD1, TOPREAL1, GOBOARD2, GOBOARD5, GOBOARD9, GOBRD13, SPPOL_1, JORDAN3, JORDAN8, JORDAN2C, JORDAN6, JORDAN9, JORDAN1A, JORDAN1E; constructors JORDAN8, REALSET1, GOBOARD9, JORDAN6, REAL_1, CARD_4, PSCOMP_1, BINARITH, JORDAN2C, CONNSP_1, JORDAN9, JORDAN1A, SQUARE_1, FINSEQ_4, JORDAN1, JORDAN3, TOPREAL2, JORDAN5C, GRAPH_2, SPRECT_1, GOBOARD2, JORDAN1E, RCOMP_1, WSIERP_1, JORDAN1H, ENUMSET1, INT_1; clusters XREAL_0, SPRECT_1, TOPREAL6, JORDAN8, REVROT_1, INT_1, RELSET_1, SPRECT_3, GOBOARD2, SPPOL_2, JORDAN1A, JORDAN1B, JORDAN1E, GOBRD11, XBOOLE_0, SPRECT_4, BORSUK_2, PSCOMP_1, JORDAN1J, MEMBERED, NUMBERS, ORDINAL2; requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM; begin reserve n for Nat; theorem :: JORDAN15:1 for A,B be Subset of TOP-REAL 2 st A meets B holds proj1.:A meets proj1.:B; theorem :: JORDAN15:2 for A,B be Subset of TOP-REAL 2 for s be real number st A misses B & A c= Horizontal_Line s & B c= Horizontal_Line s holds proj1.:A misses proj1.:B; theorem :: JORDAN15:3 for S be closed Subset of TOP-REAL 2 st S is Bounded holds proj1.:S is closed; theorem :: JORDAN15:4 for S be compact Subset of TOP-REAL 2 holds proj1.:S is compact; theorem :: JORDAN15:5 for p,q,p1,q1 be Point of TOP-REAL 2 st LSeg(p,q) is vertical & LSeg(p1,q1) is vertical & p`1 = p1`1 & p`2 <= p1`2 & p1`2 <= q1`2 & q1`2 <= q`2 holds LSeg(p1,q1) c= LSeg(p,q); theorem :: JORDAN15:6 for p,q,p1,q1 be Point of TOP-REAL 2 st LSeg(p,q) is horizontal & LSeg(p1,q1) is horizontal & p`2 = p1`2 & p`1 <= p1`1 & p1`1 <= q1`1 & q1`1 <= q`1 holds LSeg(p1,q1) c= LSeg(p,q); theorem :: JORDAN15:7 for G be Go-board for i,j,k,j1,k1 be Nat st 1 <= i & i <= len G & 1 <= j & j <= j1 & j1 <= k1 & k1 <= k & k <= width G holds LSeg(G*(i,j1),G*(i,k1)) c= LSeg(G*(i,j),G*(i,k)); theorem :: JORDAN15:8 for G be Go-board for i,j,k,j1,k1 be Nat st 1 <= i & i <= width G & 1 <= j & j <= j1 & j1 <= k1 & k1 <= k & k <= len G holds LSeg(G*(j1,i),G*(k1,i)) c= LSeg(G*(j,i),G*(k,i)); theorem :: JORDAN15:9 for G be Go-board for j,k,j1,k1 be Nat st 1 <= j & j <= j1 & j1 <= k1 & k1 <= k & k <= width G holds LSeg(G*(Center G,j1),G*(Center G,k1)) c= LSeg(G*(Center G,j),G*(Center G,k)); theorem :: JORDAN15:10 for G be Go-board st len G = width G for j,k,j1,k1 be Nat st 1 <= j & j <= j1 & j1 <= k1 & k1 <= k & k <= len G holds LSeg(G*(j1,Center G),G*(k1,Center G)) c= LSeg(G*(j,Center G),G*(k,Center G)); theorem :: JORDAN15:11 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Lower_Seq(C,n) ex j1 be Nat st j <= j1 & j1 <= k & LSeg(Gauge(C,n)*(i,j1),Gauge(C,n)*(i,k)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i,j1)}; theorem :: JORDAN15:12 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,k) in L~Upper_Seq(C,n) ex k1 be Nat st j <= k1 & k1 <= k & LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k1)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i,k1)}; theorem :: JORDAN15:13 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Lower_Seq(C,n) & Gauge(C,n)*(i,k) in L~Upper_Seq(C,n) ex j1,k1 be Nat st j <= j1 & j1 <= k1 & k1 <= k & LSeg(Gauge(C,n)*(i,j1),Gauge(C,n)*(i,k1)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i,j1)} & LSeg(Gauge(C,n)*(i,j1),Gauge(C,n)*(i,k1)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i,k1)}; theorem :: JORDAN15:14 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= j & j <= k & k <= len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(j,i) in L~Lower_Seq(C,n) ex j1 be Nat st j <= j1 & j1 <= k & LSeg(Gauge(C,n)*(j1,i),Gauge(C,n)*(k,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(j1,i)}; theorem :: JORDAN15:15 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= j & j <= k & k <= len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(k,i) in L~Upper_Seq(C,n) ex k1 be Nat st j <= k1 & k1 <= k & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k1,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(k1,i)}; theorem :: JORDAN15:16 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= j & j <= k & k <= len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(j,i) in L~Lower_Seq(C,n) & Gauge(C,n)*(k,i) in L~Upper_Seq(C,n) ex j1,k1 be Nat st j <= j1 & j1 <= k1 & k1 <= k & LSeg(Gauge(C,n)*(j1,i),Gauge(C,n)*(k1,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(j1,i)} & LSeg(Gauge(C,n)*(j1,i),Gauge(C,n)*(k1,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(k1,i)}; theorem :: JORDAN15:17 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Upper_Seq(C,n) ex j1 be Nat st j <= j1 & j1 <= k & LSeg(Gauge(C,n)*(i,j1),Gauge(C,n)*(i,k)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i,j1)}; theorem :: JORDAN15:18 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,k) in L~Lower_Seq(C,n) ex k1 be Nat st j <= k1 & k1 <= k & LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k1)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i,k1)}; theorem :: JORDAN15:19 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= i & i <= len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,j) in L~Upper_Seq(C,n) & Gauge(C,n)*(i,k) in L~Lower_Seq(C,n) ex j1,k1 be Nat st j <= j1 & j1 <= k1 & k1 <= k & LSeg(Gauge(C,n)*(i,j1),Gauge(C,n)*(i,k1)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i,j1)} & LSeg(Gauge(C,n)*(i,j1),Gauge(C,n)*(i,k1)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i,k1)}; theorem :: JORDAN15:20 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= j & j <= k & k <= len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(j,i) in L~Upper_Seq(C,n) ex j1 be Nat st j <= j1 & j1 <= k & LSeg(Gauge(C,n)*(j1,i),Gauge(C,n)*(k,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(j1,i)}; theorem :: JORDAN15:21 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= j & j <= k & k <= len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(k,i) in L~Lower_Seq(C,n) ex k1 be Nat st j <= k1 & k1 <= k & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k1,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(k1,i)}; theorem :: JORDAN15:22 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 <= j & j <= k & k <= len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(j,i) in L~Upper_Seq(C,n) & Gauge(C,n)*(k,i) in L~Lower_Seq(C,n) ex j1,k1 be Nat st j <= j1 & j1 <= k1 & k1 <= k & LSeg(Gauge(C,n)*(j1,i),Gauge(C,n)*(k1,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(j1,i)} & LSeg(Gauge(C,n)*(j1,i),Gauge(C,n)*(k1,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(k1,i)}; theorem :: JORDAN15:23 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,k) in L~Upper_Seq(C,n) & Gauge(C,n)*(i,j) in L~Lower_Seq(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C; theorem :: JORDAN15:24 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & Gauge(C,n)*(i,k) in L~Upper_Seq(C,n) & Gauge(C,n)*(i,j) in L~Lower_Seq(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C; theorem :: JORDAN15:25 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(i,k) in Upper_Arc L~Cage(C,n) & Gauge(C,n)*(i,j) in Lower_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Lower_Arc C; theorem :: JORDAN15:26 for C be Simple_closed_curve for i,j,k be Nat st 1 < i & i < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(i,k) in Upper_Arc L~Cage(C,n) & Gauge(C,n)*(i,j) in Lower_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(i,j),Gauge(C,n)*(i,k)) meets Upper_Arc C; theorem :: JORDAN15:27 for C be Simple_closed_curve for j,k be Nat holds 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(Center Gauge(C,n+1),k) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(Center Gauge(C,n+1),j) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(Center Gauge(C,n+1),j), Gauge(C,n+1)*(Center Gauge(C,n+1),k)) meets