Journal of Formalized Mathematics
Volume 15, 2003
University of Bialystok
Copyright (c) 2003
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec
- Received August 18, 2003
- MML identifier: JORDAN_A
- [
Mizar article,
MML identifier index
]
environ
vocabulary JORDAN_A, TOPREAL1, TBSP_1, PSCOMP_1, JORDAN3, JORDAN6, BOOLE,
RCOMP_1, FINSEQ_4, SQUARE_1, TOPREAL2, ARYTM_3, METRIC_1, GOBRD10,
PRE_TOPC, EUCLID, FINSEQ_1, GR_CY_1, RELAT_1, FUNCT_1, ARYTM, ARYTM_1,
WEIERSTR, PCOMPS_1, FINSET_1, REALSET1, TOPMETR, CONNSP_2, COMPLEX1,
SEQ_2, ORDINAL2, COMPTS_1, SUBSET_1, LATTICES;
notation TARSKI, XBOOLE_0, SUBSET_1, ZFMISC_1, ORDINAL2, ORDINAL1, NUMBERS,
XCMPLX_0, XREAL_0, REAL_1, NAT_1, FINSET_1, REALSET1, FUNCT_1, FUNCT_2,
BINOP_1, FINSEQ_1, FINSEQ_4, BINARITH, SQUARE_1, PRE_CIRC, SEQ_4,
RCOMP_1, TOPMETR, CONNSP_2, STRUCT_0, PRE_TOPC, TBSP_1, PCOMPS_1,
COMPTS_1, SFMASTR3, BORSUK_1, METRIC_1, EUCLID, TOPREAL1, TOPREAL2,
JGRAPH_1, GOBRD10, WEIERSTR, JORDAN5C, JORDAN6, JORDAN7, PSCOMP_1,
JORDAN1K;
constructors FINSEQ_4, JORDAN7, GOBRD10, PRE_CIRC, SFMASTR3, REALSET1,
BINARITH, PSCOMP_1, JORDAN5C, REAL_1, SQUARE_1, JORDAN6, TBSP_1,
CONNSP_1, JORDAN9, TOPRNS_1, JORDAN1K, RCOMP_1, CARD_4, DOMAIN_1, TOPS_2;
clusters RELSET_1, FINSEQ_1, STRUCT_0, EUCLID, TOPREAL6, PRELAMB, SUBSET_1,
JORDAN1B, REVROT_1, REALSET1, ARYTM_3, BORSUK_1, XREAL_0, WAYBEL_2,
PSCOMP_1, RCOMP_1, FINSET_1, XBOOLE_0, MEMBERED, PRE_CIRC;
requirements NUMERALS, SUBSET, BOOLE, REAL, ARITHM;
begin :: Preliminaries
reserve x,y,A for set;
scheme AndScheme{A()-> non empty set, P,Q[set]}:
{ a where a is Element of A(): P[a] & Q[a] }
= { a1 where a1 is Element of A(): P[a1] }
/\ { a2 where a2 is Element of A(): Q[a2] };
reserve C,C1,C2 for Simple_closed_curve,
X,Y for non empty set,
p,q,p1,p2,q1,q2,z1,z2 for Point of TOP-REAL 2,
i,j,k,m,n for Nat,
r,s for real number,
e for Real;
theorem :: JORDAN_A:1
for A,B being finite non empty Subset of REAL
holds min(A \/ B) = min(min A, min B);
definition let T be non empty TopSpace;
cluster compact non empty Subset of T;
end;
theorem :: JORDAN_A:2
for T being non empty TopSpace, f being continuous RealMap of T,
A being compact Subset of T
holds f.:A is compact;
theorem :: JORDAN_A:3
for A being compact Subset of REAL, B being non empty Subset of REAL st B c= A
holds inf B in A;
theorem :: JORDAN_A:4
for A,B being compact non empty Subset of TOP-REAL n,
f being continuous RealMap of [:TOP-REAL n, TOP-REAL n:],
g being RealMap of TOP-REAL n
st for p being Point of TOP-REAL n
ex G being Subset of REAL
st G = { f.(p,q) where q is Point of TOP-REAL n : q in B } &
g.p = inf G
holds inf(f.:[:A,B:]) = inf(g.:A);
theorem :: JORDAN_A:5
for A,B being compact non empty Subset of TOP-REAL n,
f being continuous RealMap of [:TOP-REAL n, TOP-REAL n:],
g being RealMap of TOP-REAL n
st for q being Point of TOP-REAL n
ex G being Subset of REAL
st G = { f.(p,q) where p is Point of TOP-REAL n : p in A } &
g.q = inf G
holds inf(f.:[:A,B:]) = inf(g.:B );
theorem :: JORDAN_A:6
q in Lower_Arc C & q <> W-min C implies LE E-max C, q, C;
theorem :: JORDAN_A:7
q in Upper_Arc C implies LE q, E-max C, C;
