Journal of Formalized Mathematics
Volume 12, 2000
University of Bialystok
Copyright (c) 2000
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Robert Milewski
- Received July 21, 2000
- MML identifier: COMPTRIG
- [
Mizar article,
MML identifier index
]
environ
vocabulary RLVECT_1, VECTSP_1, COMPLEX1, ARYTM_1, SQUARE_1, ABSVALUE,
COMPLFLD, HAHNBAN1, GROUP_1, FUNCT_1, BINOP_1, POWER, RAT_1, PREPOWER,
RCOMP_1, SIN_COS, ARYTM_3, RFUNCT_2, FDIFF_1, PRE_TOPC, BOOLE, RELAT_1,
FCONT_1, PARTFUN1, COMPTRIG, ARYTM;
notation TARSKI, XBOOLE_0, SUBSET_1, STRUCT_0, ORDINAL1, NUMBERS, ARYTM_0,
XREAL_0, REAL_1, SQUARE_1, NAT_1, RAT_1, ABSVALUE, PREPOWER, POWER,
RLVECT_1, VECTSP_1, BINOP_1, RELAT_1, FUNCT_1, RFUNCT_2, FCONT_1,
FDIFF_1, SEQ_1, PARTFUN1, PARTFUN2, COMPLEX1, BINARITH, RCOMP_1, GROUP_1,
SIN_COS, COMPLFLD, HAHNBAN1;
constructors REAL_1, BINOP_1, TRIANG_1, SQUARE_1, PREPOWER, POWER, SEQ_1,
RFUNCT_1, RFUNCT_2, FCONT_1, BINARITH, COMSEQ_3, GROUP_1, ALGSTR_2,
RCOMP_1, VECTSP_2, FDIFF_1, PARTFUN2, COMPLSP1, SIN_COS, HAHNBAN1,
COMPLEX1, MEMBERED, ARYTM_0, ARYTM_3, FUNCT_4;
clusters XREAL_0, STRUCT_0, RELSET_1, PARTFUN2, BINARITH, GROUP_1, GCD_1,
COMPLFLD, POLYNOM2, MONOID_0, NAT_1, MEMBERED, NUMBERS, ORDINAL2;
requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM;
begin
scheme Regr_without_0 { P[Nat] } :
P[1]
provided
ex k be non empty Nat st P[k] and
for k be non empty Nat st k <> 1 & P[k]
ex n be non empty Nat st n < k & P[n];
canceled 2;
theorem :: COMPTRIG:3
for z be Element of COMPLEX holds
Re z >= -|.z.|;
theorem :: COMPTRIG:4
for z be Element of COMPLEX holds
Im z >= -|.z.|;
theorem :: COMPTRIG:5
for z be Element of F_Complex holds
Re z >= -|.z.|;
theorem :: COMPTRIG:6
for z be Element of F_Complex holds
Im z >= -|.z.|;
theorem :: COMPTRIG:7
for z be Element of F_Complex holds
|.z.|^2 = (Re z)^2 + (Im z)^2;
theorem :: COMPTRIG:8
for x1,x2,y1,y2 be Real holds
[**x1,x2**] = [**y1,y2**] implies x1 = y1 & x2 = y2;
theorem :: COMPTRIG:9
for z be Element of F_Complex holds
z = [**Re z,Im z**];
theorem :: COMPTRIG:10
0.F_Complex = [**0,0**];
canceled;
theorem :: COMPTRIG:12
for L be unital (non empty HGrStr)
for x be Element of L holds
(power L).(x,1) = x;
theorem :: COMPTRIG:13
for L be unital (non empty HGrStr)
for x be Element of L holds
(power L).(x,2) = x*x;
theorem :: COMPTRIG:14
for L be add-associative right_zeroed right_complementable
right-distributive unital (non empty doubleLoopStr)
for n be Nat st n > 0 holds
(power L).(0.L,n) = 0.L;
theorem :: COMPTRIG:15
for L be associative commutative unital (non empty HGrStr)
for x,y be Element of L
for n be Nat holds
(power L).(x*y,n) = (power L).(x,n) * (power L).(y,n);
theorem :: COMPTRIG:16
for x be Real st x > 0
for n be Nat holds
(power F_Complex).([**x,0**],n) = [**x to_power n,0**];
theorem :: COMPTRIG:17
for x be real number
for n be Nat st x >= 0 & n <> 0 holds
