Journal of Formalized Mathematics
Volume 7, 1995
University of Bialystok
Copyright (c) 1995 Association of Mizar Users

The abstract of the Mizar article:

More on Segments on a Go-Board

by
Andrzej Trybulec

Received October 17, 1995

MML identifier: GOBOARD8
[ Mizar article, MML identifier index ]


environ

 vocabulary PRE_TOPC, EUCLID, SEQM_3, GOBOARD5, FINSEQ_1, GOBOARD2, TREES_1,
      TOPREAL1, ARYTM_3, BOOLE, TOPS_1, ARYTM_1, MCART_1, GOBOARD1, RELAT_1,
      MATRIX_1, ABSVALUE, FINSEQ_4;
 notation TARSKI, XBOOLE_0, XREAL_0, REAL_1, NAT_1, ABSVALUE, BINARITH,
      FINSEQ_1, FINSEQ_4, MATRIX_1, STRUCT_0, PRE_TOPC, TOPS_1, EUCLID,
      TOPREAL1, GOBOARD1, GOBOARD2, GOBOARD5;
 constructors TOPS_1, GROUP_1, GOBOARD5, GOBOARD2, SEQM_3, REAL_1, BINARITH,
      FINSEQ_4, MEMBERED;
 clusters STRUCT_0, GOBOARD5, RELSET_1, GOBOARD2, EUCLID, ARYTM_3, MEMBERED;
 requirements REAL, NUMERALS, SUBSET, ARITHM;


begin

reserve i,j,k,i1,j1 for Nat,
        p for Point of TOP-REAL 2,
        x for set;

reserve f for non constant standard special_circular_sequence;

theorem :: GOBOARD8:1
    for k st 1 <= k & k+2 <= len f
  for i,j st 1 <= i & i+1 <= len GoB f & 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i+1,j) & f/.(k+2) = (GoB f)*(i+1,j+2) or
      f/.(k+2) = (GoB f)*(i+1,j) & f/.k = (GoB f)*(i+1,j+2))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i,j+1)+(GoB f)*(i+1,j+2))) misses L~f;

theorem :: GOBOARD8:2
    for k st 1 <= k & k+2 <= len f
  for i,j st 1 <= i & i+2 <= len GoB f & 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i+2,j+1) & f/.(k+2) = (GoB f)*(i+1,j+2) or
      f/.(k+2) = (GoB f)*(i+2,j+1) & f/.k = (GoB f)*(i+1,j+2))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i,j+1)+(GoB f)*(i+1,j+2))) misses L~f;

theorem :: GOBOARD8:3
    for k st 1 <= k & k+2 <= len f
  for i,j st 1 <= i & i+2 <= len GoB f & 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i+2,j+1) & f/.(k+2) = (GoB f)*(i+1,j) or
      f/.(k+2) = (GoB f)*(i+2,j+1) & f/.k = (GoB f)*(i+1,j))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i,j+1)+(GoB f)*(i+1,j+2))) misses L~f;

theorem :: GOBOARD8:4
    for k st 1 <= k & k+2 <= len f
  for i,j st 1 <= i & i+1 <= len GoB f & 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(i,j+1) &
     (f/.k = (GoB f)*(i,j) & f/.(k+2) = (GoB f)*(i,j+2) or
      f/.(k+2) = (GoB f)*(i,j) & f/.k = (GoB f)*(i,j+2))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i,j+1)+(GoB f)*(i+1,j+2))) misses L~f;

theorem :: GOBOARD8:5
    for k st 1 <= k & k+2 <= len f
  for i,j st 1 <= i & i+2 <= len GoB f & 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i,j+1) & f/.(k+2) = (GoB f)*(i+1,j+2) or
      f/.(k+2) = (GoB f)*(i,j+1) & f/.k = (GoB f)*(i+1,j+2))
    holds
     LSeg(1/2*((GoB f)*(i+1,j)+(GoB f)*(i+2,j+1)),
          1/2*((GoB f)*(i+1,j+1)+(GoB f)*(i+2,j+2))) misses L~f;

theorem :: GOBOARD8:6
    for k st 1 <= k & k+2 <= len f
  for i,j st 1 <= i & i+2 <= len GoB f & 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i,j+1) & f/.(k+2) = (GoB f)*(i+1,j) or
      f/.(k+2) = (GoB f)*(i,j+1) & f/.k = (GoB f)*(i+1,j))
    holds
     LSeg(1/2*((GoB f)*(i+1,j)+(GoB f)*(i+2,j+1)),
          1/2*((GoB f)*(i+1,j+1)+(GoB f)*(i+2,j+2))) misses L~f;

