environ vocabulary COMPLEX1, ARYTM, VECTSP_1, RLVECT_1, COMPLSP1, BINOP_1, LATTICES, FUNCT_1, ARYTM_1, RELAT_1, ARYTM_3, ABSVALUE, COMPLFLD, XCMPLX_0; notation TARSKI, XBOOLE_0, SUBSET_1, STRUCT_0, ORDINAL1, NUMBERS, ARYTM_0, XCMPLX_0, XREAL_0, REAL_1, BINOP_1, ABSVALUE, RLVECT_1, VECTSP_1, COMPLSP1, COMPLEX1, FUNCT_1; constructors REAL_1, ABSVALUE, VECTSP_1, COMPLSP1, DOMAIN_1, BINOP_1, COMPLEX1, MEMBERED, ARYTM_0, ARYTM_3, FUNCT_4; clusters VECTSP_1, RELSET_1, XREAL_0, COMPLEX1, MEMBERED; requirements NUMERALS, SUBSET, BOOLE, ARITHM; begin canceled; theorem :: COMPLFLD:2 for x1,y1,x2,y2 be Element of REAL holds [*x1,y1*] + [*x2,y2*] = [*x1 + x2,y1 + y2*]; definition func F_Complex -> strict doubleLoopStr means :: COMPLFLD:def 1 the carrier of it = COMPLEX & the add of it = addcomplex & the mult of it = multcomplex & the unity of it = 1r & the Zero of it = 0c; end; definition cluster F_Complex -> non empty; end; definition cluster -> complex Element of F_Complex; end; definition cluster F_Complex -> add-associative right_zeroed right_complementable Abelian commutative associative left_unital right_unital distributive Field-like non degenerated; end; theorem :: COMPLFLD:3 for x1,y1 be Element of F_Complex for x2,y2 be Element of COMPLEX st x1 = x2 & y1 = y2 holds x1 + y1 = x2 + y2; theorem :: COMPLFLD:4 for x1 be Element of F_Complex for x2 be Element of COMPLEX st x1 = x2 holds - x1 = - x2; theorem :: COMPLFLD:5 for x1,y1 be Element of F_Complex for x2,y2 be Element of COMPLEX st x1 = x2 & y1 = y2 holds x1 - y1 = x2 - y2; theorem :: COMPLFLD:6 for x1,y1 be Element of F_Complex for x2,y2 be Element of COMPLEX st x1 = x2 & y1 = y2 holds x1 * y1 = x2 * y2; theorem :: COMPLFLD:7 for x1 be Element of F_Complex for x2 be Element of COMPLEX st x1 = x2 & x1 <> 0.F_Complex holds x1" = x2"; theorem :: COMPLFLD:8 for x1,y1 be Element of F_Complex for x2,y2 be Element of COMPLEX st x1 = x2 & y1 = y2 & y1 <> 0.F_Complex holds x1/y1 = x2/y2; theorem :: COMPLFLD:9 0.F_Complex = 0c; theorem :: COMPLFLD:10 1_ F_Complex = 1r; theorem :: COMPLFLD:11 1_ F_Complex + 1_ F_Complex <> 0.F_Complex; definition let z be Element of F_Complex; func z*' -> Element of F_Complex means :: COMPLFLD:def 2 ex z' be Element of COMPLEX st z = z' & it = z'*'; end; definition let z be Element of F_Complex; func |.z.| -> real number means :: COMPLFLD:def 3 ex z' be Element of COMPLEX st z = z' & it = |.z'.|; end; definition let z be Element of F_Complex; redefine func |.z.