(n-root x) to_power n = x;
begin
canceled 2;
theorem :: COMPTRIG:20
PI+PI/2 = 3/2*PI & 3/2*PI+PI/2 = 2*PI & 3/2*PI - PI = PI/2;
theorem :: COMPTRIG:21
0 < PI/2 & PI/2 < PI & 0 < PI & -PI/2 < PI/2 & PI < 2*PI &
PI/2 < 3/2*PI & -PI/2 < 0 & 0 < 2*PI & PI < 3/2*PI & 3/2*PI < 2*PI &
0 < 3/2*PI;
theorem :: COMPTRIG:22
for a,b,c,x be real number st x in ].a,c.[ holds
x in ].a,b.[ or x = b or x in ].b,c.[;
theorem :: COMPTRIG:23
for x be Real st x in ].0,PI.[ holds sin.x > 0;
theorem :: COMPTRIG:24
for x be real number st x in [.0,PI.] holds sin.x >= 0;
theorem :: COMPTRIG:25
for x be Real st x in ].PI,2*PI.[ holds sin.x < 0;
theorem :: COMPTRIG:26
for x be real number st x in [.PI,2*PI.] holds sin.x <= 0;
reserve x for Real;
theorem :: COMPTRIG:27
x in ].-PI/2,PI/2.[ implies cos.x > 0;
theorem :: COMPTRIG:28
for x be real number st x in [.-PI/2,PI/2.] holds cos.x >= 0;
theorem :: COMPTRIG:29
x in ].PI/2,3/2*PI.[ implies cos.x < 0;
theorem :: COMPTRIG:30
for x be real number st x in [.PI/2,3/2*PI.] holds cos.x <= 0;
theorem :: COMPTRIG:31
x in ].3/2*PI,2*PI.[ implies cos.x > 0;
theorem :: COMPTRIG:32
for x be real number st x in [.3/2*PI,2*PI.] holds cos.x >= 0;
theorem :: COMPTRIG:33
for x be real number st 0 <= x & x < 2*PI & sin x = 0 holds
x = 0 or x = PI;
theorem :: COMPTRIG:34
for x be real number st 0 <= x & x < 2*PI & cos x = 0 holds
x = PI/2 or x = 3/2*PI;
theorem :: COMPTRIG:35
sin is_increasing_on ].-PI/2,PI/2.[;
theorem :: COMPTRIG:36
sin is_decreasing_on ].PI/2,3/2*PI.[;
theorem :: COMPTRIG:37
cos is_decreasing_on ].0,PI.[;
theorem :: COMPTRIG:38
cos is_increasing_on ].PI,2*PI.[;
theorem :: COMPTRIG:39
sin is_increasing_on [.-PI/2,PI/2.];
theorem :: COMPTRIG:40
sin is_decreasing_on [.PI/2,3/2*PI.];
theorem :: COMPTRIG:41
cos is_decreasing_on [.0,PI.];
theorem :: COMPTRIG:42
cos is_increasing_on [.PI,2*PI.];
theorem :: COMPTRIG:43
sin is_continuous_on REAL &
for x,y be real number holds
sin is_continuous_on [.x,y.] & sin is_continuous_on ].x,y.[;
theorem :: COMPTRIG:44
cos is_continuous_on REAL &
for x,y be real number holds
cos is_continuous_on [.x,y.] & cos is_continuous_on ].x,y.[;
theorem :: COMPTRIG:45
sin.x in [.-1,1 .] & cos.x in [.-1,1 .];
theorem :: COMPTRIG:46
rng sin = [.-1,1 .];
theorem :: COMPTRIG:47
rng cos = [.-1,1 .];
theorem :: COMPTRIG:48
rng (sin|[.-PI/2,PI/2.]) = [.-1,1 .];
theorem :: COMPTRIG:49
rng (sin|[.PI/2,3/2*PI.]) = [.-1,1 .];
theorem :: COMPTRIG:50
rng (cos|[.0,PI.]) = [.-1,1 .];
theorem :: COMPTRIG:51
rng (cos|[.PI,2*PI.]) = [.-1,1 .];
begin :: Argument of Complex Number
definition
let z be Element of F_Complex;
func Arg z -> Real means
:: COMPTRIG:def 1
z = [**|.z.|*cos it,|.z.|*sin it**] & 0 <= it & it < 2*PI
if z <> 0.F_Complex
otherwise it = 0;
end;
theorem :: COMPTRIG:52
for z be Element of F_Complex holds
0 <= Arg z & Arg z < 2*PI;
