Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Michal Muzalewski
- Received June 20, 1990
- MML identifier: VECTSP_2
- [
Mizar article,
MML identifier index
]
environ
vocabulary VECTSP_1, RLVECT_1, LATTICES, ARYTM_1, FUNCSDOM, BINOP_1, RELAT_1,
ARYTM_3, FUNCT_1, BOOLE, MIDSP_1, FUNCT_3, VECTSP_2;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, FUNCT_2, BINOP_1, STRUCT_0,
RLVECT_1, VECTSP_1, FUNCSDOM, MIDSP_1, FUNCT_3;
constructors BINOP_1, VECTSP_1, MIDSP_1, FUNCT_3, MEMBERED, XBOOLE_0;
clusters VECTSP_1, STRUCT_0, RELSET_1, SUBSET_1, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: 1. RING
reserve FS for non empty doubleLoopStr;
reserve F for Field;
definition
let IT be non empty multLoopStr;
canceled;
attr IT is well-unital means
:: VECTSP_2:def 2
for x being Element of IT
holds x*(1_ IT) = x & (1_ IT)*x = x;
end;
definition
cluster well-unital -> left_unital right_unital (non empty multLoopStr);
cluster left_unital right_unital -> well-unital (non empty multLoopStr);
cluster strict Abelian add-associative right_zeroed right_complementable
well-unital distributive (non empty doubleLoopStr);
end;
theorem :: VECTSP_2:1
(for x,y,z being Scalar of FS holds
x+y = y+x &
(x+y)+z = x+(y+z) &
x+(0.FS) = x &
x+(-x) = 0.FS &
x*(1_ FS) = x & (1_ FS)*x = x &
(x*y)*z = x*(y*z) &
x*(y+z) = x*y+x*z & (y+z)*x = y*x+z*x)
iff FS is Ring;
:: 3. RING
definition
cluster strict Ring;
end;
:: 5. COMMUTATIVE RING
definition
cluster commutative Ring;
end;
definition
mode comRing is commutative Ring;
end;
definition
cluster strict comRing;
end;
definition let IT be non empty multLoopStr_0;
canceled 2;
attr IT is domRing-like means
:: VECTSP_2:def 5
for x,y being Element of IT holds x*y = 0.IT
implies x = 0.IT or y = 0.IT;
end;
definition
cluster strict non degenerated domRing-like comRing;
end;
definition
mode domRing is domRing-like non degenerated comRing;
end;
canceled 11;
theorem :: VECTSP_2:13
F is domRing;
definition
cluster non degenerated Field-like Ring;
end;
definition
mode Skew-Field is non degenerated Field-like Ring;
end;
definition
cluster strict Skew-Field;
end;
reserve R for Ring;
canceled 2;
theorem :: VECTSP_2:16
(for x being Scalar of R holds
(x <> 0.R implies ex y be Scalar of R
st x*y = 1_ R) & 0.R <> 1_ R )
implies R is Skew-Field;
:: 10. AXIOMS OF SKEW-FIELD
canceled 2;
theorem :: VECTSP_2:19
F is Skew-Field;
definition
cluster commutative left_unital -> well-unital (non empty multLoopStr);
cluster commutative right_unital -> well-unital (non empty multLoopStr);
end;
:: 11. SOME PROPERTIES OF RING
reserve R for Abelian add-associative right_zeroed right_complementable
(non empty LoopStr),
x, y, z for Scalar of R;
canceled 2;
theorem :: VECTSP_2:22
(x + y = z iff x = z - y) & (x + y = z iff y = z - x);
canceled 11;
theorem :: VECTSP_2:34
for R being add-associative right_zeroed
right_complementable (non empty LoopStr),
x being Element of R holds
x=0.R iff -x=0.R;
canceled 3;
theorem :: VECTSP_2:38
for R being add-associative right_zeroed Abelian
right_complementable (non empty LoopStr)
for x,y being Element of R
ex z being Element of R st x = y+z & x = z+y;
:: 12. SOME PROPERTIES OF SKEW-FIELD
reserve SF for Skew-Field,
x, y, z for Scalar of SF;
theorem :: VECTSP_2:39
for F being add-associative right_zeroed right_complementable
distributive non degenerated (non empty doubleLoopStr)
for x, y being Element of F holds
x*y = 1_ F implies x<>0.F & y<>0.F;
theorem :: VECTSP_2:40
for SF being non degenerated Field-like associative
Abelian add-associative right_zeroed right_complementable
well-unital distributive (non empty doubleLoopStr),
x being Element of SF holds
x<>0.SF implies ex y being Element of SF st y*x = 1_ SF;