| -> Element of REAL; end; theorem :: COMPLFLD:12 for x1 be Element of F_Complex for x2 be Element of COMPLEX st x1 = x2 holds x1*' = x2*'; reserve z,z1,z2,z3,z4 for Element of F_Complex; canceled 16; theorem :: COMPLFLD:29 -z = (-1_ F_Complex) * z; canceled 5; theorem :: COMPLFLD:35 z1 - -z2 = z1 + z2; canceled 5; theorem :: COMPLFLD:41 z1 = z1 + z - z; theorem :: COMPLFLD:42 z1 = z1 - z + z; canceled 4; theorem :: COMPLFLD:47 z1 <> 0.F_Complex & z2 <> 0.F_Complex & z1" = z2" implies z1 = z2; theorem :: COMPLFLD:48 z2 <> 0.F_Complex & (z1 * z2 = the unity of F_Complex or z2 * z1 = the unity of F_Complex) implies z1 = z2"; theorem :: COMPLFLD:49 z2 <> 0.F_Complex & (z1 * z2 = z3 or z2 * z1 = z3) implies z1 = z3 * z2" & z1 = z2" * z3; theorem :: COMPLFLD:50 (the unity of F_Complex)" = the unity of F_Complex; theorem :: COMPLFLD:51 z1 <> 0.F_Complex & z2 <> 0.F_Complex implies (z1 * z2)" = z1" * z2"; canceled; theorem :: COMPLFLD:53 z <> 0.F_Complex implies (-z)" = -(z"); canceled; theorem :: COMPLFLD:55 z1 <> 0.F_Complex & z2 <> 0.F_Complex implies z1" + z2" = (z1 + z2) * (z1 * z2)"; theorem :: COMPLFLD:56 z1 <> 0.F_Complex & z2 <> 0.F_Complex implies z1" - z2" = (z2 - z1) * (z1 * z2)"; canceled; theorem :: COMPLFLD:58 z <> 0.F_Complex implies z" = (the unity of F_Complex) / z; theorem :: COMPLFLD:59 z / (the unity of F_Complex) = z; theorem :: COMPLFLD:60 z <> 0.F_Complex implies z / z = the unity of F_Complex; theorem :: COMPLFLD:61 z <> 0.F_Complex implies (0.F_Complex) / z = 0.F_Complex; theorem :: COMPLFLD:62 z2 <> 0.F_Complex & z1 / z2 = 0.F_Complex implies z1 = 0.F_Complex; theorem :: COMPLFLD:63 z2 <> 0.F_Complex & z4 <> 0.F_Complex implies (z1 / z2) * (z3 / z4) = (z1 * z3) / (z2 * z4); theorem :: COMPLFLD:64 z2 <> 0.F_Complex implies z * (z1 / z2) = (z * z1) / z2; theorem :: COMPLFLD:65 z2 <> 0.F_Complex & z1 / z2 = the unity of F_Complex implies z1 = z2; theorem :: COMPLFLD:66 z <> 0.F_Complex implies z1 = (z1 * z) / z; theorem :: COMPLFLD:67 z1 <> 0.F_Complex & z2 <> 0.F_Complex implies (z1 / z2)" = z2 / z1; theorem :: COMPLFLD:68 z1 <> 0.F_Complex & z2 <> 0.F_Complex implies (z1" / z2") = z2 / z1; theorem :: COMPLFLD:69 z2 <> 0.F_Complex implies z1 / z2" = z1 * z2; theorem :: COMPLFLD:70 z1 <> 0.F_Complex & z2 <> 0.F_Complex implies z1" / z2 = (z1 * z2)"; theorem :: COMPLFLD:71 z1 <> 0.F_Complex & z2 <> 0.F_Complex implies z1"* (z / z2) = z / (z1 * z2); theorem :: COMPLFLD:72 z <> 0.F_Complex & z2 <> 0.F_Complex implies (z1 / z2) = (z1 * z) / (z2 * z) & (z1 / z2) = (z * z1) / (z * z2); theorem :: COMPLFLD:73 z2 <> 0.F_Complex & z3 <> 0.F_Complex implies z1 / (z2 * z3) = z1 / z2 / z3; theorem :: COMPLFLD:74 z2 <> 0.F_Complex & z3 <> 0.F_Complex