Journal of Formalized Mathematics
Volume 9, 1997
University of Bialystok
Copyright (c) 1997
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Adam Grabowski
- Received May 21, 1997
- MML identifier: SUBSTLAT
- [
Mizar article,
MML identifier index
]
environ
vocabulary FINSUB_1, PARTFUN1, FINSET_1, BOOLE, NORMFORM, FUNCT_1, RELAT_1,
FINSEQ_1, FUNCT_4, LATTICES, BINOP_1, SUBSTLAT;
notation TARSKI, XBOOLE_0, SUBSET_1, FINSET_1, FINSUB_1, BINOP_1, RELAT_1,
STRUCT_0, FUNCT_1, PARTFUN1, LATTICES, FUNCT_4, RELSET_1;
constructors PARTFUN1, FINSET_1, NORMFORM, FUNCT_4;
clusters RELSET_1, LATTICES, FINSET_1, FINSUB_1, PARTFUN1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Preliminaries
reserve V, C for set;
definition let V, C;
func SubstitutionSet (V, C) -> Subset of Fin PFuncs (V, C) equals
:: SUBSTLAT:def 1
{ A where A is Element of Fin PFuncs (V,C) :
( for u being set st u in A holds u is finite ) &
for s, t being Element of PFuncs (V, C) holds
( s in A & t in A & s c= t implies s = t ) };
end;
theorem :: SUBSTLAT:1
{} in SubstitutionSet (V, C);
theorem :: SUBSTLAT:2
{ {} } in SubstitutionSet (V, C);
definition let V, C;
cluster SubstitutionSet (V, C) -> non empty;
end;
definition let V, C;
let A, B be Element of SubstitutionSet (V, C);
redefine func A \/ B -> Element of Fin PFuncs (V, C);
end;
definition let V, C;
cluster non empty Element of SubstitutionSet (V, C);
end;
definition let V, C;
cluster -> finite Element of SubstitutionSet (V, C);
end;
definition let V, C;
let A be Element of Fin PFuncs (V, C);
func mi A -> Element of SubstitutionSet (V, C) equals
:: SUBSTLAT:def 2
{ t where t is Element of PFuncs (V, C) : t is finite &
for s being Element of PFuncs (V, C) holds
( s in A & s c= t iff s = t ) };
end;
definition let V, C;
let A be non empty Element of SubstitutionSet (V, C);
cluster -> Function-like Relation-like Element of A;
end;
definition let V, C;
cluster -> Function-like Relation-like Element of PFuncs (V, C);
end;
definition let V, C;
let A, B be Element of Fin PFuncs (V, C);
func A^B -> Element of Fin PFuncs (V, C) equals
:: SUBSTLAT:def 3
{ s \/ t where s,t is Element of PFuncs (V,C) :
s in A & t in B & s tolerates t };
end;
reserve A, B, D for Element of Fin PFuncs (V, C);
theorem :: SUBSTLAT:3
A^B = B^A;
theorem :: SUBSTLAT:4
B = { {} } implies A ^ B = A;
theorem :: SUBSTLAT:5
for a, b be set holds
B in SubstitutionSet (V, C) & a in B & b in B & a c= b implies a = b;
theorem :: SUBSTLAT:6
for a be set holds
a in mi B implies a in B & (for b be set holds b in B & b c= a implies b = a)
;
reserve s for Element of PFuncs (V,C);
definition let V, C;
cluster finite Element of PFuncs (V,C);
end;
theorem :: SUBSTLAT:7
for a be finite set holds a in B & (for b be finite set st
b in B & b c= a holds b = a) implies a in mi B;
theorem :: SUBSTLAT:8
mi A c= A;
theorem :: SUBSTLAT:9
A = {} implies mi A = {};
theorem :: SUBSTLAT:10
for b be finite set holds b in B implies ex c be set st c c= b & c in mi B;
theorem :: SUBSTLAT:11
for K be Element of SubstitutionSet (V, C) holds
mi K = K;
theorem :: SUBSTLAT:12
mi (A \/ B) c= mi A \/ B;
theorem :: SUBSTLAT:13
mi(mi A \/ B) = mi (A \/ B);
theorem :: SUBSTLAT:14
A c= B implies A ^ D c= B ^ D;
theorem :: SUBSTLAT:15
for a be set holds a in A^B implies ex b,c be set
st b in A & c in B & a = b \/ c;
theorem :: SUBSTLAT:16
for b, c be Element of PFuncs (V, C) holds
b in A & c in B & b tolerates c implies b \/ c in A^B;
theorem :: SUBSTLAT:17
mi(A ^ B) c= mi A ^ B;
theorem :: SUBSTLAT:18
A c= B implies D ^ A c= D ^ B;
theorem :: SUBSTLAT:19
mi(mi A ^ B) = mi (A ^ B);
theorem :: SUBSTLAT:20
mi(A ^ mi B) = mi (A ^ B);
theorem :: SUBSTLAT:21
for K, L, M being Element of Fin PFuncs (V, C) holds
K^(L^M) = K^L^M;
theorem :: SUBSTLAT:22
for K, L, M being Element of Fin PFuncs (V, C) holds
K^(L \/ M) = K^L \/ K^M;
theorem :: SUBSTLAT:23
B c= B ^ B;
theorem :: SUBSTLAT:24
mi (A ^ A) = mi A;
theorem :: SUBSTLAT:25
for K be Element of SubstitutionSet (V, C) holds
mi (K^K) = K;
begin :: Definition of the lattice
definition let V, C;
func SubstLatt (V, C) -> strict LattStr means
:: SUBSTLAT:def 4
the carrier of it = SubstitutionSet (V, C) &
for A, B being Element of SubstitutionSet (V, C) holds
(the L_join of it).(A,B) = mi (A \/ B) &
(the L_meet of it).(A,B) = mi (A^B);
end;
definition let V, C;
cluster SubstLatt (V, C) -> non empty;
end;
reserve K, L, M for Element of SubstitutionSet (V,C);
definition let V, C;
cluster SubstLatt (V, C) -> Lattice-like;
end;
definition let V, C;
cluster SubstLatt (V, C) -> distributive bounded;
end;
theorem :: SUBSTLAT:26
Bottom SubstLatt (V,C) = {};
theorem :: SUBSTLAT:27
Top SubstLatt (V,C) = { {} };
Back to top