begin :: The Euclidean distance
definition let n;
func Eucl_dist n -> RealMap of [:TOP-REAL n, TOP-REAL n:] means
:: JORDAN_A:def 1
for p,q being Point of TOP-REAL n holds it.(p,q) =|.p - q.|;
end;
definition let T be non empty TopSpace, f be RealMap of T;
redefine attr f is continuous means
:: JORDAN_A:def 2
for p being Point of T, N being Neighbourhood of f.p
ex V being a_neighborhood of p st f.:V c= N;
end;
definition let n;
cluster Eucl_dist n -> continuous;
end;
begin :: On the distance between subsets of a Euclidean space
theorem :: JORDAN_A:8
:: JORDAN1K:39, JGRAPH_1:55
for A,B being non empty compact Subset of TOP-REAL n st A misses B
holds dist_min(A,B) > 0;
begin :: On the segments
theorem :: JORDAN_A:9
LE p,q,C & LE q, E-max C, C & p <> q implies
Segment(p,q,C) = Segment(Upper_Arc C,W-min C,E-max C,p,q);
theorem :: JORDAN_A:10
LE E-max C, q, C implies
Segment(E-max C,q,C) = Segment(Lower_Arc C,E-max C,W-min C,E-max C,q);
theorem :: JORDAN_A:11
LE E-max C, q, C implies
Segment(q,W-min C,C) = Segment(Lower_Arc C,E-max C,W-min C,q,W-min C);
theorem :: JORDAN_A:12
LE p,q,C & LE E-max C, p, C implies
Segment(p,q,C) = Segment(Lower_Arc C,E-max C,W-min C,p,q);
theorem :: JORDAN_A:13
LE p,E-max C,C & LE E-max C, q, C implies
Segment(p,q,C) = R_Segment(Upper_Arc C,W-min C,E-max C,p)
\/ L_Segment(Lower_Arc C,E-max C,W-min C,q);
theorem :: JORDAN_A:14
LE p,E-max C,C implies
Segment(p,W-min C,C) = R_Segment(Upper_Arc C,W-min C,E-max C,p)
\/ L_Segment(Lower_Arc C,E-max C,W-min C,W-min C);
theorem :: JORDAN_A:15
R_Segment(Upper_Arc C,W-min C,E-max C,p) =
Segment(Upper_Arc C,W-min C,E-max C,p,E-max C);
theorem :: JORDAN_A:16
L_Segment(Lower_Arc C,E-max C,W-min C,p) =
Segment(Lower_Arc C,E-max C,W-min C,E-max C,p);
theorem :: JORDAN_A:17
for p being Point of TOP-REAL 2 st p in C & p <> W-min C
holds Segment(p,W-min C,C) is_an_arc_of p,W-min C;
theorem :: JORDAN_A:18
for p,q being Point of TOP-REAL 2 st p<> q & LE p,q,C
holds Segment(p,q,C) is_an_arc_of p,q;
theorem :: JORDAN_A:19 :: poprawic JORDAN7:7
C = Segment(W-min C,W-min C,C);
theorem :: JORDAN_A:20
for q being Point of TOP-REAL 2 st q in C
holds Segment(q,W-min C,C) is compact;
theorem :: JORDAN_A:21
for q1,q2 being Point of TOP-REAL 2 st LE q1,q2,C
holds Segment(q1,q2,C) is compact;
begin :: The concept of a segmentation
definition let C;
mode Segmentation of C -> FinSequence of TOP-REAL 2 means
:: JORDAN_A:def 3
it/.1=W-min C & it is one-to-one & 8<=len it & rng it c= C &
(for i being Nat st 1<=i & i<len it holds LE it/.i,it/.(i+1),C) &
(for i being Nat st 1<=i & i+1<len it holds
Segment(it/.i,it/.(i+1),C) /\ Segment(it/.(i+1),it/.(i+2),C)={it/.(i+1)}) &
Segment(it/.len it,it/.1,C) /\ Segment(it/.1,it/.2,C)={it/.1} &
Segment(it/.(len it-' 1),it/.len it,C)/\ Segment(it/.len it,it/.1,C)
={it/.len it} &
Segment(it/.(len it-'1),it/.len it,C) misses Segment(it/.1,it/.2,C) &
(for i,j being Nat st 1<=i & i < j & j < len it & not i,j are_adjacent1
holds Segment(it/.i,it/.(i+1),C) misses Segment(it/.j,it/.(j+1),C)) &
for i being Nat st 1 < i & i+1 < len it holds