theorem :: VECTSP_2:41
x*y = 1_ SF implies y*x = 1_ SF;
theorem :: VECTSP_2:42
for SF being non degenerated Field-like associative
Abelian add-associative right_zeroed right_complementable
well-unital distributive (non empty doubleLoopStr),
x,y,z being Element of SF holds
x * y = x * z & x<>0.SF implies y = z;
definition let SF be non degenerated Field-like associative
Abelian add-associative right_zeroed right_complementable
well-unital distributive (non empty doubleLoopStr),
x be Element of SF;
assume x<>0.SF;
canceled;
func x" -> Scalar of SF
means
:: VECTSP_2:def 7
x * it = 1_ SF;
end;
definition let SF,x,y;
func x/y -> Scalar of SF
equals
:: VECTSP_2:def 8
x * y";
end;
theorem :: VECTSP_2:43
x<>0.SF implies x * x" =1_ SF & x" * x =1_ SF;
canceled;
theorem :: VECTSP_2:45
x*y = 1_ SF implies x = y" & y = x";
theorem :: VECTSP_2:46
x<>0.SF & y<>0.SF implies x"*y"=(y*x)";
theorem :: VECTSP_2:47
x*y = 0.SF implies x = 0.SF or y = 0.SF;
theorem :: VECTSP_2:48
x<>0.SF implies x"<>0.SF;
theorem :: VECTSP_2:49
x<>0.SF implies x""=x;
theorem :: VECTSP_2:50
x<>0.SF implies ((1_ SF)/x=x" & (1_ SF)/x"=x);
theorem :: VECTSP_2:51
x<>0.SF implies x*((1_ SF)/x)=1_ SF & ((1_ SF)/x)*x=1_ SF;
theorem :: VECTSP_2:52
x<>0.SF implies x/x = 1_ SF;
theorem :: VECTSP_2:53
y<>0.SF & z<>0.SF implies x/y=(x*z)/(y*z);
theorem :: VECTSP_2:54
y<>0.SF implies (-x/y=(-x)/y & x/(-y)=-x/y);
theorem :: VECTSP_2:55
z<>0.SF implies ( x/z + y/z = (x+y)/z ) & ( x/z - y/z = (x-y)/z );
theorem :: VECTSP_2:56
y<>0.SF & z<>0.SF implies x/(y/z)=(x*z)/y;
theorem :: VECTSP_2:57
y<>0.SF implies x/y*y=x;
:: 13. LEFT-, RIGHT-, AND BI-MODULE STRUCTURE
definition let FS be 1-sorted;
struct(LoopStr) RightModStr over FS (# carrier -> set,
add -> BinOp of the carrier,
Zero -> Element of the carrier,
rmult -> Function of [: the carrier, the carrier of FS:], the carrier #);
end;
definition let FS be 1-sorted;
cluster non empty RightModStr over FS;
end;
definition let FS be 1-sorted;
let A be non empty set, a be BinOp of A,
Z be Element of A, r be Function of [:A,the carrier of FS:],A;
cluster RightModStr(#A,a,Z,r#) -> non empty;
end;
definition let FS; let RMS be non empty RightModStr over FS;
mode Scalar of RMS is Element of FS;
mode Vector of RMS is Element of RMS;
end;
definition let FS1,FS2 be 1-sorted;
struct (VectSpStr over FS1, RightModStr over FS2) BiModStr over FS1,FS2
(# carrier -> set,
add -> BinOp of the carrier,
Zero -> Element of the carrier,
lmult -> Function of [:the carrier of FS1, the carrier:], the carrier,
rmult -> Function of [:the carrier, the carrier of FS2:], the carrier #);
end;
definition let FS1,FS2 be 1-sorted;
cluster non empty BiModStr over FS1,FS2;
end;
definition let FS1,FS2 be 1-sorted;
let A be non empty set, a be BinOp of A,
Z be Element of A, l be Function of [:the carrier of FS1,A:],A,
r be Function of [:A,the carrier of FS2:],A;
cluster BiModStr(#A,a,Z,l,r#) -> non empty;
end;
:: 14. PREDE LEFT-MODULE OF RING
reserve R, R1, R2 for Ring;
definition let R be Abelian add-associative right_zeroed
right_complementable (non empty LoopStr);
func AbGr R -> strict AbGroup equals
:: VECTSP_2:def 9
LoopStr (#the carrier of R, the add of R, the Zero of R#);
end;
definition let R;
cluster Abelian add-associative right_zeroed right_complementable
strict (non empty VectSpStr over R);
end;
definition let R;
canceled;
func LeftModule R -> Abelian add-associative right_zeroed right_complementable
strict (non empty VectSpStr over R) equals
:: VECTSP_2:def 11
VectSpStr (# the carrier of R, the add of R,
the Zero of R, the mult of R #);
end;
definition let R;
cluster Abelian add-associative right_zeroed right_complementable
strict (non empty RightModStr over R);
end;