theorem :: GOBOARD8:7
    for k st 1 <= k & k+2 <= len f
  for i st 1 <= i & i+2 <= len GoB f &
    f/.(k+1) = (GoB f)*(i+1,1) &
    (f/.k = (GoB f)*(i+2,1) & f/.(k+2) = (GoB f)*(i+1,2) or
     f/.(k+2) = (GoB f)*(i+2,1) & f/.k = (GoB f)*(i+1,2))
    holds
     LSeg(1/2*((GoB f)*(i,1)+(GoB f)*(i+1,1))- |[0,1]|,
          1/2*((GoB f)*(i,1)+(GoB f)*(i+1,2))) misses L~f;

theorem :: GOBOARD8:8
    for k st 1 <= k & k+2 <= len f
  for i st 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,1) &
     (f/.k = (GoB f)*(i,1) & f/.(k+2) = (GoB f)*(i+1,2) or
      f/.(k+2) = (GoB f)*(i,1) & f/.k = (GoB f)*(i+1,2))
    holds
     LSeg(1/2*((GoB f)*(i+1,1)+(GoB f)*(i+2,1))- |[0,1]|,
          1/2*((GoB f)*(i+1,1)+(GoB f)*(i+2,2))) misses L~f;

theorem :: GOBOARD8:9
    for k st 1 <= k & k+2 <= len f
  for i st 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,width GoB f) &
     (f/.k = (GoB f)*(i+2,width GoB f)
      & f/.(k+2) = (GoB f)*(i+1,width GoB f -' 1) or
      f/.(k+2) = (GoB f)*(i+2,width GoB f)
      & f/.k = (GoB f)*(i+1,width GoB f -' 1))
    holds
     LSeg(1/2*((GoB f)*(i,width GoB f -' 1)+(GoB f)*(i+1,width GoB f)),
          1/2*((GoB f)*(i,width GoB f)+(GoB f)*(i+1,width GoB f))+|[0,1]|)
                       misses L~f;

theorem :: GOBOARD8:10
    for k st 1 <= k & k+2 <= len f
  for i st 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,width GoB f) &
     (f/.k = (GoB f)*(i,width GoB f) &
       f/.(k+2) = (GoB f)*(i+1,width GoB f -' 1) or
      f/.(k+2) = (GoB f)*(i,width GoB f) &
       f/.k = (GoB f)*(i+1,width GoB f -' 1))
    holds
     LSeg(1/2*((GoB f)*(i+1,width GoB f -' 1)+(GoB f)*(i+2,width GoB f)),
          1/2*((GoB f)*(i+1,width GoB f)+(GoB f)*(i+2,width GoB f))+|[0,1]|)
        misses L~f;

theorem :: GOBOARD8:11
    for k st 1 <= k & k+2 <= len f
  for i,j st 1 <= j & j+1 <= width GoB f & 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i,j+1) & f/.(k+2) = (GoB f)*(i+2,j+1) or
      f/.(k+2) = (GoB f)*(i,j+1) & f/.k = (GoB f)*(i+2,j+1))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i+1,j)+(GoB f)*(i+2,j+1))) misses L~f;

theorem :: GOBOARD8:12
    for k st 1 <= k & k+2 <= len f
  for j,i st 1 <= j & j+2 <= width GoB f & 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i+1,j+2) & f/.(k+2) = (GoB f)*(i+2,j+1) or
      f/.(k+2) = (GoB f)*(i+1,j+2) & f/.k = (GoB f)*(i+2,j+1))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i+1,j)+(GoB f)*(i+2,j+1))) misses L~f;

theorem :: GOBOARD8:13
    for k st 1 <= k & k+2 <= len f
  for j,i st 1 <= j & j+2 <= width GoB f & 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i+1,j+2) & f/.(k+2) = (GoB f)*(i,j+1) or
      f/.(k+2) = (GoB f)*(i+1,j+2) & f/.k = (GoB f)*(i,j+1))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i+1,j)+(GoB f)*(i+2,j+1))) misses L~f;