Lower_Arc C; theorem :: JORDAN15:28 for C be Simple_closed_curve for j,k be Nat holds 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(Center Gauge(C,n+1),k) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(Center Gauge(C,n+1),j) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(Center Gauge(C,n+1),j), Gauge(C,n+1)*(Center Gauge(C,n+1),k)) meets Upper_Arc C; theorem :: JORDAN15:29 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i,j,k be Nat st 1 < j & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(k,i) in L~Upper_Seq(C,n) & Gauge(C,n)*(j,i) in L~Lower_Seq(C,n) holds j <> k; theorem :: JORDAN15:30 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(k,i)} & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(j,i)} holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Lower_Arc C; theorem :: JORDAN15:31 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(k,i)} & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(j,i)} holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Upper_Arc C; theorem :: JORDAN15:32 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(k,i) in L~Upper_Seq(C,n) & Gauge(C,n)*(j,i) in L~Lower_Seq(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Lower_Arc C; theorem :: JORDAN15:33 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(k,i) in L~Upper_Seq(C,n) & Gauge(C,n)*(j,i) in L~Lower_Seq(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Upper_Arc C; theorem :: JORDAN15:34 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(k,i) in Upper_Arc L~Cage(C,n) & Gauge(C,n)*(j,i) in Lower_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Lower_Arc C; theorem :: JORDAN15:35 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(k,i) in Upper_Arc L~Cage(C,n) & Gauge(C,n)*(j,i) in Lower_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Upper_Arc C; theorem :: JORDAN15:36 for C be Simple_closed_curve for j,k be Nat holds 1 < j & j <= k & k < len Gauge(C,n+1) & Gauge(C,n+1)*(k,Center Gauge(C,n+1)) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(j,Center Gauge(C,n+1)) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(j,Center Gauge(C,n+1)), Gauge(C,n+1)*(k,Center Gauge(C,n+1))) meets Lower_Arc C; theorem :: JORDAN15:37 for C be Simple_closed_curve for j,k be Nat holds 1 < j & j <= k & k < len Gauge(C,n+1) & Gauge(C,n+1)*(k,Center Gauge(C,n+1)) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(j,Center Gauge(C,n+1)) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(j,Center Gauge(C,n+1)), Gauge(C,n+1)*(k,Center Gauge(C,n+1))) meets Upper_Arc C; theorem :: JORDAN15:38 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(j,i)} & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(k,i)} holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Lower_Arc C; theorem :: JORDAN15:39 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(j,i)} & LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(k,i)} holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Upper_Arc C; theorem :: JORDAN15:40 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(j,i) in L~Upper_Seq(C,n) & Gauge(C,n)*(k,i) in L~Lower_Seq(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Lower_Arc C; theorem :: JORDAN15:41 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & Gauge(C,n)*(j,i) in L~Upper_Seq(C,n) & Gauge(C,n)*(k,i) in L~Lower_Seq(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Upper_Arc C; theorem :: JORDAN15:42 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(j,i) in Upper_Arc L~Cage(C,n) & Gauge(C,n)*(k,i) in Lower_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Lower_Arc C; theorem :: JORDAN15:43 for C be Simple_closed_curve for i,j,k be Nat st 1 < j & j <= k & k < len Gauge(C,n) & 1 <= i & i <= width Gauge(C,n) & n > 0 & Gauge(C,n)*(j,i) in Upper_Arc L~Cage(C,n) & Gauge(C,n)*(k,i) in