environ vocabulary PRE_TOPC, EUCLID, ARYTM_1, COMPTS_1, TOPREAL2, PSCOMP_1, JORDAN6, TOPREAL1, JORDAN3, BOOLE, BORSUK_1, RELAT_1, TOPS_2, ORDINAL2, FUNCT_1, SUBSET_1, RCOMP_1, FINSEQ_1, TBSP_1, GOBRD10, FINSEQ_4; notation TARSKI, XBOOLE_0, SUBSET_1, NUMBERS, XREAL_0, REAL_1, NAT_1, RCOMP_1, RELAT_1, BINARITH, FINSEQ_1, FUNCT_1, FUNCT_2, FINSEQ_4, TOPREAL1, TOPREAL2, TBSP_1, GOBOARD1, GOBRD10, PRE_TOPC, TOPS_2, STRUCT_0, COMPTS_1, EUCLID, JORDAN3, PSCOMP_1, JORDAN5C, JORDAN6, TOPMETR; constructors RCOMP_1, GOBRD10, BINARITH, TOPREAL2, TOPS_2, TBSP_1, REAL_1, PSCOMP_1, JORDAN3, JORDAN4, JORDAN5C, JORDAN6, FINSEQ_4, GOBOARD1, T_0TOPSP, URYSOHN1, YELLOW_8; clusters STRUCT_0, RELSET_1, EUCLID, PSCOMP_1, PRE_TOPC, XREAL_0, ARYTM_3, GOBOARD1, BORSUK_2, MEMBERED; requirements REAL, SUBSET, BOOLE, NUMERALS, ARITHM; begin :: Definition of the Segment and its property reserve p,p1,p2,p3,q for Point of TOP-REAL 2; theorem :: JORDAN7:1 for P being compact non empty Subset of TOP-REAL 2 st P is_simple_closed_curve holds W-min(P) in Lower_Arc(P) & E-max(P) in Lower_Arc(P) & W-min(P) in Upper_Arc(P) & E-max(P) in Upper_Arc(P); theorem :: JORDAN7:2 for P being compact non empty Subset of TOP-REAL 2,q st P is_simple_closed_curve & LE q,W-min(P),P holds q=W-min(P); theorem :: JORDAN7:3 for P being compact non empty Subset of TOP-REAL 2,q st P is_simple_closed_curve & q in P holds LE W-min(P),q,P; definition let P be compact non empty Subset of TOP-REAL 2, q1,q2 be Point of TOP-REAL 2; func Segment(q1,q2,P) -> Subset of TOP-REAL 2 equals :: JORDAN7:def 1 {p: LE q1,p,P & LE p,q2,P} if q2<>W-min(P) otherwise {p1: LE q1,p1,P or q1 in P & p1=W-min(P)}; end; theorem :: JORDAN7:4 for P being compact non empty Subset of TOP-REAL 2 st P is_simple_closed_curve holds Segment(W-min(P),E-max(P),P)=Upper_Arc(P) & Segment(E-max(P),W-min(P),P)=Lower_Arc(P); theorem :: JORDAN7:5 for P being compact non empty Subset of TOP-REAL 2, q1,q2 being Point of TOP-REAL 2 st P is_simple_closed_curve & LE q1,q2,P holds q1 in P & q2 in P; theorem :: JORDAN7:6 for P being compact non empty Subset of TOP-REAL 2, q1,q2 being Point of TOP-REAL 2 st P is_simple_closed_curve & LE q1,q2,P holds q1 in Segment(q1,q2,P) & q2 in Segment(q1,q2,P); theorem :: JORDAN7:7 for P being compact non empty Subset of TOP-REAL 2, q1 being Point of TOP-REAL 2 st q1 in P & P is_simple_closed_curve holds q1 in Segment(q1,W-min P,P); theorem :: JORDAN7:8 for P being compact non empty Subset of TOP-REAL 2, q being Point of TOP-REAL 2 st P is_simple_closed_curve & q in P & q<>W-min(P) holds Segment(q,q,P)={q}; theorem :: JORDAN7:9 for P being compact non empty Subset of TOP-REAL 2, q1,q2 being Point of TOP-REAL 2 st P is_simple_closed_curve & q1<>W-min(P) & q2<>W-min(P) holds not W-min(P) in Segment(q1,q2,P); theorem :: JORDAN7:10 for P being compact non empty Subset of TOP-REAL 2, q1,q2,q3 being Point of TOP-REAL 2 st P is_simple_closed_curve & LE q1,q2,P & LE q2,q3,P & not(q1=q2 & q1=W-min(P)) & q1<>q3 & not(q2=q3 & q2=W-min(P)) holds Segment(q1,q2,P)/\ Segment(q2,q3,P)={q2}; theorem :: JORDAN7:11 for P being compact non empty Subset of TOP-REAL 2, q1,q2 being Point of TOP-REAL 2 st P is_simple_closed_curve & LE q1,q2,P & q1 <> W-min P & q2 <> W-min P holds Segment(q1,q2,P)/\ Segment(q2,W-min P,P)={q2}; theorem :: JORDAN7:12 for P being compact