theorem :: GOBOARD8:14
    for k st 1 <= k & k+2 <= len f
  for j,i st 1 <= j & j+1 <= width GoB f & 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,j) &
     (f/.k = (GoB f)*(i,j) & f/.(k+2) = (GoB f)*(i+2,j) or
      f/.(k+2) = (GoB f)*(i,j) & f/.k = (GoB f)*(i+2,j))
    holds
     LSeg(1/2*((GoB f)*(i,j)+(GoB f)*(i+1,j+1)),
          1/2*((GoB f)*(i+1,j)+(GoB f)*(i+2,j+1))) misses L~f;

theorem :: GOBOARD8:15
    for k st 1 <= k & k+2 <= len f
  for j,i st 1 <= j & j+2 <= width GoB f & 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i+1,j) & f/.(k+2) = (GoB f)*(i+2,j+1) or
      f/.(k+2) = (GoB f)*(i+1,j) & f/.k = (GoB f)*(i+2,j+1))
    holds
     LSeg(1/2*((GoB f)*(i,j+1)+(GoB f)*(i+1,j+2)),
          1/2*((GoB f)*(i+1,j+1)+(GoB f)*(i+2,j+2))) misses L~f;

theorem :: GOBOARD8:16
    for k st 1 <= k & k+2 <= len f
  for j,i st 1 <= j & j+2 <= width GoB f & 1 <= i & i+2 <= len GoB f &
     f/.(k+1) = (GoB f)*(i+1,j+1) &
     (f/.k = (GoB f)*(i+1,j) & f/.(k+2) = (GoB f)*(i,j+1) or
      f/.(k+2) = (GoB f)*(i+1,j) & f/.k = (GoB f)*(i,j+1))
    holds
     LSeg(1/2*((GoB f)*(i,j+1)+(GoB f)*(i+1,j+2)),
          1/2*((GoB f)*(i+1,j+1)+(GoB f)*(i+2,j+2))) misses L~f;

theorem :: GOBOARD8:17
    for k st 1 <= k & k+2 <= len f
  for j st 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(1,j+1) &
     (f/.k = (GoB f)*(1,j+2) & f/.(k+2) = (GoB f)*(2,j+1) or
      f/.(k+2) = (GoB f)*(1,j+2) & f/.k = (GoB f)*(2,j+1))
    holds
     LSeg(1/2*((GoB f)*(1,j)+(GoB f)*(1,j+1))- |[1,0]|,
          1/2*((GoB f)*(1,j)+(GoB f)*(2,j+1))) misses L~f;

theorem :: GOBOARD8:18
    for k st 1 <= k & k+2 <= len f
  for j st 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(1,j+1) &
     (f/.k = (GoB f)*(1,j) & f/.(k+2) = (GoB f)*(2,j+1) or
      f/.(k+2) = (GoB f)*(1,j) & f/.k = (GoB f)*(2,j+1))
    holds
     LSeg(1/2*((GoB f)*(1,j+1)+(GoB f)*(1,j+2))- |[1,0]|,
          1/2*((GoB f)*(1,j+1)+(GoB f)*(2,j+2))) misses L~f;

theorem :: GOBOARD8:19
    for k st 1 <= k & k+2 <= len f
  for j st 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(len GoB f,j+1) &
     (f/.k = (GoB f)*(len GoB f,j+2)
        & f/.(k+2) = (GoB f)*(len GoB f -' 1,j+1) or
      f/.(k+2) = (GoB f)*(len GoB f,j+2)
        & f/.k = (GoB f)*(len GoB f -' 1,j+1))
    holds
     LSeg(1/2*((GoB f)*(len GoB f -' 1,j)+(GoB f)*(len GoB f,j+1)),
          1/2*((GoB f)*(len GoB f,j)+(GoB f)*(len GoB f,j+1))+|[1,0]|)
                       misses L~f;

theorem :: GOBOARD8:20
    for k st 1 <= k & k+2 <= len f
  for j st 1 <= j & j+2 <= width GoB f &
     f/.(k+1) = (GoB f)*(len GoB f,j+1) &
     (f/.k = (GoB f)*(len GoB f,j) &
        f/.(k+2) = (GoB f)*(len GoB f -' 1,j+1) or
      f/.(k+2) = (GoB f)*(len GoB f,j) &
        f/.k = (GoB f)*(len GoB f -' 1,j+1))
    holds
     LSeg(1/2*((GoB f)*(len GoB f -' 1,j+1)+(GoB f)*(len GoB f,j+2)),
          1/2*((GoB f)*(len GoB f,j+1)+(GoB f)*(len GoB f,j+2))+|[1,0]|)
        misses L~f;