definition let R;
canceled 2;
func RightModule R -> Abelian add-associative right_zeroed
right_complementable strict (non empty RightModStr over R) equals
:: VECTSP_2:def 14
RightModStr (# the carrier of R, the add of R,
the Zero of R, the mult of R #);
end;
definition let R be non empty 1-sorted, V be non empty RightModStr over R;
let x be Element of R;
let v be Element of V;
func v*x -> Element of V equals
:: VECTSP_2:def 15
(the rmult of V).(v,x);
end;
definition
canceled;
func op1 -> UnOp of {{}} means
:: VECTSP_2:def 17
not contradiction;
func op0 -> Element of {{}} means
:: VECTSP_2:def 18
not contradiction;
end;
definition let R1,R2;
cluster Abelian add-associative right_zeroed right_complementable
strict (non empty BiModStr over R1,R2);
end;
definition let R1,R2;
canceled 2;
func BiModule(R1,R2) -> Abelian add-associative right_zeroed
right_complementable strict (non empty BiModStr over R1,R2) equals
:: VECTSP_2:def 21
BiModStr (# {{}},op2,op0,pr2 (the carrier of R1, {{}}),
pr1 ({{}},the carrier of R2) #);
end;
canceled 13;
theorem :: VECTSP_2:71
for x,y being Scalar of R
for v,w being Vector of LeftModule R holds
x*(v+w) = x*v+x*w &
(x+y)*v = x*v+y*v &
(x*y)*v = x*(y*v) &
(1_ R)*v = v;
definition let R;
cluster VectSp-like Abelian add-associative right_zeroed right_complementable
strict (non empty VectSpStr over R);
end;
definition let R;
mode LeftMod of R is Abelian add-associative right_zeroed right_complementable
VectSp-like (non empty VectSpStr over R);
end;
definition let R;
cluster LeftModule R -> Abelian add-associative right_zeroed
right_complementable strict VectSp-like;
end;
:: 18. AXIOMS OF LEFT MODULE OF RING
canceled 5;
theorem :: VECTSP_2:77
for x,y being Scalar of R
for v,w being Vector of RightModule R holds
(v+w)*x = v*x+w*x &
v*(x+y) = v*x+v*y &
v*(y*x) = (v*y)*x &
v*(1_ R) = v;
definition let R be non empty doubleLoopStr;
let IT be non empty RightModStr over R;
canceled;
attr IT is RightMod-like means
:: VECTSP_2:def 23
for x,y being Scalar of R
for v,w being Vector of IT holds
(v+w)*x = v*x+w*x &
v*(x+y) = v*x+v*y &
v*(y*x) = (v*y)*x &
v*(1_ R) = v;
end;
definition let R;
cluster Abelian add-associative right_zeroed right_complementable
RightMod-like strict (non empty RightModStr over R);
end;
definition let R;
mode RightMod of R is Abelian add-associative right_zeroed
right_complementable RightMod-like (non empty RightModStr over R);
end;
definition let R;
cluster RightModule R -> Abelian add-associative right_zeroed
right_complementable RightMod-like;
end;
definition let R1,R2;
let IT be non empty BiModStr over R1,R2;
attr IT is BiMod-like means
:: VECTSP_2:def 24
for x being Scalar of R1 for p being Scalar of R2
for v being Vector of IT holds
x*(v*p) = (x*v)*p;
end;
definition let R1,R2;
cluster Abelian add-associative right_zeroed right_complementable
RightMod-like VectSp-like BiMod-like strict (non empty BiModStr over R1,R2);
end;
definition let R1,R2;
mode BiMod of R1,R2 is Abelian add-associative right_zeroed
right_complementable
RightMod-like VectSp-like BiMod-like (non empty BiModStr over R1,R2);
end;
canceled 5;
theorem :: VECTSP_2:83
for V being non empty BiModStr over R1,R2 holds
(for x,y being Scalar of R1 for p,q being Scalar of R2
for v,w being Vector of V holds
x*(v+w) = x*v+x*w &
(x+y)*v = x*v+y*v &
(x*y)*v = x*(y*v) &
(1_ R1)*v = v &
(v+w)*p = v*p+w*p &
v*(p+q) = v*p+v*q &
v*(q*p) = (v*q)*p &
v*(1_ R2) = v &
x*(v*p) = (x*v)*p)
iff V is RightMod-like VectSp-like BiMod-like;
theorem :: VECTSP_2:84
BiModule(R1,R2) is BiMod of R1,R2;
definition let R1,R2;
cluster BiModule(R1,R2) -> Abelian add-associative right_zeroed
right_complementable RightMod-like VectSp-like BiMod-like;
end;
Back to top