non empty Subset of TOP-REAL 2, q1,q2 being Point of TOP-REAL 2 st P is_simple_closed_curve & LE q1,q2,P & q1<>q2 & q1<>W-min(P) holds Segment(q2,W-min(P),P)/\ Segment(W-min(P),q1,P)={W-min(P)}; theorem :: JORDAN7:13 for P being compact non empty Subset of TOP-REAL 2, q1,q2,q3,q4 being Point of TOP-REAL 2 st P is_simple_closed_curve & LE q1,q2,P & LE q2,q3,P & LE q3,q4,P & q1<>q2 & q2<>q3 holds Segment(q1,q2,P) misses Segment(q3,q4,P); theorem :: JORDAN7:14 for P being compact non empty Subset of TOP-REAL 2, q1,q2,q3 being Point of TOP-REAL 2 st P is_simple_closed_curve & LE q1,q2,P & LE q2,q3,P & q1<>W-min P & q1<>q2 & q2<>q3 holds Segment(q1,q2,P) misses Segment(q3,W-min P,P); begin :: A function to divide the simple closed curve reserve n for Nat; theorem :: JORDAN7:15 for P being non empty Subset of TOP-REAL n, f being map of I[01], (TOP-REAL n)|P st P<>{} & f is_homeomorphism ex g being map of I[01],TOP-REAL n st f=g & g is continuous & g is one-to-one; theorem :: JORDAN7:16 for P being non empty Subset of TOP-REAL n, g being map of I[01], (TOP-REAL n) st g is continuous one-to-one & rng g = P ex f being map of I[01],(TOP-REAL n)|P st f=g & f is_homeomorphism; definition cluster increasing -> one-to-one FinSequence of REAL; end; theorem :: JORDAN7:17 for f being FinSequence of REAL st f is increasing holds f is one-to-one; theorem :: JORDAN7:18 for A being Subset of TOP-REAL 2, p1,p2 being Point of TOP-REAL 2 st A is_an_arc_of p1,p2 ex g being map of I[01], TOP-REAL 2 st g is continuous one-to-one & rng g = A & g.0 = p1 & g.1 = p2; theorem :: JORDAN7:19 for P being non empty Subset of TOP-REAL 2, p1, p2, q1, q2 being Point of TOP-REAL 2, g being map of I[01], TOP-REAL 2, s1, s2 being Real st P is_an_arc_of p1,p2 & g is continuous one-to-one & rng g = P & g.0 = p1 & g.1 = p2 & g.s1 = q1 & 0 <= s1 & s1 <= 1 & g.s2 = q2 & 0 <= s2 & s2 <= 1 & s1 <= s2 holds LE q1,q2,P,p1,p2; theorem :: JORDAN7:20 for P being non empty Subset of TOP-REAL 2, p1, p2, q1, q2 being Point of TOP-REAL 2, g being map of I[01], TOP-REAL 2, s1, s2 being Real st g is continuous one-to-one & rng g = P & g.0 = p1 & g.1 = p2 & g.s1 = q1 & 0 <= s1 & s1 <= 1 & g.s2 = q2 & 0 <= s2 & s2 <= 1 & LE q1,q2,P,p1,p2 holds s1 <= s2; theorem :: JORDAN7:21 :: Dividing simple closed curve into segments. for P being compact non empty Subset of TOP-REAL 2, e being Real st P is_simple_closed_curve & e > 0 ex h being FinSequence of the carrier of TOP-REAL 2 st h.1=W-min(P) & h is one-to-one & 8<=len h & rng h c= P &(for i being Nat st 1<=i & i<len h holds LE h/.i,h/.(i+1),P) &(for i being Nat,W being Subset of Euclid 2 st 1<=i & i<len h & W=Segment(h/.i,h/.(i+1),P) holds diameter(W)<e) & (for W being Subset of Euclid 2 st W=Segment(h/.len h,h/.1,P) holds diameter(W)<e) & (for i being Nat st 1<=i & i+1<len h holds Segment(h/.i,h/.(i+1),P)/\ Segment(h/.(i+1),h/.(i+2),P)={h/.(i+1)}) & Segment(h/.len h,h/.1,P)/\ Segment(h/.1,h/.2,P)={h/.1} & Segment(h/.(len h-' 1),h/.len h,P)/\ Segment(h/.len h,h/.1,P)={h/.len h} & Segment(h/.(len h-'1),h/.len h,P) misses Segment(h/.1,h/.2,P) &(for i,j being Nat st 1<=i & i < j & j < len h & not(i,j are_adjacent1) holds Segment(h/.i,h/.(i+1),P) misses Segment(h/.j,h/.(j+1),P)) & (for i being Nat st 1 < i & i+1 < len h holds Segment(h/.len h,h/.1,P) misses Segment(h/.i,h/.(i+1),P));