reserve P for Subset of TOP-REAL 2;

theorem :: GOBOARD8:21
 (for p st p in P holds p`1 < (GoB f)*(1,1)`1) implies P misses L~f;

theorem :: GOBOARD8:22
 (for p st p in P holds p`1 > (GoB f)*(len GoB f,1)`1) implies P misses L~f;

theorem :: GOBOARD8:23
 (for p st p in P holds p`2 < (GoB f)*(1,1)`2) implies P misses L~f;

theorem :: GOBOARD8:24
 (for p st p in P holds p`2 > (GoB f)*(1,width GoB f)`2) implies P misses L~f;

theorem :: GOBOARD8:25
    for i st 1 <= i & i+2 <= len GoB f holds
    LSeg(1/2*((GoB f)*(i,1)+(GoB f)*(i+1,1))- |[0,1]|,
         1/2*((GoB f)*(i+1,1)+(GoB f)*(i+2,1))- |[0,1]|) misses L~f;

theorem :: GOBOARD8:26
    LSeg((GoB f)*(1,1)- |[1,1]|,1/2*((GoB f)*(1,1)+(GoB f)*(2,1))- |[0,1]|)
       misses L~f;

theorem :: GOBOARD8:27
      LSeg(1/2*((GoB f)*(len GoB f -' 1,1)+(GoB f)*(len GoB f,1))- |[0,1]|,
         (GoB f)*(len GoB f,1)+|[1,-1]|) misses L~f;

theorem :: GOBOARD8:28
    for i st 1 <= i & i+2 <= len GoB f holds
    LSeg(1/2*((GoB f)*(i,width GoB f)+(GoB f)*(i+1,width GoB f))+|[0,1]|,
         1/2*((GoB f)*(i+1,width GoB f)+(GoB f)*(i+2,width GoB f))+|[0,1]|)
            misses L~f;

theorem :: GOBOARD8:29
    LSeg((GoB f)*(1,width GoB f)+|[-1,1]|,
       1/2*((GoB f)*(1,width GoB f)+(GoB f)*(2,width GoB f))+|[0,1]|)
       misses L~f;

theorem :: GOBOARD8:30
      LSeg(1/2*((GoB f)*(len GoB f -' 1,width GoB f)+
              (GoB f)*(len GoB f,width GoB f))+|[0,1]|,
         (GoB f)*(len GoB f,width GoB f)+|[1,1]|) misses L~f;

theorem :: GOBOARD8:31
    for j st 1 <= j & j+2 <= width GoB f holds
    LSeg(1/2*((GoB f)*(1,j)+(GoB f)*(1,j+1))- |[1,0]|,
         1/2*((GoB f)*(1,j+1)+(GoB f)*(1,j+2))- |[1,0]|) misses L~f;

theorem :: GOBOARD8:32
    LSeg((GoB f)*(1,1)- |[1,1]|,1/2*((GoB f)*(1,1)+(GoB f)*(1,2))- |[1,0]|)
       misses L~f;

theorem :: GOBOARD8:33
      LSeg(1/2*((GoB f)*(1,width GoB f -' 1)+(GoB f)*(1,width GoB f))- |[1,0]|,
         (GoB f)*(1,width GoB f)+|[-1,1]|) misses L~f;

theorem :: GOBOARD8:34
    for j st 1 <= j & j+2 <= width GoB f holds
    LSeg(1/2*((GoB f)*(len GoB f,j)+(GoB f)*(len GoB f,j+1))+|[1,0]|,
         1/2*((GoB f)*(len GoB f,j+1)+(GoB f)*(len GoB f,j+2))+|[1,0]|)
            misses L~f;

theorem :: GOBOARD8:35
    LSeg((GoB f)*(len GoB f,1)+|[1,-1]|,
       1/2*((GoB f)*(len GoB f,1)+(GoB f)*(len GoB f,2))+|[1,0]|)
       misses L~f;

theorem :: GOBOARD8:36
      LSeg(1/2*((GoB f)*(len GoB f,width GoB f -' 1)+
              (GoB f)*(len GoB f,width GoB f))+|[1,0]|,
         (GoB f)*(len GoB f,width GoB f)+|[1,1]|) misses L~f;

theorem :: GOBOARD8:37
   1 <= k & k+1 <= len f implies Int left_cell(f,k) misses L~f;

theorem :: GOBOARD8:38
   1 <= k & k+1 <= len f implies Int right_cell(f,k) misses L~f;


Back to top