Lower_Arc L~Cage(C,n) holds LSeg(Gauge(C,n)*(j,i),Gauge(C,n)*(k,i)) meets Upper_Arc C; theorem :: JORDAN15:44 for C be Simple_closed_curve for j,k be Nat holds 1 < j & j <= k & k < len Gauge(C,n+1) & Gauge(C,n+1)*(j,Center Gauge(C,n+1)) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(k,Center Gauge(C,n+1)) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(j,Center Gauge(C,n+1)), Gauge(C,n+1)*(k,Center Gauge(C,n+1))) meets Lower_Arc C; theorem :: JORDAN15:45 for C be Simple_closed_curve for j,k be Nat holds 1 < j & j <= k & k < len Gauge(C,n+1) & Gauge(C,n+1)*(j,Center Gauge(C,n+1)) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(k,Center Gauge(C,n+1)) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(j,Center Gauge(C,n+1)), Gauge(C,n+1)*(k,Center Gauge(C,n+1))) meets Upper_Arc C; theorem :: JORDAN15:46 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i1 & i1 <= i2 & i2 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i2,k)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i1,j)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Upper_Arc C; theorem :: JORDAN15:47 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i1 & i1 <= i2 & i2 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i2,k)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i1,j)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Lower_Arc C; theorem :: JORDAN15:48 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i2 & i2 <= i1 & i1 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i2,k)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i1,j)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Upper_Arc C; theorem :: JORDAN15:49 for C be Simple_closed_curve for i1,i2,j,k be Nat st 1 < i2 & i2 <= i1 & i1 < len Gauge(C,n) & 1 <= j & j <= k & k <= width Gauge(C,n) & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Upper_Seq(C,n) = {Gauge(C,n)*(i2,k)} & (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) /\ L~Lower_Seq(C,n) = {Gauge(C,n)*(i1,j)} holds (LSeg(Gauge(C,n)*(i1,j),Gauge(C,n)*(i1,k)) \/ LSeg(Gauge(C,n)*(i1,k),Gauge(C,n)*(i2,k))) meets Lower_Arc C; theorem :: JORDAN15:50 for C be Simple_closed_curve for i1,i2,j,k be Nat holds 1 < i1 & i1 < len Gauge(C,n+1) & 1 < i2 & i2 < len Gauge(C,n+1) & 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(i1,k) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(i2,j) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(i2,j),Gauge(C,n+1)*(i2,k)) \/ LSeg(Gauge(C,n+1)*(i2,k),Gauge(C,n+1)*(i1,k)) meets Upper_Arc C; theorem :: JORDAN15:51 for C be Simple_closed_curve for i1,i2,j,k be Nat holds 1 < i1 & i1 < len Gauge(C,n+1) & 1 < i2 & i2 < len Gauge(C,n+1) & 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(i1,k) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(i2,j) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(i2,j),Gauge(C,n+1)*(i2,k)) \/ LSeg(Gauge(C,n+1)*(i2,k),Gauge(C,n+1)*(i1,k)) meets Lower_Arc C; theorem :: JORDAN15:52 for C be Simple_closed_curve for i,j,k be Nat holds 1 < i & i < len Gauge(C,n+1) & 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(i,k) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(Center Gauge(C,n+1),j) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(Center Gauge(C,n+1),j), Gauge(C,n+1)*(Center Gauge(C,n+1),k)) \/ LSeg(Gauge(C,n+1)*(Center Gauge(C,n+1),k),Gauge(C,n+1)*(i,k)) meets Upper_Arc C; theorem :: JORDAN15:53 for C be Simple_closed_curve for i,j,k be Nat holds 1 < i & i < len Gauge(C,n+1) & 1 <= j & j <= k & k <= width Gauge(C,n+1) & Gauge(C,n+1)*(i,k) in Upper_Arc L~Cage(C,n+1) & Gauge(C,n+1)*(Center Gauge(C,n+1),j) in Lower_Arc L~Cage(C,n+1) implies LSeg(Gauge(C,n+1)*(Center Gauge(C,n+1),j), Gauge(C,n+1)*(Center Gauge(C,n+1),k)) \/ LSeg(Gauge(C,n+1)*(Center Gauge(C,n+1),k),Gauge(C,n+1)*(i,k)) meets Lower_Arc C;