Segment(it/.len it,it/.1,C) misses Segment(it/.i,it/.(i+1),C);
end;
definition let C;
cluster -> non trivial Segmentation of C;
end;
theorem :: JORDAN_A:22
for S being Segmentation of C, i st 1<=i & i <= len S
holds S/.i in C;
begin :: The segments of a segmentation
definition let C; let i be natural number;
let S be Segmentation of C;
func Segm(S,i) -> Subset of TOP-REAL 2 equals
:: JORDAN_A:def 4
Segment(S/.i,S/.(i+1),C) if 1<=i & i<len S
otherwise Segment(S/.len S,S/.1,C);
end;
theorem :: JORDAN_A:23
for S being Segmentation of C st i in dom S holds Segm(S,i) c= C;
definition let C; let S be Segmentation of C, i;
cluster Segm(S,i) -> non empty compact;
end;
theorem :: JORDAN_A:24
for S being Segmentation of C, p st p in C
ex i being natural number st i in dom S & p in Segm(S,i);
theorem :: JORDAN_A:25
for S being Segmentation of C
for i,j st 1<=i & i< j & j<len S & not i,j are_adjacent1
holds Segm(S,i) misses Segm(S,j);
theorem :: JORDAN_A:26
for S being Segmentation of C
for j st 1<j & j<len S -' 1
holds Segm(S,len S) misses Segm(S,j);
theorem :: JORDAN_A:27
for S being Segmentation of C
for i,j st 1<=i & i< j & j<len S & i,j are_adjacent1
holds Segm(S,i) /\ Segm(S,j)={S/.(i+1)};
theorem :: JORDAN_A:28
for S being Segmentation of C
for i,j st 1<=i & i< j & j<len S & i,j are_adjacent1
holds Segm(S,i) meets Segm(S,j);
theorem :: JORDAN_A:29
for S being Segmentation of C
holds Segm(S,len S) /\ Segm(S,1) = {S/.1};
theorem :: JORDAN_A:30
for S being Segmentation of C
holds Segm(S,len S) meets Segm(S,1);
theorem :: JORDAN_A:31
for S being Segmentation of C
holds Segm(S,len S) /\ Segm(S,len S -' 1) = {S/.len S};
theorem :: JORDAN_A:32
for S being Segmentation of C
holds Segm(S,len S) meets Segm(S,len S -' 1);
begin :: The diameter of a segmentation
definition let n;
let C be Subset of TOP-REAL n;
func diameter C -> Real means
:: JORDAN_A:def 5
ex W being Subset of Euclid n
st W = C & it = diameter W;
end;
definition let C;
let S be Segmentation of C;
func diameter S -> Real means
:: JORDAN_A:def 6
ex S1 being non empty finite Subset of REAL st
S1 = { diameter Segm(S,i): i in dom S} & it = max S1;
end;
theorem :: JORDAN_A:33
for S being Segmentation of C, i
holds diameter Segm(S,i) <= diameter S;
theorem :: JORDAN_A:34
for S being Segmentation of C, e being Real
st for i holds diameter Segm(S,i) < e
holds diameter S < e;
theorem :: JORDAN_A:35
for e being Real st e > 0
ex S being Segmentation of C st diameter S < e;
begin :: The concept of the gap of a segmentation
definition let C;
let S be Segmentation of C;
func S-Gap S -> Real means
:: JORDAN_A:def 7
ex S1,S2 being non empty finite Subset of REAL st
S1 = { dist_min(Segm(S,i),Segm(S,j)):
1<=i & i< j & j<len S & not i,j are_adjacent1} &
S2 = { dist_min(Segm(S,len S),Segm(S,k)): 1<k & k<len S -' 1 } &
it = min(min S1,min S2);
end;
theorem :: JORDAN_A:36
for S being Segmentation of C
ex F being finite non empty Subset of REAL st
F = { dist_min(Segm(S,i),Segm(S,j)):
1<=i & i<j & j<=len S & Segm(S,i) misses Segm(S,j)} &
S-Gap S = min F;
theorem :: JORDAN_A:37
for S being Segmentation of C holds S-Gap S > 0;
Back to top