theorem :: COMPTRIG:53
for x be Real st x >= 0 holds
Arg [**x,0**] = 0;
theorem :: COMPTRIG:54
for x be Real st x < 0 holds
Arg [**x,0**] = PI;
theorem :: COMPTRIG:55
for x be Real st x > 0 holds
Arg [**0,x**] = PI/2;
theorem :: COMPTRIG:56
for x be Real st x < 0 holds
Arg [**0,x**] = 3/2*PI;
theorem :: COMPTRIG:57
Arg 1_(F_Complex) = 0;
theorem :: COMPTRIG:58
Arg i_FC = PI/2;
theorem :: COMPTRIG:59
for z be Element of F_Complex holds
Arg z in ].0,PI/2.[ iff Re z > 0 & Im z > 0;
theorem :: COMPTRIG:60
for z be Element of F_Complex holds
Arg z in ].PI/2,PI.[ iff Re z < 0 & Im z > 0;
theorem :: COMPTRIG:61
for z be Element of F_Complex holds
Arg z in ].PI,3/2*PI.[ iff Re z < 0 & Im z < 0;
theorem :: COMPTRIG:62
for z be Element of F_Complex holds
Arg z in ].3/2*PI,2*PI.[ iff Re z > 0 & Im z < 0;
theorem :: COMPTRIG:63
for z be Element of F_Complex st Im z > 0 holds
sin Arg z > 0;
theorem :: COMPTRIG:64
for z be Element of F_Complex st Im z < 0 holds
sin Arg z < 0;
theorem :: COMPTRIG:65
for z be Element of F_Complex st Im z >= 0 holds
sin Arg z >= 0;
theorem :: COMPTRIG:66
for z be Element of F_Complex st Im z <= 0 holds
sin Arg z <= 0;
theorem :: COMPTRIG:67
for z be Element of F_Complex st Re z > 0 holds
cos Arg z > 0;
theorem :: COMPTRIG:68
for z be Element of F_Complex st Re z < 0 holds
cos Arg z < 0;
theorem :: COMPTRIG:69
for z be Element of F_Complex st Re z >= 0 holds
cos Arg z >= 0;
theorem :: COMPTRIG:70
for z be Element of F_Complex st Re z <= 0 &
z <> 0.F_Complex holds
cos Arg z <= 0;
theorem :: COMPTRIG:71
for n be Nat holds
(power F_Complex).([**cos x,sin x**],n) = [**cos (n*x),sin (n*x)**];
theorem :: COMPTRIG:72
for z be Element of F_Complex
for n be Nat st z <> 0.F_Complex or n <> 0 holds
(power F_Complex).(z,n) =
[**(|.z.| to_power n)*cos (n*Arg z),(|.z.| to_power n)*sin (n*Arg z)**];
theorem :: COMPTRIG:73
for n,k be Nat st n <> 0 holds
(power F_Complex).([**cos((x+2*PI*k)/n),sin((x+2*PI*k)/n)**],n) =
[**cos x,sin x**];
theorem :: COMPTRIG:74
for z be Element of F_Complex
for n,k be Nat st n <> 0 holds
z = (power F_Complex).([**(n-root |.z.|)*cos((Arg z+2*PI*k)/n),
(n-root |.z.|)*sin((Arg z+2*PI*k)/n)**],n);
definition
let x be Element of F_Complex;
let n be non empty Nat;
mode CRoot of n,x -> Element of F_Complex means
:: COMPTRIG:def 2
(power F_Complex).(it,n) = x;
end;
theorem :: COMPTRIG:75
for x be Element of F_Complex
for n be non empty Nat
for k be Nat holds
[**(n-root |.x.|)*cos((Arg x+2*PI*k)/n),
(n-root |.x.|)*sin((Arg x+2*PI*k)/n)**] is CRoot of n,x;
theorem :: COMPTRIG:76
for x be Element of F_Complex
for v be CRoot of 1,x holds
v = x;
theorem :: COMPTRIG:77
for n be non empty Nat
for v be CRoot of n,0.F_Complex holds
v = 0.F_Complex;
theorem :: COMPTRIG:78
for n be non empty Nat
for x be Element of F_Complex
for v be CRoot of n,x st v = 0.F_Complex holds
x = 0.F_Complex;
Back to top