implies (z1 * z3) / z2 = z1 / (z2 / z3); theorem :: COMPLFLD:75 z2 <> 0.F_Complex & z3 <> 0.F_Complex & z4 <> 0.F_Complex implies (z1 / z2) / (z3 / z4) = (z1 * z4) / (z2 * z3); theorem :: COMPLFLD:76 z2 <> 0.F_Complex & z4 <> 0.F_Complex implies z1 / z2 + z3 / z4 = (z1 * z4 + z3 * z2) / (z2 * z4); theorem :: COMPLFLD:77 z <> 0.F_Complex implies z1 / z + z2 / z = (z1 + z2) / z; theorem :: COMPLFLD:78 z2 <> 0.F_Complex implies -(z1 / z2) = (-z1) / z2 & -(z1 / z2) = z1 / (-z2); theorem :: COMPLFLD:79 z2 <> 0.F_Complex implies z1 / z2 = (-z1) / (-z2); theorem :: COMPLFLD:80 z2 <> 0.F_Complex & z4 <> 0.F_Complex implies z1 / z2 - z3 / z4 = (z1 * z4 - z3 * z2) / (z2 * z4); theorem :: COMPLFLD:81 z <> 0.F_Complex implies z1 / z - z2 / z = (z1 - z2) / z; theorem :: COMPLFLD:82 z2 <> 0.F_Complex & (z1 * z2 = z3 or z2 * z1 = z3) implies z1 = z3 / z2; theorem :: COMPLFLD:83 (the Zero of F_Complex)*' = the Zero of F_Complex; theorem :: COMPLFLD:84 z*' = the Zero of F_Complex implies z = the Zero of F_Complex; theorem :: COMPLFLD:85 (the unity of F_Complex)*' = the unity of F_Complex; theorem :: COMPLFLD:86 z*'*' = z; theorem :: COMPLFLD:87 (z1 + z2)*' = z1*' + z2*'; theorem :: COMPLFLD:88 (-z)*' = -(z*'); theorem :: COMPLFLD:89 (z1 - z2)*' = z1*' - z2*'; theorem :: COMPLFLD:90 (z1 * z2)*' = z1*' * z2*'; theorem :: COMPLFLD:91 z <> the Zero of F_Complex implies z"*' = z*'"; theorem :: COMPLFLD:92 z2 <> the Zero of F_Complex implies (z1 / z2)*' = (z1*') / (z2*'); theorem :: COMPLFLD:93 |.the Zero of F_Complex.| = 0; theorem :: COMPLFLD:94 |.z.| = 0 implies z = 0.F_Complex; theorem :: COMPLFLD:95 0 <= |.z.|; theorem :: COMPLFLD:96 z <> 0.F_Complex iff 0 < |.z.|; theorem :: COMPLFLD:97 |.the unity of F_Complex.| = 1; theorem :: COMPLFLD:98 |.-z.| = |.z.|; theorem :: COMPLFLD:99 |.z*'.| = |.z.|; theorem :: COMPLFLD:100 |.z1 + z2.| <= |.z1.| + |.z2.|; theorem :: COMPLFLD:101 |.z1 - z2.| <= |.z1.| + |.z2.|; theorem :: COMPLFLD:102 |.z1.| - |.z2.| <= |.z1 + z2.|; theorem :: COMPLFLD:103 |.z1.| - |.z2.| <= |.z1 - z2.|; theorem :: COMPLFLD:104 |.z1 - z2.| = |.z2 - z1.|; theorem :: COMPLFLD:105 |.z1 - z2.| = 0 iff z1 = z2; theorem :: COMPLFLD:106 z1 <> z2 iff 0 < |.z1 - z2.|; theorem :: COMPLFLD:107 |.z1 - z2.| <= |.z1 - z.| + |.z - z2.|; theorem :: COMPLFLD:108 abs(|.z1.| - |.z2.|) <= |.z1 - z2.|; theorem :: COMPLFLD:109 |.z1*z2.| = |.z1.|*|.z2.|; theorem :: COMPLFLD:110 z <> the Zero of F_Complex implies |.z".| = |.z.|"; theorem :: COMPLFLD:111 z2 <> the Zero of F_Complex implies |.z1.| / |.z2.| = |.z1 / z2.|; theorem :: COMPLFLD:112 |.z * z.| = |.z * z*'.|;